Recent Results from COSINE-100 Experiment

Wright Laboratory

Jay Hyun Jo e Univers

Dark Consolider Workshop

Current status of direct dark matter searches

- No sign of WIMPs down to >10⁻⁴⁶ cm² @ 30 GeV
- New experiments exploring • low-mass dark matter
- DAMA's signal remains unresolved

Need to directly test DAMA's result with Nal(TI)

Particle Data Group 2018

Annual Modulation of Dark Matter

Galactic dark matter is believed to be distributed in a halo •

Earth's motion around the sun causes annual modulation of dark matter (peak @ June 2) ightarrow

image credit: <u>quantamagazine.com</u>

DAMA's annual modulation

- DAMA/LIBRA-phase2 result • announced with 1 keV threshold
 - (1-6) keV: 9.5 σ from 1.13 ton-year
 - (2-6) keV: 12.9 σ from 2.46 ton-year
- **Modulation amplitude:** (0.0103±0.0008) cpd/kg/keV in (2-6) keV
- Phase: (145 ± 5) days
- Period: (0.999±0.001) year

Bernabei *et al.*, arXiv:1805.10486

Interpretation of the DAMA result

Phosphorescence? Spallation neutrons? Electricity usage on the grid? K x-rays?

"What is causing DAMA's modulation? Could it be some backgrounds?"

Interpretation of the DAMA result

...models...

- Which particle?
- Which interaction coupling?
- Which EFT operators contribute?
- Which Form Factors for each target-material?
- Which Spin Factor?
- Which nuclear model framework?
- Which scaling law?
- Which halo model, profile and related parameters?
- Streams?

Yale

About interpretation and comparisons

See e.g.: Riv.N.Cim.26 ono.1(2003)1, IJMPD13(2004)2127, EPJC47(2006)263, IJMPA21(2006)1445, EPJC56(2008)333, PRD84(2011)055014, JMPA28(2013)1330022

- ...and experimental aspects...
- Exposures
- Energy threshold
- Detector response (phe/keV)
- Energy scale and energy resolution
- Calibrations
- Stability of all the operating conditions.
- Selections of detectors and of data.
- Subtraction/rejection procedures and stability in time of all the selected windows and related quantities
- Efficiencies
- Definition of fiducial volume and nonuniformity
- Quenching factors, channeling

Uncertainty in experimental parameters, as well as necessary assumptions on various related astrophysical, nuclear and particle-physics aspects, affect all the results at various extent, both in terms of exclusion plots and in terms of allowed regions/volumes. Thus comparisons with a fixed set of assumptions and parameters' values are intrinsically strongly uncertain.

> No experiment can - at least in principle - be directly compared in a model independent way with DAMA so far

Need to directly test DAMA's result with the same target material

Global Nal(TI) efforts

Global Nal(TI) efforts

COSINE-100

Yale

- A joint effort between DM-Ice and KIMS collaborations
- 8 Nal(TI) crystals with 106 kg in total
- Located at Yangyang underground laboratory (Y2L), • South Korea, with ~700 m rock overburden
- **Physics run started September 2016**

COSINE-100 detector configuration

a)

2-inch

PMT

- 37 plastic scintillator panels to tag muons events
- 20cm thick lead shielding and 3cm thick copper box
- 2000L of liquid scintillator to tag internal/external background events
- 8 Nal(TI) crystals

COSINE-100 construction timeline

Dec. 2015

Mar. 2016

May. 2016

Jan. 2016

Feb. 2016

Apr. 2016

Sep. 2016

Jay Hyun Jo

11

Crystal configuration

COSINE-100 operation

- Data taking since Sep. 2016
 - Stable operation
 - ~90% live time
 - Near 100% uptime outside of calibration
- > 2 years of data accumulation
 - SET1 data (59.5 days) Background modeling, detector understanding, and WIMP analysis
 - SET2 data (621.0 days) Annual modulation analysis

COSINE-100 Accumulated Data

- Monitoring stability of temperature, humidity, current/voltage, etc.
- < 0.1 °C temperature and < 2% humidity fluctuation inside the shielding structure
- Current and voltage of detectors very stable

COSINE-100 Temperature Stability

Jay Hyun Jo

14

Correcting for Gain Shifts

- Position of internal ²¹⁰Pb decays also monitored over time
- behavior

Yale

Liquid scintillator veto

- crystal
- Liquid scintillator internal contamination well modeled with simulation

