Constraining branon dark matter with MAGIC from observations of the Segue 1 dwarf spheroidal galaxy

Tjark Miener

Universidad Complutense de Madrid, Grupo de Altas Energías (GAE)

03/04/2019

Grupo de Altas Energías - UCM

◆□> ◆聞> ◆居> ◆居> 三田

Outline

Constraining branon dark matter

Introduction gLike tool Branon dark matter

Deep learning for IACTs

Deep learning CTLearn

Introduction

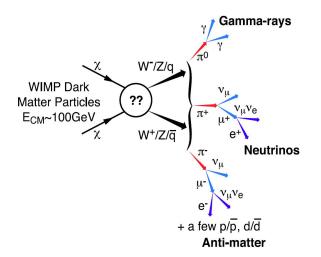


Figure : Dark matter (DM) self-annihilation. [Fermi-LAT]

Introduction

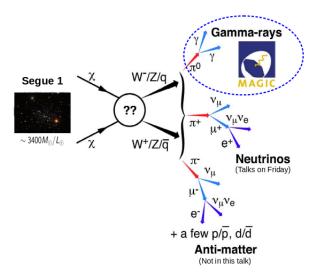
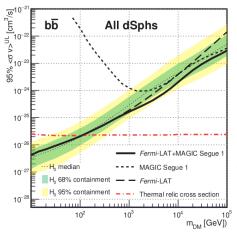


Figure : Dark matter (DM) self-annihilation. [Fermi-LAT]

MAGIC telescope & Segue 1 observations

- Current operating imaging atmospheric Cherenkov telescope
- Roque de los Muchachos Observatory on La Palma at about 2200m above sea level
- Two telescopes with 17m diameter reflecting surfaces placed at a distance of 85m
- \blacktriangleright Sensitive to VHE gamma-rays (between \sim 50GeV and \sim 50TeV)
- Segue 1 data set is almost 160 hours of good-quality data and was taking under four different experimental conditions

Profile likelihood


- ► The model describing our data depends on g and additional nuisance parameter h = (h₁,..., h_l).
- The full likelihood function is given by

$$\mathcal{L}(g;h|X) = \prod_{i=1}^{n} \mathrm{f}(X_i|g;h),$$

where $X = (X_1, ..., X_n)$ are *n* independent observations and f (X|g; h) is the probability function (or density).

We are interested in the parameter g = (g₁,...,g_k). (For DM searches g is ⟨σv⟩)

Combined analysis of MAGIC and Fermi-LAT (2014) [Ahnen]

Name	1	b	D	r_s/D	$log_{10}(J_{obs})$
	[deg]	[deg]	[kpc]	[deg]	$[\log_{10}(\text{GeV}^2\text{cm}^{-5})]$
Bootes I	358.08	69.62	66	0.23	18.8 ± 0.22
Canes Venatici II	113.58	82.70	160	0.071	17.9 ± 0.25
Carina	260.11	-22.22	105	0.093	18.1 ± 0.23
Coma Berenices	241.89	83.61	44	0.23	19.0 ± 0.25
Draco	86.37	34.72	76	0.26	18.8 ± 0.16
Fornax	237.10	-65.65	147	0.17	18.2 ± 0.21
Hercules	28.73	36.87	132	0.081	18.1 ± 0.25
Leo II	220.17	67.23	233	0.071	17.6 ± 0.18
Leo IV	265.44	56.51	154	0.072	17.9 ± 0.28
Sculptor	287.53	-83.16	86	0.25	18.6 ± 0.18
Segue 1	220.48	50.43	23	0.36	19.5 ± 0.29
Sextans	243.50	42.27	86	0.13	18.4 ± 0.27
Ursa Major II	152.46	37.44	32	0.32	19.3 ± 0.28
Ursa Minor	104.97	44.80	76	0.35	18.8 ± 0.19
Willman 1	158.58	56.78	38	0.25	19.1 ± 0.31

gLike - code framework for the numerical maximization of joint likelihood functions

List of examples where gLike is useful:

- Estimating the number of signal events (with uncertainties) in a dataset whose background content is in turn estimated from an independent measurement in a signal-free control-region. (<u>Li & Ma</u>)
- Same as before, but considering in addition a systematic uncertainty in the estimation of the background. (<u>Rolke</u>)
- Estimating the dark matter annihilation cross-section combining observations of dwarf spheroidal galaxies by different ground-based gamma-ray telescopes, satellite gamma-ray detectors, neutrino telescopes,

https://github.com/javierrico/gLike

▶ ...

