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Faculty Position - Tenured/Tenure Track Atomic, Molecular and 
Optical Physics (Georgia Institute of Technology)
The School of Physics of the Georgia Institute of Technology invites 
applications for a faculty position in Atomic, Molecular and Optical 
(AMO) Physics and related areas in Quantum Information Sciences 
(QIS), beginning Fall 2020. Appointments at the Assistant, Associate or 
Full Professor level will be considered, depending on qualifications.

Before we begin… some advertisements…

Postdoc Position – within my group (Georgia Institute of Technology)
I am looking for a postdoc to join my group sometime in 2020 for a 2 
year term. Applicants should have interest and experience in either 
tensor networks or some area of quantum info.

Come be my research gremlin in the 
tensor network mines of Atlanta!



Before we begin… some more advertisements…

Research website:   www.tensors.net

A website designed to help people get started with the practical aspects 
of implementing tensor network algorithms:

• has tutorials with code examples which detail the basic skills 
(i.e. contracting a network)

• has example codes of many tensor network algorithms (Exact 
Diagonalization, DMRG, TEBD, MERA, boundary MERA, TRG, 
TNR, PEPS)

• all codes are available in MATLAB, Python and Julia languages

www.tensortrace.com

I have made an app called “TensorTrace” for designing and 
implementing tensor networks! Beta version available at:
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Big Picture Overview: Tensor Networks

Practical goal: efficient numeric tools for classical simulation of 
quantum many-body systems

• Which classes of quantum system can be efficiently simulated? 

Theoretic goal: better understanding of many-body ground states 
• Classification of phases of matter

• Entanglement structure in many-body systems

Complicated object!
exp(N) parameters

Many-body wavefunction
(describes state of lattice system)

ψ

- body system𝑁𝑁

Tensor network 
representation

Product of simple objects!
poly(N) parameters

- body system𝑁𝑁



Big Picture Overview: Tensor Networks

A tensor network is a compressed representation of some correlated data

Coefficients of a many-
body wavefunction

Compression based on 
tensor decompositions

Complicated object!
exp(N) parameters

Many-body wavefunction
(describes state of lattice system)

ψ

- body system𝑁𝑁

Tensor network 
representation

Product of simple objects!
poly(N) parameters

- body system𝑁𝑁



Big Picture Overview: Tensor Networks

Compressed 
representation of 

some correlated data

=Tensor Network

Tensor network formalism 
has a wide variety of uses!

Study of quantum many-body systems

(e.g. interacting 
fermions on a lattice)



(network as a discretization 
of space-time)

Big Picture Overview: Tensor Networks

Compressed 
representation of 

some correlated data

Study of quantum many-body systems

Holography: duality between semi-classical 
gravity and conformal field theories=Tensor Network

Tensor network formalism 
has a wide variety of uses!



Big Picture Overview: Tensor Networks

Compressed 
representation of 

some correlated data

Study of quantum many-body systems

Holography: duality between semi-classical 
gravity and conformal field theories

Data compression: multi-resolution analysis 
and wavelets

=Tensor Network

Tensor network formalism 
has a wide variety of uses!

(e.g. image compression)



Big Picture Overview: Tensor Networks

Compressed 
representation of 

some correlated data

Study of quantum many-body systems

Holography: duality between semi-classical 
gravity and conformal field theories

Machine learning: neural networks

Data compression: multi-resolution analysis 
and wavelets

=Tensor Network

(e.g. convolutional neural network)

Tensor network formalism 
has a wide variety of uses!



Big Picture Overview: Tensor Networks

Compressed 
representation of 

some correlated data

Study of quantum many-body systems

Holography: duality between semi-classical 
gravity and conformal field theories

Machine learning: neural networks

Data compression: multi-resolution analysis 
and wavelets

Error correcting codes, e.g. polar codes 

Big data analytics

=Tensor Network

+ many more!

Tensor network formalism 
has a wide variety of uses!

