

Rahul Srivastava

Astroparticle and High Energy Physics (AHEP) Group Instituto de Fisica Corpuscular (IFIC)

Valencia - SPAIN

Rahul Srivastava

Astroparticle and High Energy Physics (AHEP) Group Instituto de Fisica Corpuscular (IFIC)

Valencia - SPAIN

Rahul Srivastava

Astroparticle and High Energy Physics (AHEP) Group Instituto de Fisica Corpuscular (IFIC)

Valencia - SPAIN

Rahul Srivastava

Astroparticle and High Energy Physics (AHEP) Group Instituto de Fisica Corpuscular (IFIC)

Valencia - SPAIN

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry

Dark Matter Stability not protected by any symmetry

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
- Dark Matter Stability not protected by any symmetry

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
 - Most WIMP models e.g. Scotogenic DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
 - Most WIMP models e.g. Scotogenic DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe
 - Axion, Majoron

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
 - Most WIMP models e.g. Scotogenic DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe
 - Axion, Majoron
 - Longevity is typically associated with some sym

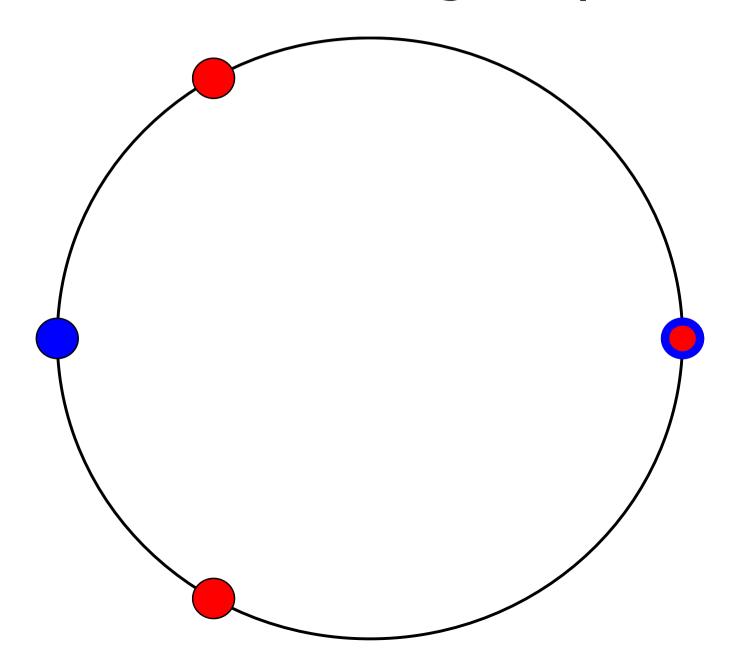
- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
 - Most WIMP models e.g. Scotogenic DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe
 - Axion, Majoron
 - Longevity is typically associated with some sym
- SM has no candidate for Dark Matter

- Broadly Speaking: Particle candidate(s) for Dark Matter can be classified in two categories
- Dark Matter Stability protected by some symmetry
 - Dark Matter is completely Stable
 - Most WIMP models e.g. Scotogenic DM
- Dark Matter Stability not protected by any symmetry
 - Dark Matter decays albeit with lifetime much longer than age of Universe
 - Axion, Majoron
 - Longevity is typically associated with some sym
- SM has no candidate for Dark Matter
- Does it has at least the symmetries to ensure DM stability?

Symmetries of SM

- ullet Symmetries in SM: Based on $SU(3)_c\otimes SU(2)_L\otimes U(1)_Y$ gauge symmetry
- ullet However only $SU(3)_c\otimes U(1)_{em}$ remains conserved
- Neither is ideal to provide DM stability
- ullet Presence of massless (γ) and very light (ν) particles in SM means that Spacetime symmetries are also not suitable

Symmetries of SM


- ullet Symmetries in SM: Based on $SU(3)_c\otimes SU(2)_L\otimes U(1)_Y$ gauge symmetry
- ullet However only $SU(3)_c\otimes U(1)_{em}$ remains conserved
- Neither is ideal to provide DM stability
- ullet Presence of massless (γ) and very light (ν) particles in SM means that Spacetime symmetries are also not suitable
- \bullet Automatic Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are automatically conserved in SM
- ullet $U(1)_B$ and $U(1)_L$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos

Nature of Neutrinos

Lepton Number Breaking Pattern [Hirsch, RS, Valle '17]

