Swamp in flux # On progress to determine the shape of the flux landscape Thomas W. Grimm **Utrecht University** Based on: Work in Progress with Fabian Ruehle, Damian van de Heisteeg - classify CYs Irene Valenzuela, Chongchuo Li - flux compactifications and 1811.02571 with Chongchuo Li, Eran Palti # Introduction and general comments Recent de Sitter conjectures make strong claims about the shape of potentials arising in string theory [Obied,Ooguri,Spodyneik,Vafa], [Andriot] [Dvali,Gomez][Andriot,Roupec] [Garg,Krishnan] [Ooguri,Palti,Shiu,Vafa] 2018 Recent de Sitter conjectures make strong claims about the shape of potentials arising in string theory [Obied,Ooguri,Spodyneik,Vafa], [Andriot] [Dvali,Gomez][Andriot,Roupec] [Garg,Krishnan] [Ooguri,Palti,Shiu,Vafa] 2018 Can we systematically study what is possible? Recent de Sitter conjectures make strong claims about the shape of potentials arising in string theory [Obied,Ooguri,Spodyneik,Vafa], [Andriot] [Dvali,Gomez][Andriot,Roupec] [Garg,Krishnan] [Ooguri,Palti,Shiu,Vafa] 2018 Can we systematically study what is possible? flux compactifications $$V_{\rm F} = \int_{Y_4} G_4 \wedge *G_4 - \int_{Y_4} G_4 \wedge G_4$$ $$V_{\text{IIA}} = \int_{\tilde{Y}_3} H_3 \wedge *H_3 + \sum_p \int_{\tilde{Y}_3} F_p \wedge *F_p - \int_{\text{O6/D6}} F_0 H_3$$ Recent de Sitter conjectures make strong claims about the shape of potentials arising in string theory [Obied,Ooguri,Spodyneik,Vafa], [Andriot] [Dvali,Gomez][Andriot,Roupec] [Garg,Krishnan] [Ooguri,Palti,Shiu,Vafa] 2018 Can we systematically study what is possible? flux compactifications F-theory $$V_{\rm F} = \int_{Y_4} G_4 \wedge *G_4 - \int_{Y_4} G_4 \wedge G_4$$ flux potential Task 1: classify all possible Y_4 Recent de Sitter conjectures make strong claims about the shape of potentials arising in string theory [Obied,Ooguri,Spodyneik,Vafa], [Andriot] [Dvali,Gomez][Andriot,Roupec] [Garg,Krishnan] [Ooguri,Palti,Shiu,Vafa] 2018 Can we systematically study what is possible? flux compactifications $$V_{\rm F} = \int_{Y_4} G_4 \wedge *G_4 - \int_{Y_4} G_4 \wedge G_4$$ Task 1: classify all possible Y_4 Task 2: determine all moduli dependences Recent de Sitter conjectures make strong claims about the shape of potentials arising in string theory [Obied,Ooguri,Spodyneik,Vafa], [Andriot] [Dvali,Gomez][Andriot,Roupec] [Garg,Krishnan] [Ooguri,Palti,Shiu,Vafa] 2018 Can we systematically study what is possible? flux compactifications $$V_{\mathrm{F}} = \int_{Y_4} G_4 \wedge *G_4 - \int_{Y_4} G_4 \wedge G_4$$ Task 1: classify all possible Y_4 Task 2: determine all moduli dependences Task 3: identify all allowed fluxes Recent de Sitter conjectures make strong claims about the shape of potentials arising in string theory [Obied,Ooguri,Spodyneik,Vafa], [Andriot] [Dvali,Gomez][Andriot,Roupec] [Garg,Krishnan] [Ooguri,Palti,Shiu,Vafa] 2018 Can we systematically study what is possible? flux compactifications $$V_{\mathrm{F}} = \int_{Y_4} G_4 \wedge *G_4 - \int_{Y_4} G_4 \wedge G_4$$ Task 1: classify all possible Y_4 Task 2: determine all moduli dependences Task 3: identify all allowed fluxes ⇒ seems completely impossible! #### Emerging perspective Focusing on the 'right' underlying structure and using a powerful mathematical machinery might make this possible # Emerging perspective - Focusing on the 'right' underlying structure and using a powerful mathematical machinery might make this possible - What is this structure? theory should be well-behaved at the boundaries of field space and have a universal singular behavior Guided by swampland conjectures and their interconnections # Emerging perspective - Focusing on the 'right' underlying structure and using a powerful mathematical machinery might make this possible - What is this structure? theory should be well-behaved at the boundaries of field space and have a universal singular behavior Guided by swampland conjectures and their interconnections Used machinery: limiting mixed Hodge structure [Deligne,Schmid...] Aside: arose as an answer to the famous monodromy-weight conjecture (1970) by Deligne... at the time he was working on the Weil conjectures (1949)... #### Swampland Distance Conjecture as a Guide consider a moduli space and two points [Ooguri, Vafa] #### Swampland Distance Conjecture as a Guide consider a moduli space and two points [Ooguri, Vafa] # Swampland Distance Conjecture as a Guide consider a moduli space and two points [Ooguri, Vafa] shortest geodesic between P, Q (length d(P,Q)) An infinite number of states become light on paths approaching an infinite distance point: $m(P) \propto M_P e^{-\gamma d(P,G)}$ as $d(P,Q) \gg 1$ signaling the breakdown of an effective description ⇒ universal structure near infinite distance boundaries # Limits in Moduli Space #### Limits in Moduli Space ■ In the following: restrict to geometric moduli spaces arising in Calabi-Yau compactifications: T², K3, CY₃, CY₄ ⇒ Universal structure?! #### Swampland conjectures and mathematics Much recent activity on swampland questions [all participants?!] #### Swampland conjectures and mathematics Much recent activity on swampland questions [all participants?!] - - linked with deep mathematical statements about compactification geometries [TG,Palti,Valenzuela] [Blumenhagen,Kläwer,Schlechter,Wolf] [Lee,Lerche,Weigand]³ [Gonzalo,Ibáñez,Uranga] [Corvilain,TG,Valenzuela] [Joshi,Klemm] [Erkinger,Knapp] [Marchesano,Wiesner] [Font,Herráez,Ibáñez] [TG,vd Heisteeg] [TG,Dierigl] to appear → see also Timo's talk #### Swampland conjectures and mathematics Much recent activity on swampland questions [all participants?!] - - linked with deep mathematical statements about compactification geometries [TG,Palti,Valenzuela] [Blumenhagen,Kläwer,Schlechter,Wolf] [Lee,Lerche,Weigand]³ [Gonzalo,Ibáñez,Uranga] [Corvilain,TG,Valenzuela] [Joshi,Klemm] [Erkinger,Knapp] [Marchesano,Wiesner] [Font,Herráez,Ibáñez] [TG,vd Heisteeg] [TG,Dierigl] to appear → see also Timo's talk → Here: develop tools for scalar potentials⇒ asymptotic flux compactifications # Universal Structure at the Limits in Moduli Space #### Moduli space of Calabi-Yau compactifications - Consider complex structure moduli space \mathcal{M}_{cs} (Kähler as a mirror) Kähler metric: $$g_{I\bar{J}} = \partial_{z^I} \partial_{\bar{z}^J} K$$ $K = -\log \left[i \int_{\mathrm{CY}_n} \Omega \wedge \bar{\Omega} \right]$ \Rightarrow knowing the field dependence defines of $\Omega(z)$ the geometry of the moduli space # Moduli space of Calabi-Yau compactifications - Consider complex structure moduli space $\mathcal{M}_{\mathrm{cs}}$ (Kähler as a mirror) Kähler metric: $$g_{I\bar{J}} = \partial_{z^I} \partial_{\bar{z}^J} K$$ $K = -\log \left[i \int_{\mathrm{CY}_n} \Omega \wedge \bar{\Omega} \right]$ \Rightarrow knowing the field dependence defines of $\Omega(z)$ the geometry of the moduli space Question: Is there a universal behavior of $\Omega(z)$ at the limits of the moduli space? #### Limits in complex structure moduli space Limits are the points where Calabi-Yau manifold degenerates/blows up! #### Limits in complex structure moduli space Limits are the points where Calabi-Yau manifold degenerates/blows up! #### Limits in complex structure moduli space Limits are the points where Calabi-Yau manifold degenerates/blows up! ⇒ monodromy around singular loci: $$\Omega(t+1,\ldots) = T \cdot \Omega(t,\ldots)$$ - Limiting behavior of Ω near degeneration points $$t^1,...,t^n \to i\infty$$ ζ^{κ} finite $$\Omega = e^{t^i N_i} \mathbf{a_0} + \mathcal{O}(e^{2\pi i t})$$ [Schmid] (up to rescaling) - Limiting behavior of Ω near degeneration points $$t^1,...,t^n \rightarrow i\infty \qquad \zeta^{\kappa} \text{ finite}$$ $$\Omega = e^{t^i N_i} \mathbf{a}_0 + \mathcal{O}(e^{2\pi i t})$$ [Schmid] (up to rescaling) log-monodromy: $N_i = \log T_i^u$ - nilpotent matrix $(N^k = 0, \text{ some k})$ - Limiting behavior of Ω near degeneration points $$t^1,...,t^n \rightarrow i\infty \qquad \zeta^{\kappa} \text{ finite}$$ $$\Omega = e^{t^i N_i} \mathbf{a}_0 + \mathcal{O}(e^{2\pi i t})$$ [Schmid] (up to rescaling) - log-monodromy: $N_i = \log T_i^u$ nilpotent matrix $(N^k = 0, \text{ some } k)$ - 'limiting' form $\mathbf{a}_0(\zeta)$ can depend on the coords not send to limit - Limiting behavior of Ω near degeneration points $$t^1,...,t^n \rightarrow i\infty \qquad \zeta^{\kappa} \text{ finite}$$ $$\Omega = e^{t^i N_i} \mathbf{a}_0 + \mathcal{O}(e^{2\pi i t})$$ [Schmid] (up to rescaling) Polynomial in *tⁱ*nilpotent orbit ("perturbative part") Strongly suppressed in the limit ⇒ neglect ("non-perturbative part") # Emergence of an sl(2)ⁿ - algebra Remarkably: can associate an $\mathfrak{sl}(2)^n$ - algebra to $N_i,\ \mathbf{a}_0$ [Cattani, Kaplan, Schmid] *n* commuting sl(2)-triples: N_i^- , N_i^+ , Y_i ⇒ raising, lowering, level-operator aside: need to fix sector in moduli space, or enhancement chain...later $s^1 \gg s^2 \gg ... \gg s^n$ # Emergence of an sl(2)ⁿ - algebra Remarkably: can associate an $sl(2)^n$ - algebra to N_i , a_0 [Cattani, Kaplan, Schmid] *n* commuting sl(2)-triples: $$N_i^-$$, N_i^+ , Y_i ⇒ raising, lowering, level-operator aside: need to fix sector in moduli space, or enhancement chain...later $s^1 \gg s^2 \gg ... \gg s^n$ Can split form into fine splitting associated to the asymptotic region $$H^n(Y_n,\mathbb{R}) = \sum_{l_1,...,l_n} V_{l_1,...,l_n} \quad egin{array}{c} ext{eigenspaces of} \ Y_{(i)} = Y_1 + ... + Y_i \end{array}$$ ⇒ full structure: limiting mixed Hodge structure [Deligne, Schmid] Hodge norm is omnipresent in string compactifications: $$\|\alpha\|^2 = \int_{\mathrm{CY}_n} \alpha \wedge \star \alpha \qquad \alpha \in H^n(Y_n, \mathbb{R})$$ Hodge norm is omnipresent in string compactifications: $$\|\alpha\|^2 = \int_{\mathrm{CY}_n} \alpha \wedge \star \alpha \qquad \alpha \in H^n(Y_n, \mathbb{R})$$ Of importance here: F-theory on Calabi-Yau