Ideas developed in the context of entanglement and 
efficient representation of quantum wavefunctions are 

useful in many areas outside of physics

G.E., Steven. R. White, Phys. Rev. A 97, 052314 (2018)
G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (2016)

J. Haegeman, B. Swingle, M. Walter, J. Cotlet, G.E., V. Scholz, Phys. Rev. X 8, 111003 (2018)
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1D lattice, 𝑁𝑁-sites

layers
2log N

Multi-scale entanglement renormalization ansatz (MERA) 
G. Vidal, PRL 101, 110501 (2008)

• lower layers encode short-ranged (high 
energy) properties of the state

• higher layers encode long-ranged (low 
energy) properties of the state

Multi-scale decomposition of the wavefunction:

1D binary MERA

uw

“disentanglers”“isometries”

χ3 parameters χ4 parameters 

3-index tensors 4-index tensors

high 
energy

low 
energy



Wavelets and tensor networks

Wavelet basis Short scale 
info

Long 
scale info

Discrete wavelet transform: multi-
resolution analysis of classical data

Image

4

3

2

1

Tensor 
Network

Many-body wavefunction

Short scale 
info

Long 
scale info

MERA : multi-scale decomposition 
of many-body wavefunction

Proposal by Steve 
White: wavelets and 

MERA are connected



translations

dilations

Wavelets are a good compromise between real-space 
and Fourier-space representations

• compact in real-space and in frequency-space

• developed by math and signal processing
communities in late 80’s

• applications in signal and image processing, data 
compression (e.g. JPEG2000 image format) 

Introduction to Wavelets

Wavelet basis

• basis consists of translations and 
dilations of a wavelet function

• is a multi-resolution analysis (MRA)



image
transform to 

wavelet basis
inverse 

transform

PSNR: 37.0 dB

compressed image

peak signal to noise:

truncate (keep 
only largest 2% of 

coefficients) 

This is the key part of JPEG2000 
format, and many other standards for 
image, audio and video compression 

Image compression with wavelets

Wavelet basis Short scale 
info

Long 
scale info



Wavelets and tensor networks

Wavelet basis Short scale 
info

Long 
scale info

Discrete wavelet transform: multi-
resolution analysis of classical data

Image

4

3

2

1

Tensor 
Network

Many-body wavefunction

Short scale 
info

Long 
scale info

MERA : multi-scale decomposition 
of many-body wavefunction

Many concrete 
connections can be 

made

studying these 
connections proved 

very useful!



Discrete wavelet transform: multi-
resolution analysis of classical data

Wavelets and tensor networks

4

3

2

1

MERA : multi-scale decomposition 
of many-body wavefunction

First analytic MERA for critical states
G.E., Steven. R. White, Phys. Rev. Lett 116. 140403 (2016)

J. Haegeman, B. Swingle, M. Walter, J. Cotlet, G.E., V. Scholz, Phys. Rev. X 8, 111003 (2018)
First rigorous error bounds for MERA accuracy

G.E., Steven. R. White, Phys. Rev. A 97, 052314 (2018)

Ideas from tensor networks used to construct 
new and improved wavelet transformations



Other Applications of Tensor Networks

Compressed 
representation of 

some correlated data

=Tensor Network

Study of quantum many-body systems

Holography: duality between semi-classical 
gravity and conformal field theories

Machine learning: neural networks

Data compression: multi-resolution analysis 
and wavelets



Machine Learning and tensor networks

In recent times deep neural networks have been spectacularly successful

Superficially deep neural networks look very similar to 
tensor networks. Are there connections?

Can ideas from machine learning be used to improve 
simulation algorithms for quantum systems? 

Can ideas from tensor networks be used to 
improve machine learning and neural networks?



convolutional neural networks are structurally 
very similar to MERA tensor network!

MERA tensor network

Machine Learning and tensor networks
Convolutional neural network (CNN)







Machine learning test problem: Fashion MNIST

• 10 classes of clothing

Test Problem: 
Fashion MNIST database

• 60,000 training images

• 10,000 test images

Goal: train a program to properly 
classify the test images

Simplest approach: compare test images again the 
“average” of all training images in a given category 

(related to principle component analysis)



Pullover

Coat Shirt

T-shirt/top Trousers Dress

Sandal Sneaker

Bag

Ankle boot

Simplest approach: compare test images again the 
“average” of all training images in a given category 

(related to principle component analysis)

• gives 66% correct

Machine learning test problem: Fashion MNIST

More advanced machine learning approaches?