⁴⁰K emits 1460 keV gamma with 3 keV Auger electron energy deposition in Nal

Tagging 1460 keV events with LS enables vetoing of 3 keV background events

Muon detector

- Muon veto with 37 plastic scintillator • panels with 2-inch PMTs
- Events correlated with muon tagged ullet
- Muon-induced events in Nal(TI) under • investigation

COSINE-100 Nal(TI) crystals

- 8 Crystals, total 106 kg
- Culmination of R&D program with Alpha Spectra •
- U/Th/K below DAMA, ²¹⁰Po very close
- High light yield
 - Crystal-5 & 8 used primarily for veto due to low light yield

Crystal	Mass	Size (inches	Powder	α Rate	$^{40}\mathrm{K}$	$^{238}\mathrm{U}$	232 Th	Light Yield
	(kg)	$diameter \times length)$		(mBq/kg)	(ppb)	(ppt)	(ppt)	$(\mathrm{PEs/keV})$
Crystal-1	8.3	5.0 imes 7.0	AS-B	3.20 ± 0.08	43.4 ± 13.7	< 0.02	1.3 ± 0.4	14.9 ± 1.5
Crystal-2	9.2	4.2×11.0	AS-C	2.06 ± 0.06	82.7 ± 12.7	< 0.12	< 0.6	14.6 ± 1.5
Crystal-3	9.2	4.2×11.0	AS-WSII	0.76 ± 0.02	41.1 ± 6.8	< 0.04	0.4 ± 0.2	15.5 ± 1.6
Crystal-4	18.0	5.0 imes 15.3	AS-WSII	0.74 ± 0.02	39.5 ± 8.3		< 0.3	14.9 ± 1.5
Crystal-5	18.3	5.0 imes 15.5	AS-C	2.06 ± 0.05	86.8 ± 10.8		2.4 ± 0.3	7.3 ± 0.7
Crystal-6	12.5	4.8×11.8	AS-WSIII	1.52 ± 0.04	12.2 ± 4.5	< 0.02	0.6 ± 0.2	14.6 ± 1.5
Crystal-7	12.5	4.8×11.8	AS-WSIII	1.54 ± 0.04	18.8 ± 5.3		< 0.6	14.0 ± 1.4
Crystal-8	18.3	5.0 imes 15.5	AS-C	2.05 ± 0.05	56.2 ± 8.1		< 1.4	3.5 ± 0.3
DAMA				< 0.5	< 20	0.7 - 10	0.5 - 7.5	5.5 - 7.5

Selection efficiency/Low energy spectrum

- ~70% efficiency at 2 keV
- 2 4 counts/keV/kg/day in region of interest depending on the crystal

Background in data vs. simulation

- Data reproduced well with Geant4 simulation
- Background well understood from 2 keV 2000 keV
- ullet

Yale

Eur. Phys. J. C 78 490 (2018)

Dominant background from ²¹⁰Pb (internal, surface) and ⁴⁰K (internal), followed by cosmogenic ³H

Background in data vs. simulation

20

30

40

Energy (keV)

Yale

Nature 564, 83-86 (2018)

Jay Hyun Jo

60

50

22

- Using 59.5 days of data: 6303.9 kg day exposure
- Spectrum fit for 2-20 keV including WIMP model
- Background understanding consideration from V. Kudryavtsev et al. Astropart. Phys. 33 (2010) 91

Eur. Phys. J. C 78 490 (2018)

a) Crystal 1

Yale

Nature 564, 83-86 (2018)

b) Crystal 2

c) Crystal 3

Jay Hyun Jo

24

Measured and simulated energy spectra, summed for the six crystals

- Spectrum with known sources of backgrounds
- COSINE-100 excludes DAMA/LIBRA-phase1's signal as spin-independent WIMP with Standard Halo Model in Nal(TI)
- Consistent with null results from other direct detect experiments with different target medium

Yale

lent	10
ndepenc cm²)	
n spin-ir section (10
-nucleo cross-s	10
MIM	10

Nature **564**, 83-86 (2018)

So...is DAMA dead?