fourfold Y_4 Flux scalar potential due to background G_4 $$V_{\rm F} = \frac{1}{\mathcal{V}_{\rm b}^2} \left(\int_{Y_4} G_4 \wedge \star G_4 - \int_{Y_4} G_4 \wedge G_4 \right)$$ $$\downarrow$$ $$||G_4||^2$$ - Hodge norm in asymptotic region: $t^i = \phi^i + is^i \rightarrow i\infty$ - Hodge norm in asymptotic region: $t^i = \phi^i + is^i \rightarrow i\infty$ ## Asymptotic of the Hodge norm Hodge norm in asymptotic region: $$\|\alpha\|^2 \sim \sum_{l_1, \dots, l_n} (s^1)^{l_1 - n} (s^2)^{l_2 - l_1} \dots (s^n)^{l_{n-1} - l_n} \|\rho_{l_1 \dots l_n}\|_{\infty}$$ restriction of $e^{\phi^i N_i} \alpha$ to subspaces $V_{l_1...l_n}$ **Upshot:** In asymptotic regime dependence on s^i (saxions) and ϕ^i (axions) is explicit \Rightarrow classification requires to classify all asymptotic limits Remarkable: there exists a finite $*_{\infty}$ at each boundary splitting into sl(2)-pieces of the sl(2)ⁿ-algebra ## Classification of asymptotic limits (1-parameter) - K3 surface: Types: I, II, III [Kulikov] Calabi-Yau threefolds: $4 h^{2,1}$ types of limits Types: I_a , III_b , III_c , IV_d [Kerr,Pearlstein,Robles 2017] [Green,Griffiths,Robles]... Calabi-Yau fourfolds: $8 h^{3,1}$ types of limits [TG,Li,Zimmermann] [TG,Li,Valenzuela] Types: $I_{a,a'}$, $II_{b,b'}$, $III_{c,c'}$, $IV_{d,d'}$, $V_{e,e'}$ ## Classification of singularity enhancements multi-dimensional moduli spaces: ## Classification of singularity enhancements multi-dimensional moduli spaces: ## Classification of singularity enhancements multi-dimensional moduli spaces: What enhancements are allowed? - Enhancement rules can be systematically determined: - K3, CY₃ [Kerr, Pearlstein, Robles] - CY₄ [TG,Li,Valenzuela], [TG,Li,Zimmermann] $II_2 \rightarrow IV_2$ not possible $$I_0 \rightarrow III_0$$ $$I_0 \rightarrow III_0 \rightarrow IV_2$$ $$I_0 \rightarrow III_0 \rightarrow IV_2 \rightarrow IV_3$$ $$I_0 \rightarrow III_0 \rightarrow IV_2 \rightarrow IV_3 \implies sl(2)^3$$ - algebra ⇒ each enhancement chain has its associated sl(2)-algebra and highest weight states relevant in the limit \rightarrow can be computed from \mathbf{a}_0 , \mathbf{N}_i ## Limits in Moduli Space ## Limits in Moduli Space ### Prospects for classification - Well-known setting: Large volume compactification - Couplings in the effective action are determined by intersection numbers, Chern classes of compact CY space $$K = -\text{Log}\left(\frac{1}{6}\mathcal{K}_{IJK}v^Iv^Jv^K + \frac{\zeta(3)\chi}{32\pi^2}\right)$$ ⇒ determines also Hodge star in IIA flux potential ### Prospects for classification - Well-known setting: Large volume compactification - Couplings in the effective action are determined by intersection numbers, Chern classes of compact CY space $$K = -\operatorname{Log}\left(\frac{1}{6}\mathcal{K}_{IJK}v^{I}v^{J}v^{K} + \frac{\zeta(3)\chi}{32\pi^{2}}\right)$$ - ⇒ determines also Hodge star in IIA flux potential - Can we classify the 'allowed' Calabi-Yau couplings? - Wall's theorem: Homotopy types of Calabi-Yau manifolds are classified by the numerical characteristics: $h^{1,1}, h^{2,1}$ Hodge numbers \mathcal{K}_{IJK} triple intersections c_{2I} second Chern class #### Prospects for classification - Well-known setting: Large volume compactification - Couplings in the effective action are determined by