gLike output

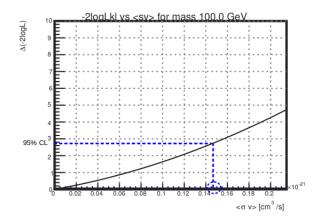


Figure : The sensitivity (for a given confidence level, CL) is the average limit (with that CL) we would obtain on the free parameter, under the null hypothesis. [Rico]

Branon dark matter

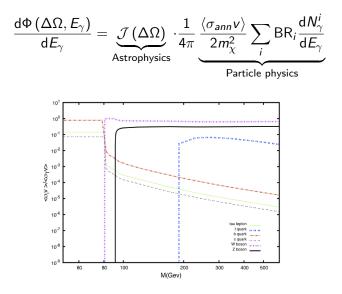
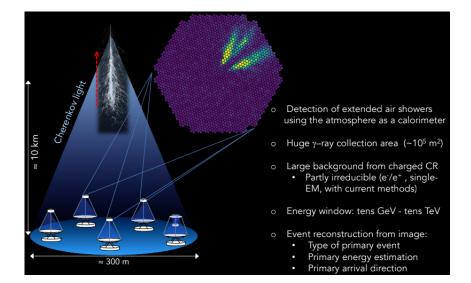
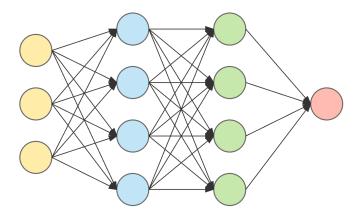


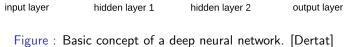
Figure : Branon annihilation branching ratios into SM particles. [Cembranos]

Summary & Outlook

- We are analyzing the MAGIC Segue 1 high-level data set, which is deepest observational campaign on any dwarf galaxy
- We have to perform a full joint likelihood analysis due to four different instrument conditions
- The previous presented tool 'gLike' will be used to numerical maximize the full joint likelihood functions
- We will modify gLike to include the branon dark model in our full likelihood analysis.


Deep learning for imaging atmospheric Cherenkov telescopes





IACT technique [Nieto]

Deep neural networks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

Deep convolutional neural networks (DCNs)

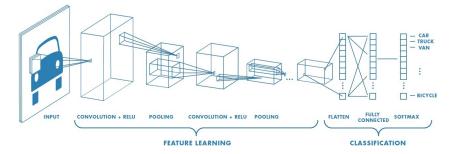


Figure : Basic concept of deep convolutional neural networks. [Prabhu]

Convolutional layer

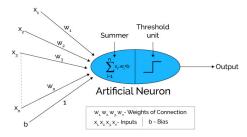


Figure : Working flow of an artificial neuron. [Gill]

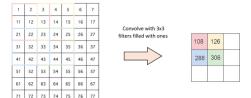


Figure : Example of a convolutional layer. [Prabhu]

・ロト ・四ト ・ヨト ・ヨト

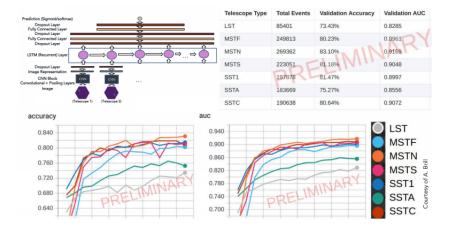
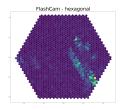
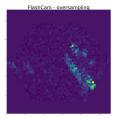
- 12

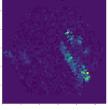
CTLearn

- High-level Python package for using deep learning for IACT event reconstruction
- Configuration-file-based workflow and installation with conda drive reproducible training and prediction
- Supports any TensorFlow model that obeys a generic signature
- Open source on GitHub: https://github.com/ctlearn-project/ctlearn

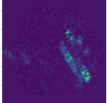
Primary developers Ari Brill, Qi Feng (Columbia) Bryan Kim (UCLA) Daniel Nieto, Tjark Miener, Jaime Sevilla (UCM)

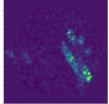
CTLearn results (Version 2.0)

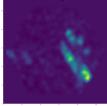





Figure : CNN-RNN validation results for oversampling. [CTLearn]