- ullet If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- If $U(1)_L$ is broken: Symmetry breaking pattern will determine the nature of neutrinos
 - $ullet U(1)_L$ symmetry only admits Z_M subgroups i.e. cyclic groups of m elements
 - ullet If x is a non-identity group element of Z_M , then $x^{M+1}\equiv x$
 - ullet The Z_M groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega = Exp[2\pi I/M]$ where $\omega^M \equiv 1$

Residual Subgroups

Nature of Neutrinos

Lepton Number breaking pattern [Hirsch, RS, Valle '17]

- $U(1)_L \longrightarrow Z_M$ subgroup with neutrinos transforming non-trivially under Z_M
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N+1}$ where $N \geq 1$
 - Neutrinos are always Dirac!!!
 - $U(1)_L \longrightarrow Z_M \equiv Z_{2N} \text{ where } N \geq 1$
 - Neutrinos can be either Dirac or Majorana
- ullet For $U(1)_L$ \longrightarrow Z_{2N} case one can make further broad classification
 - If $L_i \nsim \omega^N$ under $Z_{2N} \longrightarrow$ Neutrinos are Dirac!!!
 - If $L_i \sim \omega^N$ under Z_{2N} —— They are Majorana
- From symmetry point of view: Dirac neutrinos are more natural !!!

Our Goal: Develop a general formalism where

Our Goal: Develop a general formalism where

[C.Bonilla, S.C.Chulia, R.Cepedello, E.Peinado, RS '18,'19]

Neutrinos are Dirac in nature

Our Goal: Develop a general formalism where

[C.Bonilla, S.C.Chulia, R.Cepedello, E.Peinado, RS '18,'19]

Neutrinos are Dirac in nature

 Naturally small neutrino masses are generated through finite loops

Our Goal: Develop a general formalism where

- Neutrinos are Dirac in nature
- Naturally small neutrino masses are generated through finite loops
- The dark sector participates in the loop

Our Goal: Develop a general formalism where

- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
- The dark sector participates in the loop

Our Goal: Develop a general formalism where

- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
 - ullet Forbid tree-level neutrino Yukawa coupling $L \Phi
 u_R$
- The dark sector participates in the loop

Our Goal: Develop a general formalism where

- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
 - ullet Forbid tree-level neutrino Yukawa coupling $L \Phi
 u_R$
- The dark sector participates in the loop
 - The lightest particle being stable, a good DM candidate

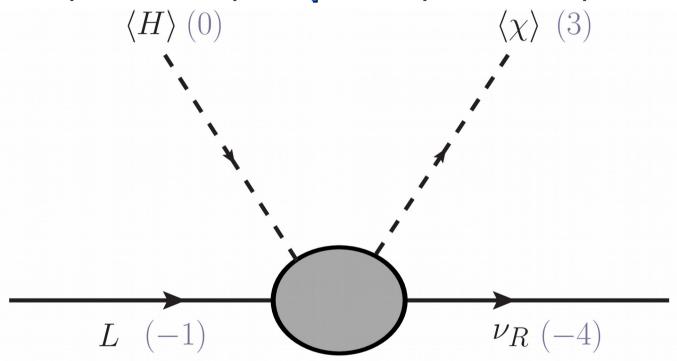
Our Goal: Develop a general formalism where

- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
 - ullet Forbid tree-level neutrino Yukawa coupling $L \Phi
 u_R$
- The dark sector participates in the loop
 - The lightest particle being stable, a good DM candidate
- We aim to accomplish all this with Lepton Number

Our Goal: Develop a general formalism where

- Neutrinos are Dirac in nature
 - Majorana mass terms should be forbidden at all orders
- Naturally small neutrino masses are generated through finite loops
 - ullet Forbid tree-level neutrino Yukawa coupling $L \Phi
 u_R$
- The dark sector participates in the loop
 - The lightest particle being stable, a good DM candidate
- We aim to accomplish all this with Lepton Number
 - No extra explicit or accidental symmetries