intersection numbers, Chern classes of compact CY space $$K = -\text{Log}\left(\frac{1}{6}\mathcal{K}_{IJK}v^Iv^Jv^K + \frac{\zeta(3)\chi}{32\pi^2}\right)$$ - ⇒ determines also Hodge star in IIA flux potential - Can we classify the 'allowed' Calabi-Yau couplings? - Wall's theorem: Homotopy types of Calabi-Yau manifolds are classified by the numerical characteristics: $$h^{1,1}$$, $h^{2,1}$ Hodge numbers \mathcal{K}_{IJK} triple intersections c_{2I} second Chern class Hard to classify?! Monodromies in Kähler moduli spaces (CY₃): $$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \mathbf{a}_{0} = \begin{pmatrix} 1 \\ 0 \\ -c_{2I} \\ \frac{i\zeta(3)\chi}{8\pi^{3}} \end{pmatrix}$$ $$\mathbf{a}_0 = \begin{pmatrix} 1 \\ 0 \\ -\frac{c_2 I}{\frac{i\zeta(3)\chi}{8\pi^3}} \end{pmatrix}$$ Monodromies in Kähler moduli spaces (CY₃): $$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \mathbf{a}_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{i\zeta(3)\chi}{8\pi^{3}} & \frac{i\zeta(3)\chi}{8\pi^{3}} & \frac{i\zeta(3)\chi}{8\pi^{3}} \end{pmatrix}$$ $$\mathbf{a}_0 = \begin{pmatrix} 1 \\ 0 \\ -c_{2I} \\ \frac{i\zeta(3)\chi}{8\pi^3} \end{pmatrix}$$ Arising singularities: II_b, III_c, IV_d and enhancements among them \Rightarrow distinguished by: rank(N), rank(N²), rank(N³) see also [Bloch, Kerr, Vanhove] Monodromies in Kähler moduli spaces (CY₃): $$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \mathbf{a}_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 & 0 \end{pmatrix}$$ $$\mathbf{a}_0 = \begin{pmatrix} 1 \\ 0 \\ -c_{2I} \\ \frac{i\zeta(3)\chi}{8\pi^3} \end{pmatrix}$$ Arising singularities: II_b, III_c, IV_d and enhancements among them \Rightarrow distinguished by: rank(N), rank(N²), rank(N³) see also [Bloch, Kerr, Vanhove] Enhancement rules allow us to rule out non-consistent intersection numbers $$t^1 \to i\infty$$ II₂ $$t^1 \rightarrow i\infty$$ II₂ $$t^2 \to i\infty$$ III₀ $$t^1 \rightarrow i\infty$$ II₂ $$t^2 \to i\infty$$ III₀ $$t^3 \rightarrow i\infty$$ IV₂ $$t^1 \rightarrow i\infty$$ III₂ \longrightarrow IIII₀ $$t^2 \rightarrow i\infty$$ III₀ $$t^3 \rightarrow i\infty$$ IV₂ $$t^1 \to i\infty$$ II₂ $$t^2 \to i\infty$$ III₀ $$t^3 \rightarrow i\infty$$ IV₂ IV₃ $$t^1 \to i\infty$$ II₂ $$t^2 \to i\infty$$ III₀ $$t^3 \rightarrow i\infty$$ IV₂ - ⇒ distinctive enhancement pattern associated to a CY manifold replace by enhancement diagram (Hasse diagrams) - group examples into equivalence classes - correlate features of the geometry with the diagram (e.g. count elliptic fibers,...) [TG,van de Heisteeg,Ruehle] # Asymptotic Flux Compactifications ### Reasons for being anti de Sitter - Consider F-theory with G_4 -flux: $$V_{\rm M} = \frac{1}{\mathcal{V}_4^3} \left(\int_{Y_4} G_4 \wedge *G_4 \right) - \int_{Y_4} G_4 \wedge G_4 \right)$$ Can be considered in all asymptotic regions of moduli space ## Reasons for being anti de Sitter - Consider F-theory with G_4 -flux: $$V_{\rm M} = \frac{1}{\mathcal{V}_4^3} \left(\int_{Y_4} G_4 \wedge *G_4 - \int_{Y_4} G_4 \wedge G_4 \right)$$ Can be considered in all asymptotic regions of moduli space $$\int_{Y_4} G_4 \wedge *G_4 \sim \sum_{l_1, \dots, l_n} (s^1)^{l_1 - n} (s^2)^{l_2 - l_1} \dots (s^n)^{l_{n-1} - l_n} \|\rho_{l_1 \dots l_n}\|_{\infty}$$ $$\rho_{l_1...l_n} = e^{\phi^i