- Unfortunately, not yet...
 - With the current spectral decomposition analysis, we can only reject a certain 'model' of the dark matter that can be interpreted from DAMA
 - We confirmed that DAMA's modulation signal cannot be from standard WIMP in SHM with the same target material
 - "I think this is one more nail in the coffin." Dan Hooper

It is true that this COSINE-100 result only ruled out the simplest version of WIMPS, and for a complete test of DAMA, the annual modulation search is required

Sideband sample: Multiple-hit 2-6 keV Sideband sample: Single-hit 6-10 keV

- Crystal 1, 5, and 8 are excluded in this analysis due to low light yield and excessive PMT noise
- components

Sideband data fits well with exponential models built with the known cosmogenic

- Global fit using cosmogenic and sinusoidal components simultaneously for crystals
- Crystal-1, 5, and 8 excluded in this analysis due to low light yield and excessive PMT noise
- Sideband events decrease exponentially, agrees with known cosmogenic components

1.7 yrs, 97.7 kg yrs exposure

- Best fit amplitude for 2-6 keV •
 - 0.0092 ± 0.0067 cpd/kg/keV
 - 127.2 ± 45.9 cpd/kg/keV

Yale

• Statistically limited, not yet able to distinguish DAMA/null

	Configuration	χ^2	<i>d.o.f.</i>	p-value	Amplitude (counts/keV/kg/day)	Pha
	COSINE-100	175.3	174	0.457	$0.0092{\pm}0.0067$	12
DAMA/I	LIBRA (Phase1+Phase2)	—	_	—	$0.0096{\pm}0.0008$	
	COSINE-100	175.6	175	0.473	$0.0083 {\pm} 0.0068$	152
COSI	NE-100 (Without LS)	194.7	175	0.143	$0.0024{\pm}0.0071$	152
	ANAIS-112	48.0	53	0.67	-0.0044 ± 0.0058	152
DAMA/I	LIBRA (Phase1+Phase2)	71.8	101	0.988	$0.0095{\pm}0.0008$	152

Yale

DAMA/null

ANAIS-112 recent result

Moriond Conference

Yale

Other physics analysis: Boosted DM Search

- BDM: relativistic dark matter particle that is boosted by annihilation of heavier dark matter particles in the GC/Sun
- Taking advantage of effectively ton-scale liquid scintillator detector
- SET1 data (59.5 days) used for the analysis

What next?

- Need to directly test DAMA with the annual modulation analysis
 - With the current background levels of COSINE-100 crystals, it takes ~3 years more exposure
 - ANAIS has been running with 112 kg of Nal(TI) crystals from the same manufacturer as COSINE-100, agreed to combine the result with COSINE soon
- The most critical factor for the sensitivity is the crystal **background level**, which is currently 2-4 times higher than DAMA's
 - In-house crystal growing is on going at IBS, Korea
 - Involves rigorous studies of Nal powder purification, growth optimization, and crystal encapsulation
 - Initial result promising: planning for upgrade (COSINE-200) with these lower background crystals (~1 DRU)

COSINE-200 @ Y2L COSINE-200, 5 years, NULL case

What next?

- Needs to grow our own crystal with low(er) background and better understanding of the crystal/assembly procedures
- Powder purification system and crystal growers are available at IBS facility
- Went through many trials and errors, found ways to reduce background contamination in powder & improve growth condition of Nal(TI) crystals
- Current measurements show great improvements!

~ 100 kg NaI crystal (ingot) grower

Piping & Instrument Diagram

- What if we do not see the modulation signal?
 - We can refute DAMA's claim for dark matter discovery
 - etc.)
- What if we do see the modulation signal?
 - We need to understand the signal
 - The most straightforward idea is to repeat the same experiment in Southern Hemisphere (DM-lce17, SABRE)
 - COSINE-200 in South Pole under consideration: IceCube upgrade is planned on 2022-2023

- DAMA's signal may be coming from the local effect (LNGS, shielding structure,

COSINE-200 @ South Pole **Close-Packed Detector Array**

veto capability and background rejection in close-packed detector array

Jay Hyun Jo

36

Summary and outlook

- COSINE-100: Goal is to test DAMA's claim for dark matter observation with the same target material
- •
- but statistics limited
- Upgrade plans for next phase of COSINE-100 developing: Crystal growing, lowering energy threshold, ANAIS-COSINE data combining, ...
- Stay tuned for more exciting results to come!