Fashion MNIST test problem:
some benchmarks (no preprocessing)

• XGBoost (89.8%)
• AlexNet (89.9%)
• two-layer CNN trained 

with Keras (87.6%)

• GoogLeNet (93.7%)

Convolutional Neural Networks

Can tensor network methods be applied to this 
problem (and other machine learning problems)?

E. M. Stoudenmire, Quantum Sci. and Technol. 3, 034003 (2018)

Reproduced using a similar method by me!

Original study by Miles Stoudenmire



𝛼𝛼 = 0 𝛼𝛼 = 1

Greyscale pixel

Tensor networks for image classification

Greyscale 
image (N pixels)

〉|𝛹𝛹 = 〉|𝜓𝜓1 ⊗ 〉|𝜓𝜓2 ⊗ 〉|𝜓𝜓3 ⊗ 〉|𝜓𝜓4 ⊗⋯

Product state (vector in d=2N dims)

⊗ ⊗

〉|𝜓𝜓𝑖𝑖 = cos
𝜋𝜋𝛼𝛼𝑖𝑖

2
〉|0 + sin

𝜋𝜋𝛼𝛼𝑖𝑖
2

〉|1

Qubit state (vector in d=2 
dims)

〉|0

〉|1



Tensor networks for image classification

Set of vectors
(in d=2N dim space) 

〉|𝛹𝛹1 = 〉|𝛹𝛹2 = 〉|𝛹𝛹3 =

Each test image is a product state on a 2D lattice of qubits:

Can we form the (entangled) superposition 
of all images from a given class?



superposition of all 
pixel images of shirts

Tensor networks for image classification

〉|𝛹𝛹shirt =

+ + +

+ + +

+ + +

+

+ +⋯

〉|𝛹𝛹shirt =

Is this state sufficiently low in entanglement that it 
can be approximated as a tensor network?

Can tensor network algorithms be adapted to 
efficiently construct this approximation? 



Quantum many-
body problem

Image classification 
problem

Tensor networks for image classification

+ + +

〉|𝛹𝛹shirt =

〉|𝛹𝛹shirt =

Is this state sufficiently low in entanglement that it 
can be approximated as a tensor network?

Can tensor network algorithms be adapted to 
efficiently construct this approximation? 

Encode the training data as 
a 2D tree tensor network

superposition of all 
pixel images of shirts



Tensor networks for image classification

Fashion MNIST test problem:
some benchmarks (no preprocessing)

• XGBoost (89.8%)
• AlexNet (89.9%)
• two-layer CNN trained 

with Keras (87.6%)

• GoogLeNet (93.7%)

(4-to-1 blocking 
scheme)

Tree tensor 
network

bond dim 𝜒𝜒 = 64 
training time ~ 60min (laptop)

• gives 89.5% correct



T-shirt/top Trouser

easy to 
identify

difficult to 
identify

Dress Jacket

Tensor networks for image classification



Tree tensor network (TTN) + 
standard tensor network 
optimization strategies

Performs quite well in 
benchmark image 

classification problem

Can we instead use a multi-scale 
entanglement renormalization ansatz (MERA)? 

• MERA are expected to greatly outperform 
a TTN for a 2D problem

• MERA are the natural analogue to 
convolutional neural networks (CNNs)

Why?

There are some problems with trying to use a MERA!
(1) Computational problem
(2) Conceptual problem

Tensor networks for image classification



Tensor networks for machine learning

Input sample 
(product state)

Classification with a (trained) TTN:

• classification of samples is 
efficient

• training (or optimization) of 
TTN can be done efficiently

Contraction of TTN with a 
product state is efficient! 

Which category does 
this belong in?

(1) Computational problem

Output state

contractions



Tensor networks for machine learning

Input sample 
(product state)

Classification with a (trained) TTN:

Contraction of TTN with a 
product state is efficient! 

• classification of samples is 
efficient

• training (or optimization) of 
TTN can be done efficiently

Input sample 
(product state)

Classification with a (trained) MERA?