N_i} G_4|_{V_{l_1...l_n}}$$ related expression:[Herraez,Ibanez, Marchesano,Zoccarato] [Marchesano,Quirant] • Examples: 2 moduli $Imt^1 = s$, $Imt^2 = u$ The complete list of scalar potentials that are geometrically possible for any CY₄ at any strict asymptotic limit. | Enhancements | Potential $V_{ m M}$ | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------| | $V_{1,\hat{m}}$ $V_{1,\hat{m}-2}$ | $\frac{c_1}{s} + \frac{c_2}{u^4} + \frac{c_3}{u^2} + c_4 u^2 + c_5 u^4 + c_6 s - c_0$ | | $V_{1,\hat{m}-2}$ $V_{2,\hat{m}}$ | $\frac{c_1}{us} + \frac{c_2}{u^4} + \frac{c_3}{u^2} + \frac{c_4u}{s} + \frac{c_5s}{u} + c_6u^2 + c_7u^4 + c_8us - c_0$ | | $V_{1,\hat{m}} \longrightarrow V_{2,\hat{m}}$ | $\frac{c_1}{s^2} + \frac{c_2}{u^4} + \frac{c_3}{u^2} + c_4 u^2 + c_5 u^4 + c_6 s^2 - c_0$ | | $ \overrightarrow{\text{IV}_{0,\hat{m}-2}} \overrightarrow{\text{V}_{2,\hat{m}}} $ | $\frac{c_1}{u^3s} + \frac{c_2}{us} + \frac{c_3u}{s} + \frac{c_4u^3}{s} + \frac{c_5s}{u^3} + \frac{c_6s}{u} + c_7us + c_8u^3s - c_0$ | | $ \begin{array}{c c} I_{0,\hat{m}-2} & \xrightarrow{a} I_{1,\hat{m}-2} \\ I_{0,\hat{m}-4} & & & \\ I_{0,\hat{m}-2} & & & \\ II_{0,\hat{m}-2} & & & \\ II_{0,\hat{m}-2} & & & \\ \end{array} $ | $\frac{c_1}{us} + \frac{c_2}{u} + \frac{c_3u}{s} + \frac{c_4s}{u} + c_5u + c_6us - c_0$ | | $I_{0,\hat{m}-2}$ \downarrow $I_{1,\hat{m}-2}$ | $\frac{c_1}{s} + \frac{c_2}{u^2} + c_3 u^2 + c_4 s - c_0$ | | $ \begin{array}{c} $ | | | $I_{1,\hat{m}}$ $II_{1,\hat{m}}$ | | | $I_{0,\hat{m}-2}$ $I_{1,\hat{m}-2}$ $I_{2,\hat{m}}$ | $\frac{c_1}{us} + \frac{c_2}{u^2} + \frac{c_3u}{s} + \frac{c_4s}{u} + c_5u^2 + c_6us - c_0$ | | $ \begin{array}{c} I_{0,\hat{m}-2} \\ III_{0,\hat{m}-4} \end{array} $ | | | $I_{0,\hat{m}-2} \Longrightarrow I_{0,\hat{m}-4}$ $I_{0,\hat{m}-2} \Longrightarrow II_{0,\hat{m}-2}$ $II_{0,\hat{m}} \Longrightarrow II_{0,\hat{m}-2}$ | $\frac{c_1}{s} + \frac{c_2}{u} + c_3 u + c_4 s - c_0$ | | $I_{0,\hat{m}-2}$ $II_{0,\hat{m}-2}$ | | | $ \begin{array}{c} I_{0,\hat{m}-2} \Longrightarrow I_{1,\hat{m}} \\ I_{0,\hat{m}-4} \Longrightarrow I_{2,\hat{m}} \\ II_{0,\hat{m}-2} \Longrightarrow III_{0,\hat{m}-2} \end{array} $ | $\frac{c_1}{us} + \frac{c_2u}{s} + \frac{c_3s}{u} + c_4us - c_0$ | | $ \begin{array}{c c} I_{1,\hat{m}} & \longrightarrow I_{2,\hat{m}} \\ I_{1,\hat{m}} & \longrightarrow III_{1,\hat{m}-2} \\ III_{0,\hat{m}-2} & \longrightarrow III_{1,\hat{m}-2} \\ III_{0,\hat{m}-2} & \longrightarrow III_{1,\hat{m}-2} \end{array} $ | $\frac{c_1}{s^2} + \frac{c_2}{u^2} + c_3 u^2 + c_4 s^2 - c_0$ | | $III_{1,\hat{m}-2} \Longrightarrow V_{2,\hat{m}}$ | $\frac{c_1}{u^2s^2} + \frac{c_2}{s^2} + \frac{c_3}{u^2} + \frac{c_4u^2}{s^2} + \frac{c_5s^2}{u^2} + c_6u^2 + c_7s^2 + c_8u^2s^2 - c_0$ | #### Self-dual fluxes Minkowski 'no-scale' vacua from self-dual fluxes $$*G_4 = G_4$$ fixes the moduli: 'discrete' set of vacua #### Self-dual fluxes Minkowski 'no-scale' vacua from self-dual fluxes $$*G_4 = G_4$$ fixes the moduli: 'discrete' set of vacua Evaluate in the strict asymptotic regime for two moduli $$s^{l-4}u^{m-l}= rac{g_{l-4,m-4}}{g_{l,m}}$$ use $*_{\infty}V_{l_1,\dots,l_n}=V_{8-l_1,\dots,8-l_n}$ flux ratio #### Self-dual fluxes Minkowski 'no-scale' vacua from self-dual fluxes $$*G_4 = G_4$$ fixes the moduli: 'discrete' set of vacua Evaluate in the strict asymptotic