Lepton Number of Right Handed Neutrinos

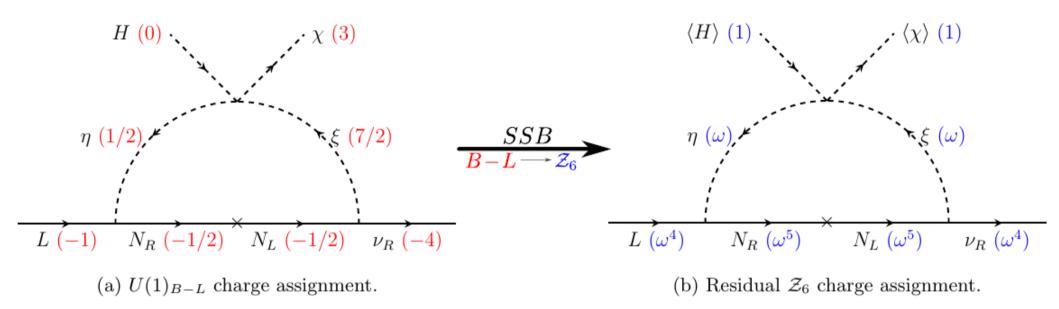

- Baryon and Lepton number of all SM particles are fixed
- What is the Lepton number of Right Handed Neutrinos?
 - B and L symmetries are anomalous
 - Only B L combination can be anomaly free if lepton number carrying right handed neutrinos are added to SM
- Vector solution : Add three right handed neutrinos with B-L charges of (-1,-1,-1)

Lepton Number of Right Handed Neutrinos

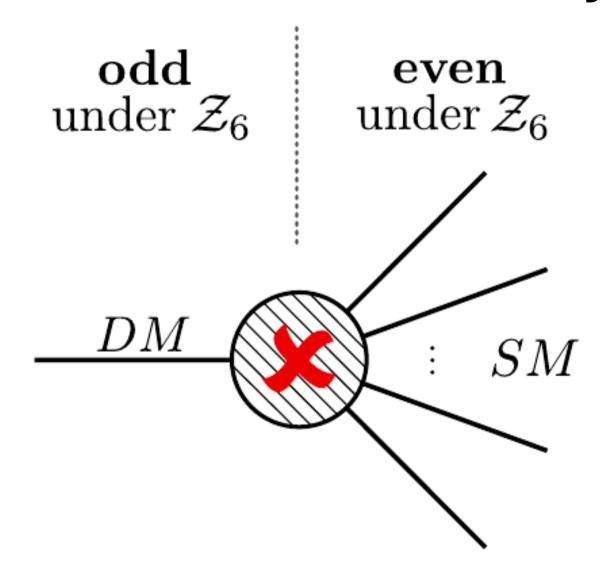
- Baryon and Lepton number of all SM particles are fixed
- What is the Lepton number of Right Handed Neutrinos?
 - B and L symmetries are anomalous
 - Only B L combination can be anomaly free if lepton number carrying right handed neutrinos are added to SM
- Vector solution : Add three right handed neutrinos with B-L charges of (-1,-1,-1)
- New Chiral Solution: Right handed neutrinos with B L charges of (-4,-4,5)
 [Ma, RS '14, Pollard, Ma, RS, Reza '15]
 - ullet Yukawa term $L \hat{\Phi}
 u_R$ automatically forbidden
 - Paves way for "naturally small" Dirac neutrino masses:
 Dirac neutrino mass mechanisms
 [RS et.al '15,'16,'17'18'19, Several other]

Generalized Weinberg Operator

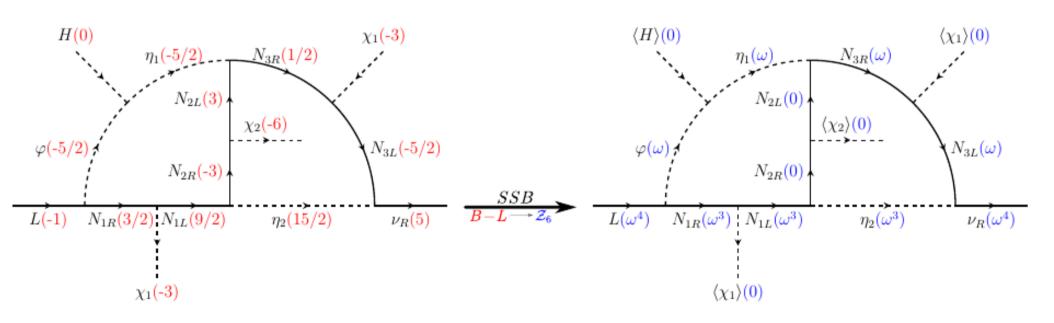
Neutrino Mass can be generated at dim-5 level


- Since $\chi \sim 3$, its vev breaks $U(1)_{B-L} \to \mathcal{Z}_{3m}; m \in \mathbb{Z}^+$
 - The exact residual subgroup depends on UV completion