Output state

contraction
Contraction is of MERA with a product 
state is not efficient! 

• classification of samples is not 
efficient

• training (or optimization) of MERA 
cannot be done efficiently for large 
problems

(1) Computational problem

Output state

contractions

???



Tensor networks for machine learning

Input sample 
(product state)

One layer 
of tree

Output (coarse-
grained product 

state)

TTN maps product states to 
product states

Each intermediate state can still 
be interpreted classically (i.e. as 
an image)

Output 
(entangled 

state)

Input sample 
(product state)

MERA maps product states to 
entangled states

Cannot relate intermediate states 
to classical data 

Interpretability has been lost!

(2) Conceptual problem



Restricted class of tensor networks

Can we fix these problems?

Can we identify a restricted class of tensor network 
suited for machine learning tasks?

G.E., arXiv:1905.06352 (2019)

Number-State Preserving Tensor Networks 
as Classifiers for Supervised Learning

should be efficiently contractible 
against product states

can be efficiently trained 
and applied as a classifier

⇒

should map product states into 
product states

preserves interpretation of 
states as classical data

⇒

〉|𝛹𝛹 = 𝑐𝑐0 〉|𝜓𝜓0 + 𝑐𝑐1 〉|𝜓𝜓1 + 𝑐𝑐2 〉|𝜓𝜓2 + ⋯

Tensor networks are designed to represent complex 
superpositions of quantum states; they contain features 
that are not necessary if they are to be used as classifiers

It makes sense that we should seek a restricted class 
of network that contains only the structure we need

Unrestricted tensor 
networks

Restricted class
(number-state 

preserving)

Restrict to number state preserving tensors
My proposal:



Number state preserving tensors

Number-state: 
product state in the z-basis

Tensor is number-state preserving if it maps an 
input number-state to an output number-state

𝑤𝑤Consider tensor with oriented indices 
(each index is incoming or outgoing):

incoming

outgoing

𝑤𝑤
〈0|〈0| ↦ 〈0|
〈1|〈0| ↦ 〈1|
〈0|〈1| ↦ 〈1|
〈1|〈1| ↦ 〈0|

Mapping over all 
number states

=
〈𝑧𝑧0| 〈𝑧𝑧1|

𝑤𝑤

〈�̃�𝑧|

Tensor notation



𝑢𝑢

=

𝑤𝑤

〈𝑧𝑧0| 〈𝑧𝑧1|

Number state preserving tensors

Consider tensor with oriented indices 
(each index is incoming or outgoing):

Number-state: 
product state in the z-basis

Tensor is number-state preserving if it maps an 
input number-state to an output number-state

incoming

outgoing

input

output

Mapping over all 
number states

Reshaped as input-
output matrix

Tensor notation

〈�̃�𝑧0| 〈�̃�𝑧1|

𝑢𝑢 〈0|〈0| ↦ 〈0|〈0|
〈1|〈0| ↦ 〈0|〈1|
〈0|〈1| ↦ 〈0|〈1|
〈1|〈1| ↦ 〈1|〈1|

1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1

• only non-zero element 
per row allowed

• can have multiple non-zero 
elements per column𝑢𝑢

〉|0 〉|1

= 〉|0 〉|1 + 〉|1 〉|0

Can generate entangled 
states when run in reverse!



𝑤𝑤

Number state preserving tensors

Consider tensor with oriented indices 
(each index is incoming or outgoing):

Number-state: 
product state in the z-basis

Tensor is number-state preserving if it maps an 
input number-state to an output number-state

incoming

outgoing

𝑤𝑤𝑖𝑖𝑖𝑖 =

⁄1 3 0 0
0 0 ⁄3 4
0 0 ⁄7 4
⁄2 3 0 0
⁄2 3 0 0
0 1 0

𝑖𝑖

𝑗𝑗

𝑤𝑤

A final example:

Tensor ‘w’ is both 
isometric and number 

state preserving

Tensor has only one element per row when 
reshaped into an input-output matrix ⇒number-state 

preserving 



〈𝑧𝑧0| 〈𝑧𝑧1| 〈𝑧𝑧2| 〈𝑧𝑧3| 〈𝑧𝑧4| 〈𝑧𝑧5|

〈�̃�𝑧0| 〈�̃�𝑧1| 〈�̃�𝑧2|

Number state preserving networks

Products of number state preserving 
tensors are also number state preserving

(similar to how a product of isometric 
tensors is itself isometric)

Input number 
state

Output number 
state

⇒
We can create number-state preserving 
versions of existing networks (e.g. MPS 

and MERA)

Number-state 
preserving MERA

Input number 
state



〈𝑧𝑧0| 〈𝑧𝑧1| 〈𝑧𝑧2| 〈𝑧𝑧3| 〈𝑧𝑧4| 〈𝑧𝑧5|

〈�̃�𝑧0| 〈�̃�𝑧1| 〈�̃�𝑧2|

Number state preserving networks

Products of number state preserving 
tensors are also number state preserving

(similar to how a product of isometric 
tensors is itself isometric)

Input number 
state

Output number 
state

⇒
We can create number-state preserving 
versions of existing networks (e.g. MPS 

and MERA)

Number-state 
preserving MERA

Input number 
state



〈𝑧𝑧0| 〈𝑧𝑧1| 〈𝑧𝑧2| 〈𝑧𝑧3| 〈𝑧𝑧4| 〈𝑧𝑧5|

〈�̃�𝑧0| 〈�̃�𝑧1| 〈�̃�𝑧2|

Number state preserving networks

Products of number state preserving 
tensors are also number state preserving

(similar to how a product of isometric 
tensors is itself isometric)

Input number 
state

Output number 
state

⇒
We can create number-state preserving 
versions of existing networks (e.g. MPS 

and MERA)

Number-state 
preserving MERA

Input number 
state



〈𝑧𝑧0| 〈𝑧𝑧1| 〈𝑧𝑧2| 〈𝑧𝑧3| 〈𝑧𝑧4| 〈𝑧𝑧5|

〈�̃�𝑧0| 〈�̃�𝑧1| 〈�̃�𝑧2|

Number state preserving networks

Products of number state preserving 
tensors are also number state preserving

(similar to how a product of isometric 
tensors is itself isometric)

Input number 
state

Output number 
state

⇒
We can create number-state preserving 
versions of existing networks (e.g. MPS 

and MERA)

Number-state 
preserving MERA

Output number state

Input number 
state



〈𝑧𝑧0| 〈𝑧𝑧1| 〈𝑧𝑧2| 〈𝑧𝑧3| 〈𝑧𝑧4| 〈𝑧𝑧5|

〈�̃�𝑧0| 〈�̃�𝑧1| 〈�̃�𝑧2|

Number state preserving networks

Products of number state preserving 
tensors are also number state preserving

(similar to how a product of isometric 
tensors is itself isometric)

Input number 
state

Output number 
state

⇒
We can create number-state preserving 
versions of existing networks (e.g. MPS 

and MERA)

Number-state 
preserving MERA

Can efficiently be applied as a 
classifier (for classical data 
encoded as number states)

Preserves interpretability 
(intermediate states can still be 
understood as classical data)

Useful restriction of tensor 
networks for machine learning?



Number state preserving networks

Number-state 
preserving MERA

Can efficiently be applied as a 
classifier (for classical data 
encoded as number states)

Preserves interpretability 
(intermediate states can still be 
understood as classical data)

Useful restriction of tensor 
networks for machine learning?

Questions:
Is this restricted class of network powerful enough to 
interesting things? (i.e. can they describe entangled states?)

Can these networks be efficiently trained (or optimized) for 
machine learning tasks? 



Number state preserving networks

Questions:
Is this restricted class of network powerful enough to 
interesting things? (i.e. can they describe entangled states?)

Can these networks be efficiently trained (or optimized) for 
machine learning tasks? 