regime for two moduli $$s^{l-4}u^{m-l}= rac{g_{l-4,m-4}}{g_{l,m}}$$ use $*_{\infty}V_{l_1,\ldots,l_n}=V_{8-l_1,\ldots,8-l_n}$ - Show generally for all Calabi-Yau fourfolds: number of self-dual flux vacua is finite [TG, in progress] - \Rightarrow key point: control the asymptotic regimes $\int G_4 \wedge G_4 = \int G_4 \wedge *G_4 < K$ # de Sitter vacua ### de Sitter vacua → No de Sitter vacua at parametric control — Irene's talk • Examples: 2 moduli $Imt^1 = s$, $Imt^2 = u$ The complete list of scalar potentials that are geometrically possible for any CY₄ at any strict asymptotic limit. | Enhancements | Potential $V_{ m M}$ | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------| | $V_{1,\hat{m}}$ $V_{1,\hat{m}-2}$ | $\frac{c_1}{s} + \frac{c_2}{u^4} + \frac{c_3}{u^2} + c_4 u^2 + c_5 u^4 + c_6 s - c_0$ | | $V_{1,\hat{m}-2}$ $V_{2,\hat{m}}$ | $\frac{c_1}{us} + \frac{c_2}{u^4} + \frac{c_3}{u^2} + \frac{c_4u}{s} + \frac{c_5s}{u} + c_6u^2 + c_7u^4 + c_8us - c_0$ | | $V_{1,\hat{m}} \longrightarrow V_{2,\hat{m}}$ | $\frac{c_1}{s^2} + \frac{c_2}{u^4} + \frac{c_3}{u^2} + c_4 u^2 + c_5 u^4 + c_6 s^2 - c_0$ | | $ \overrightarrow{\text{II}}_{0,\hat{m}-2} \overrightarrow{\Rightarrow} V_{2,\hat{m}} $ | $\frac{c_1}{u^3s} + \frac{c_2}{us} + \frac{c_3u}{s} + \frac{c_4u^3}{s} + \frac{c_5s}{u^3} + \frac{c_6s}{u} + c_7us + c_8u^3s - c_0$ | | $ \begin{array}{c c} I_{0,\hat{m}-2} & & \\ I_{0,\hat{m}-4} & & & \\ \hline I_{0,\hat{m}-2} & & & \\ II_{0,\hat{m}-2} & & & \\ II_{0,\hat{m}-2} & & & \\ \end{array} $ | $\frac{c_1}{us} + \frac{c_2}{u} + \frac{c_3u}{s} + \frac{c_4s}{u} + c_5u + c_6us - c_0$ | | $I_{0,\hat{m}-2} \xrightarrow{b} I_{1,\hat{m}-2}$ $I_{0,\hat{m}-2} \xrightarrow{III}$ | | | $III_{0,\hat{m}-2} \longrightarrow III_{0,\hat{m}-4}$ | $\frac{c_1}{s} + \frac{c_2}{u^2} + c_3 u^2 + c_4 s - c_0$ | | $I_{1,\hat{m}}$ $II_{1,\hat{m}}$ | | | $I_{0,\hat{m}-2}$ $I_{1,\hat{m}-2}$ $I_{2,\hat{m}}$ | $\frac{c_1}{us} + \frac{c_2}{u^2} + \frac{c_3u}{s} + \frac{c_4s}{u} + c_5u^2 + c_6us - c_0$ | | $ \begin{array}{c} I_{0,\hat{m}-2} \\ III_{0,\hat{m}-4} \end{array} $ | | | $ \begin{array}{c} I_{0,\hat{m}-2} \longrightarrow I_{0,\hat{m}-4} \\ I_{0,\hat{m}-2} \longrightarrow II_{0,\hat{m}-2} \\ II_{0,\hat{m}} \longrightarrow II_{0,\hat{m}-2} \\ II_{0,\hat{m}-2} \longrightarrow II_{0,\hat{m}-2} $ | $\frac{c_1}{s} + \frac{c_2}{u} + c_3 u + c_4 s - c_0$ | | $ \begin{array}{c} I_{0,\hat{m}-2} \longrightarrow I_{1,\hat{m}} \\ I_{0,\hat{m}-4} \longrightarrow I_{2,\hat{m}} \\ II_{0,\hat{m}-2} \longrightarrow III_{0,\hat{m}-2} \end{array} $ | $\frac{c_1}{us} + \frac{c_2u}{s} + \frac{c_3s}{u} + c_4us - c_0$ | | $ \begin{array}{c} I_{1,\hat{m}} \Longrightarrow I_{2,\hat{m}} \\ I_{1,\hat{m}} \Longrightarrow IIII_{1,\hat{m}-2} \\ III_{0,\hat{m}-2} \Longrightarrow IIII_{1,\hat{m}-2} \\ III_{0,\hat{m}-2} \Longrightarrow III_{1,\hat{m}-2} $ | $\frac{c_1}{s^2} + \frac{c_2}{u^2} + c_3 u^2 + c_4 s^2 - c_0$ | | $III_{1,\hat{m}-2} \Longrightarrow V_{2,\hat{m}}$ | $\frac{c_1}{u^2s^2} + \frac{c_2}{s^2} + \frac{c_3}{u^2} + \frac{c_4u^2}{s^2} + \frac{c_5s^2}{u^2} + c_6u^2 + c_7s^2 + c_8u^2s^2 - c_0$ | Keeping coefficients unrelated: list contains the well-known IIA potential [TG,Louis] $$V_{\text{IIA}} \propto \frac{1}{s^3} \left[\frac{c_1}{u^3 s} + \frac{c_2}{u s} + \frac{c_3 