UV Completion

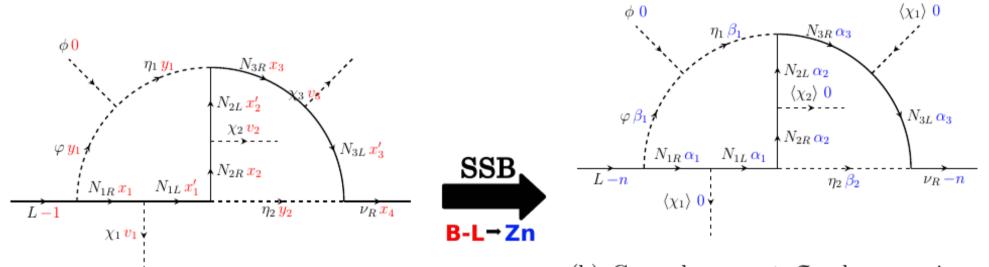

 One loop completion: Dark Sector particles in the loop a la Scotogenic models

- ullet The Residual \mathcal{Z}_{3m} subgroup should protect Diracness and Dark Matter stability
 - Exact subgroup fixed by the smallest B-L charge in model
 - ullet If SM leptons have smallest charge then $U(1)_{B-L} o \mathcal{Z}_3$
 - Turns out \mathcal{Z}_3 is too small [C.Bonilla, E.Peinado, RS '19]
 - Cannot insure DM stability on its own
- Break $U(1)_{B-L} \to \mathcal{Z}_6$
 - Can be achieved if the particles running in loop carry half integral B-L charges


UV Completion

- Here $\,\omega=e^{2\pi I/6};\omega^6=1\,$ is the 6th root of unity.
- All particles carrying fractional B-L charges belong to Dark Sector
 - Lightest Dark Sector particle will be Stable Dark
 Matter Candidate

Two Loop Model

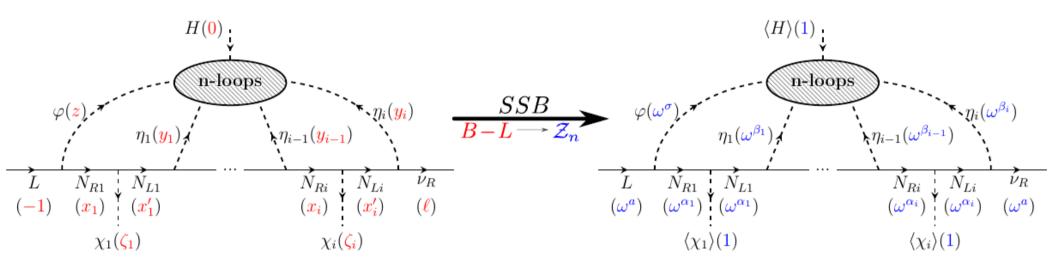


(a) $U(1)_{B-L}$ charge assignment.

(b) Remnant \mathcal{Z}_6 charge assignment.

[C.Bonilla, S.C.Chulia, R.Cepedello, E.Peinado, RS; Coming Soon]

General Two Loop Model


(a) General $U(1)_{B-L}$ charge assignament.

(b) General remnant \mathcal{Z}_n charge assignament.

Figure 1: General charge assignment for a given topology and its spontaneous symmetry breaking

[C.Bonilla, S.C.Chulia, R.Cepedello, E.Peinado, RS; Coming Soon]

Completely General N Loop Formalism

(a) General $U(1)_{B-L}$ charge assignment.

(b) General residual \mathcal{Z}_n charge assignment.

Figure 1: General charge assignment for any topology and its spontaneous symmetry breaking pattern.

Conclusions

- Nature of Neutrinos and Dark matter are two of the most important open questions
- We definitely need additional particles beyond those in SM to account for Dark Matter as well as mass of neutrinos
- However, I hope I convinced you that the symmetries present in SM are enough to
 - Account for Dark Matter stability
 - Protect Diracness of neutrinos
 - Explain the smallness of neutrino mass
- The Dirac nature of neutrinos and Dark Matter Stability are intimately related
 - Guaranteed by the same Residual Subgroup of B-L

Conclusions

- The relation between Diracness and Dark Matter Stability is even deeper
 - Also holds true for Dirac Seesaw Mechanisms
 [S.C.Chulia,RS, J.W.F.Valle '16,'17]
 - The relation actually holds independent of the mass generation mechanism for Dirac neutrinos [S.C.Chulia,RS, J.W.F.Valle '18]
- For certain special cases, the formalism discussed here can also be adopted for Majorana neutrinos [S.C.Chulia,R.Cepedello,E.Peinado,RS '19]
 - Leads to a Scotogenic like mechanism

Thank You