Number-state preserving MERA

product state

product state

product state

product state
product state

entangled state

entangled state

entangled state



Number state preserving networks

Number-state preserving MERA are non-trivial! If interpreted as 
describing a wavefunction 𝜓𝜓 on the lattice:

Number-state preserving MERA

product state

entangled state

entangled state

entangled state

〉|𝜓𝜓

• possess logarithmic scaling of entanglement entropy  

• possess polynomial correlation functions

𝑆𝑆𝐿𝐿 = 𝑘𝑘1log(𝐿𝐿) + 𝑘𝑘2

Are they useful for describing quantum critical ground states? Yes! 
(sometimes…)



Number state preserving networks

Number-state preserving MERA are non-trivial! If interpreted as 
describing a wavefunction 𝜓𝜓 on the lattice:

• possess logarithmic scaling of entanglement entropy  

• possess polynomial correlation functions

𝑆𝑆𝐿𝐿 = 𝑘𝑘1log(𝐿𝐿) + 𝑘𝑘2

Are they useful for describing quantum critical ground states? Yes! 
(sometimes…)

ℎ 𝑖𝑖,𝑖𝑖+1,𝑖𝑖+2 = 1 + 𝜎𝜎𝑖𝑖𝑧𝑧 1− �⃗�𝜎𝑖𝑖+1 ⋅ �⃗�𝜎𝑖𝑖+2 + 1− �⃗�𝜎𝑖𝑖 ⋅ �⃗�𝜎𝑖𝑖+1 1− 𝜎𝜎𝑖𝑖+2𝑧𝑧

Exact holographic tensor networks for the Motzkin spin chain
R.N. Alexander, G.E., I. Klich arXiv:1905.06352 (2019)

Motzkin and Fredkin models are described by a local interaction on 1D spin chain 
(open BC):

• possess unique ground state (but gapless excitations)

• ground states have logarithmic scaling of entanglement entropy

Exact description of ground states as number state preserving MERA!



Unrestricted 
Holographic networks

Isometric 
MERA

Number state preserving networks

Venn Diagram:

number state 
preserving MERA

Critical ground 
states

Open questions:

Number state preserving MERA can describe interesting entangled states!

• What properties differ between isometric MERA and number state 
preserving MERA?

• What types of system can or cannot be described by number state 
preserving MERA?

Can these networks be efficiently trained (or optimized) for 
machine learning tasks? 



Training tensor networks for classification tasks

• assume we are given M training samples, each a vector of N integers, 
together with corresponding labels

Supervised learning task:

0,0,1,0,1,0,1,1,0,0 → 0
1,0,0,0,1,0,1,1,1,0 → 1
0,0,0,0,0,0,1,1,0,0 → 0
1,0,1,1,1,1,0,1,1,0 → 1

⋮

samples labels

Goal: train a tensor network that matches samples to the correct labels

𝑘𝑘 𝑘𝑘
Tensor encoding of problem:

each sample is a 
number state (with k an 

index over samples)
labels are single-

site states →



𝑘𝑘

𝒯𝒯

〉|𝑦𝑦𝑘𝑘

〈𝒵𝒵𝑘𝑘in|

Training tensor networks for classification tasks

samples

network

labels

𝐹𝐹 = �
𝑘𝑘

〈𝒵𝒵𝑘𝑘in|𝒯𝒯 〉|𝑦𝑦𝑘𝑘
Can we quantify how well the tensor 
network matches training samples to 

their labels?
Use fidelity:

network 
matches 
samples 
to labels

Training the network for the 
supervised learning task

Optimizing the tensors in the 
network to maximize the fidelity

Use established methods (i.e. variational sweep):
• update one tensor at a time (first computing the tensor environment)
• sweep over all tensors and iterate until converged

=



𝐹𝐹 = �
𝑘𝑘

〈𝒵𝒵𝑘𝑘in|𝒯𝒯 〉|𝑦𝑦𝑘𝑘

𝑘𝑘

𝒯𝒯

〉|𝑦𝑦𝑘𝑘

〈𝒵𝒵𝑘𝑘in|

Training tensor networks for classification tasks

Can we efficiently compute tensor environments? 
(or the derivatives of the fidelity w.r.t each tensor

samples

network

labels

Use fidelity:

network 
matches 
samples 
to labels

Can we quantify how well the tensor 
network matches training samples to 

their labels?