u}{s} + \frac{c_4 u^3}{s} + \frac{c_5 s}{u^3} + \frac{c_6 s}{u} + c_7 u s + c_8 u^3 s - c_0 \right]$$ $$s=e^{-\phi_A}\mathcal{V}_A^{1/2}$$ $u=\mathcal{V}_A^{1/3}$ \to weak string coupling, large volume is an asymptotic limit Keeping coefficients unrelated: list contains the well-known IIA potential [TG,Louis] $$V_{\text{IIA}} \propto \frac{1}{s^3} \left[\frac{c_1}{u^3 s} + \frac{c_2}{u s} + \frac{c_3 u}{s} + \frac{c_4 u^3}{s} + \frac{c_5 s}{u^3} + \frac{c_6 s}{u} + c_7 u s + c_8 u^3 s - c_0 \right]$$ $$s=e^{-\phi_A}\mathcal{V}_A^{1/2}$$ $u=\mathcal{V}_A^{1/3}$ \rightarrow weak string coupling, large volume is an asymptotic limit infinite family of AdS₄ vacua at parametric control What is the generalization? [DeWolfe, Giryavets, Kachru, Taylor] - special flux \hat{G}_4 that mildly violates the self-duality constraint: $$G_4 = \hat{G}_4 + G_4^0$$ asymptotically massless: $\|\hat{G}_4\|^2 \to 0$ in the asymptotic limit unbounded (no tadpole): $\int_{Y_4} \hat{G}_4 \wedge \hat{G}_4 = \int_{Y_4} \hat{G}_4 \wedge G_4^0 = 0$ - special flux \hat{G}_4 that mildly violates the self-duality constraint: $$G_4 = \hat{G}_4 + G_4^0$$ asymptotically massless: $\|\hat{G}_4\|^2 \to 0$ in the asymptotic limit unbounded (no tadpole): $\int_{Y_4} \hat{G}_4 \wedge \hat{G}_4 = \int_{Y_4} \hat{G}_4 \wedge G_4^0 = 0$ - unbounded, asymptotically massless fluxes are necessary to have infinite family AdS₄ vacua at parametric control - ⇒ can be classified using limiting mixed Hodge structures - ⇒ reminiscent of the constructions for the Distance Conjecture at infinite distance singularities [TG,Palti,Valenzuela] [TG,Li,Palti] Note: models appear to be in conflict with AdS conjecture of [Lüst,Palti,Vafa] #### Conclusions - Motivated by the Swampland Conjectures we uncovered a universal structure emerging in the asymptotic regimes of geometric moduli spaces - \Rightarrow limits characterized by sl(2)ⁿ and its representations - ⇒ asymptotic of Hodge norm - ⇒ attainable for a classification limiting mixed Hodge structures #### Conclusions - Motivated by the Swampland Conjectures we uncovered a universal structure emerging in the asymptotic regimes of geometric moduli spaces - \Rightarrow limits characterized by sl(2)ⁿ and its representations - ⇒ asymptotic of Hodge norm - ⇒ attainable for a classification limiting mixed Hodge structures - New way to classify Calabi-Yau manifolds using limits in Kähler moduli space: structure behind intersection numbers, Chern classes determining type - ⇒ diagrams representing classes of 'allowed' manifolds ### Conclusions - Motivated by the Swampland Conjectures we uncovered a universal structure emerging in the asymptotic regimes of geometric moduli spaces - \Rightarrow limits characterized by sl(2)ⁿ and its representations - ⇒ asymptotic of Hodge norm - ⇒ attainable for a classification limiting mixed Hodge structures - New way to classify Calabi-Yau manifolds using limits in Kähler moduli space: structure behind intersection numbers, Chern classes determining type - ⇒ diagrams representing classes of 'allowed' manifolds - Asymptotic flux compactification: general analysis of flux vacua at all limits in Calabi-Yau fourfolds - ⇒ no de Sitter, finitely many Mink., parametrically controlled AdS (?) remarkable constraints on axions