Yale

COSINE-100 confirms that DAMA's modulation signal cannot be from standard WIMP & SHM with NaI(TI)

• First modulation analysis with 1.7 years exposure shows consistent result with null hypothesis and DAMA signal,

Backup

COSINE-100 Detector Configuration

Plastic Scintillators

Yale

COSINE-100 Calibration/Light yield calculation

- ²⁴¹Am source (60 keV gamma) used to calibrate PMTs
- Gain is matched to have 60 keV peak at the mid-range of FADC dynamic range
- Single Photoelectron spectrum were fitted to calculate PMT light yield

Temperature and Event Rate

- in light yield of $\leq -0.2\%/^{\circ}C$

Yale

Jay Hyun Jo

41

Observed Light Yields

- Measurement of SPE and ²¹⁰Pb peaks allow determination of crystal light yields
 - Light yield: $\frac{E_{50 \ keV}}{E_{SPE} \times 50 \ keV}$
- Change of $\lesssim 1 \frac{p.e.}{keV}$ per year in modulation analysis crystals
- Verified by calibration with ²⁴¹Am

²²²Rn and Event Rate

Yale

50

50

40

COSINE-100 Muon Background

- Muon flux at COSINE-100 is $\sim 3.98 \text{ x} 10^{-7}/\text{cm}^2/\text{s} (344.29 \text{ muons/m}^2/\text{day})$ •
- Rate has been consistent throughout the physics run
- Muon selection used to veto muon-induced crystal events

Jay Hyun Jo

Rate muons/m²/day

Background simulation

- Simulation of full detector using GEANT 4.9
 - Nal(TI) crystal and LAB-based liquid scintillator
 - Dominant background in Crystal ROI (2-20 keV): ⁴⁰K, ²¹⁰Pb, ³H
- Multi-channel fit: Low/high energy, single/multiple hit, multiple crystals, ...
- Initial study is close to be finished, will continue to improve

		Crystal-1	Crystal-2	Crystal-3	Crystal-4	Crystal-6	Crystal-7
Internal	40 K	$0.10\ {\pm}0.02$	0.20 ± 0.02	0.10 ± 0.01	0.10 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
	$^{210}\mathrm{Pb}$	2.50 ± 0.10	1.69 ± 0.09	0.57 ± 0.05	0.71 ± 0.05	1.46 ± 0.07	1.50 ± 0.07
	Other $(\times 10^{-4})$	$7.0{\pm}0.1$	15 ± 1	$7.3{\pm}0.1$	$7.7{\pm}0.1$	14 ± 1	14 ± 1
Cosmogenic	$^{3}\mathrm{H}$	2.35 ± 0.90	0.81 ± 0.40	1.54 ± 0.77	1.97 ± 0.66	0.69 ± 0.67	0.58 ± 0.54
	$^{109}\mathrm{Cd}$	0.05 ± 0.04	$0.009\ {\pm}0.009$	0.13 ± 0.06	0.33 ± 0.16	0.09 ± 0.09	0.09 ± 0.09
	Other	-	-	0.02 ± 0.01	0.05 ± 0.02	0.05 ± 0.03	0.05 ± 0.03
Surface	$^{210}\mathrm{Pb}$	0.64 ± 0.64	0.51 ± 0.51	1.16 ± 0.51	0.22 ± 0.16	0.34 ± 0.20	0.38 ± 0.21
External		0.03 ± 0.02	0.05 ± 0.04	0.03 ± 0.02	0.03 ± 0.02	0.04 ± 0.03	0.03 ± 0.02
Tolal simulation		5.68 ± 1.04	3.28 ± 0.67	3.57 ± 0.76	3.41 ± 0.75	2.74 ± 0.61	2.70 ± 0.51
Data		5.64 ± 0.10	3.27 ± 0.07	3.35 ± 0.07	3.19 ± 0.05	2.62 ± 0.05	2.64 ± 0.05

Jay Hyun Jo

K40
Na22
38
232
38
232
ol U238
ol Th232

Energy (keV)

Other physics analyses

- From the background understanding, other interesting searches are actively on-going
- PSD analysis: looking at different decay time between 5 electron/nuclear recoil within Nal(TI) crystal
- **Bosonic Super-WIMP, Solar** axion, inelastic Boosted Dark Matter searches, ...

Jay Hyun Jo

10⁻¹⁰

10⁻¹¹

10⁻⁵

XMASS

Solar v