ImageMapper: DL1 data \rightarrow 2D image




FlashCam - nearest interpolation


FlashCam - rebinning

FlashCam - bicubic interpolation

ImageMapper: DL1 data \rightarrow 2D image

Camera	Oversamp.	Nearest	Rebin.	Bilinear	Bicubic	Shifting	Axial ad.
LSTCam	\checkmark	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark
FlashCam	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark
NectarCam	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark
DigiCam	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark
SCTCam	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	NA	NA
ASTRICam	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	$\checkmark\checkmark$	NA	NA
CHEC	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	NA	NA
MAGICCam	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VERITAS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HESS-I	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HESS-II	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FACT	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

 $\checkmark\checkmark:$ method benchmarked $\quad\checkmark:$ tested with data $\quad\checkmark:$ tested with dummy data

Summary & Outlook

- We learned the basics of deep learning and deep convolutional neural networks (DCNs)
- We saw that it's possible to classify gamma and proton events using the CTLearn framework
- Recent work on the transformation of camera pixels to a 2D image has been shown
- Next steps would be to implement regression for energy and arrival direction reconstruction and hexagonal convolutions

Back up

Joint likelihood

Combining likelihood functions for different targets:

$$\mathcal{L}(\langle \sigma v \rangle; \nu | X) = \prod_{i=1}^{N_{target}} \mathcal{L}_i(\langle \sigma v \rangle; J_i, \mu_i | X_i) \cdot \mathcal{J}(J_i | J_{obs,i}, \sigma_i)$$

Combining likelihood functions (of a particular target) for different experiments:

$$\mathcal{L}_{i}(\langle \sigma \mathbf{v} \rangle; J_{i}, \mu_{i} | X_{i}) = \prod_{j=1}^{N_{instrument}} \mathcal{L}_{ij}(\langle \sigma \mathbf{v} \rangle; J_{i}, \mu_{ij} | X_{ij})$$

Deep learning

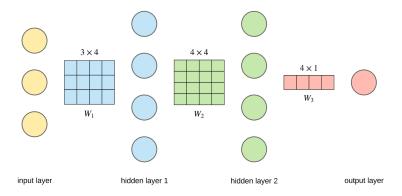
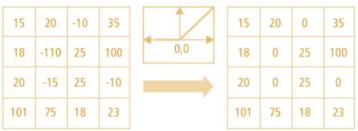



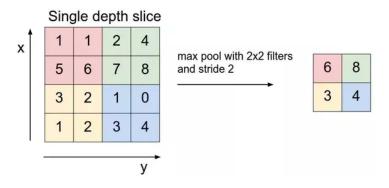
Figure : Weight matrices of a neural network. [Dertat]

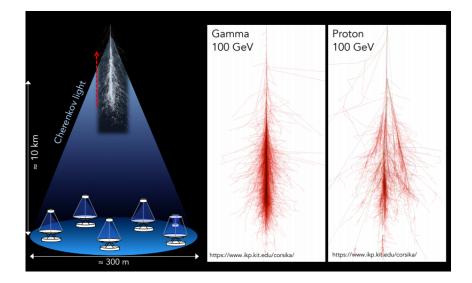
Rectified Linear Unit (ReLU)

Transfer Function

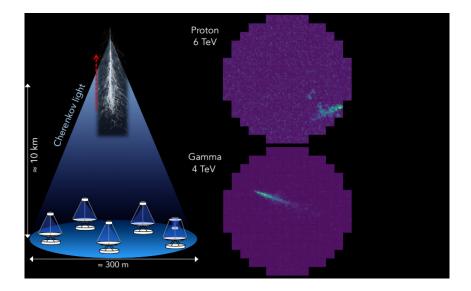
Figure : Example of the ReLU function $f(x) = \max(0, x)$. [Prabhu]

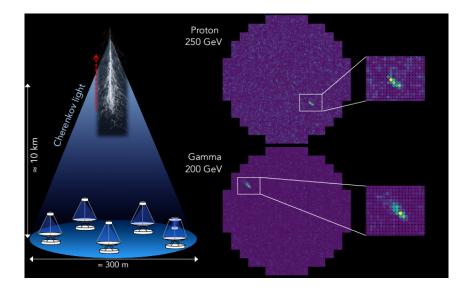
Pooling layer




Figure : Example of a max pooling layer. [Prabhu]

CTA array [Nieto]


Camera images courtesy of T. Vuillaume


Gamma or proton? [Nieto]

Gamma or proton? [Nieto]

Gamma or proton? [Nieto]