𝜕𝜕
𝜕𝜕𝑢𝑢 𝑍𝑍product| )𝜓𝜓MERA(𝑢𝑢,𝑤𝑤



Number state 
preserving MERA

Evaluation of environments

simplifications

Can we efficiently 
compute derivatives? 

𝜕𝜕
𝜕𝜕𝑢𝑢 𝑍𝑍product| )𝜓𝜓MERA(𝑢𝑢,𝑤𝑤

Simplifications due to number-
state preserving tensors

=

Simplified network has finite tree-width

Derivatives can be evaluated at cost: 
O(log(N))

Network can be trained efficiently

⇓

⇓

⇓



Evaluation of environments

Unitary / isometric 
constraints:

=
〈𝜓𝜓MERA|ℎlocal 〉|𝜓𝜓MERA

Simplifications occur when 
evaluating scalar product of 

MERA with itself:

Efficient energy 
minimization to find the 

ground state of local 
Hamiltonians𝑢𝑢†

𝑢𝑢 ⇓ ⇓

Isometric MERA:

Isometric 
MERA:



Evaluation of environments

Unitary / isometric 
constraints:

=
〈𝜓𝜓MERA|ℎlocal 〉|𝜓𝜓MERA

Simplifications occur when 
evaluating scalar product of 

MERA with itself:

Efficient energy 
minimization to find the 

ground state of local 
Hamiltonians𝑢𝑢†

𝑢𝑢 ⇓ ⇓

Isometric MERA:

Number-state 
preserving constraints:

=

Simplifications occur when 
evaluating scalar product of 
MERA with a product state
〈𝑍𝑍product|ℎlocal 〉|𝜓𝜓MERA

Efficient training to 
maximize fidelity against 

ensemble of classical data⇓ ⇓

Number state preserving MERA:

Number state preserving MERA seem to be 
a natural choice for machine learning tasks!



Benchmark problem

• We have proposed a restricted class of tensor network state
• Argued that this class can still possess interesting entanglement
• Argues that this class can be efficiently applied as classifiers

So far:

We should crawl before we try to walk. Lets consider a 
toy supervised learning problem

How well do these ideas work in practice?



Benchmark problem

+, 0 ,−, 0,−, 0, +, +, 0 , 0 → +
0 , +, +, 0, 0 , 0,−,−,−, 0 → −
−, +, 0 +, +,−,−, 0,−, + → 0

⋮

samples labels

G.E., arXiv:1905.06352 (2019)

Number-State Preserving Tensor Networks 
as Classifiers for Supervised Learning

• Each ‘pixel’ of a sample is in state: 𝑧𝑧 ∈ +, 0,−
Height classification problem:

• Samples are labelled by whether the sum (under regular 
addition) of all pixels is positive, zero, or negative

Related to height 
models (think of each 

sample as a path)

Why this problem? Given an ensemble of samples, 
the block entropy scales logarithmically:

⇒ Tree Tensor Network 
should not work so well

⇒ MERA could work well



Benchmark problem

G.E., arXiv:1905.06352 (2019)

Number-State Preserving Tensor Networks 
as Classifiers for Supervised Learning

G.E., arXiv:1905.06352 (2019)• Chain of N = 24 sites (⇒ 324 basis states)

• Generate 12000 random training samples 

• Train 3-level MERA as a classifier (bond dimension chi = 9)

• Initialize disentanglers as identity, initialize other tensors randomly 

• After training, generate new samples to test the accuracy as a classifier
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Benchmark problem

G.E., arXiv:1905.06352 (2019)

Number-State Preserving Tensor Networks 
as Classifiers for Supervised Learning

Training results (averaged 
over many runs)

Tree TN MERA

Wrongly classified 
training samples:

• Chain of N = 24 sites (⇒ 324 basis states)

• Generate 12000 random training samples 

• Train 3-level MERA as a classifier (bond dimension chi = 9)

• Initialize disentanglers as identity, initialize other tensors randomly 

• After training, generate new samples to test the accuracy as a classifier

Tree TN: 14%

MERA: 1%

Wrongly classified 
test samples:

Tree TN: 15%
MERA: 2%
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Benchmark problem

G.E., arXiv:1905.06352 (2019)

Number-State Preserving Tensor Networks 
as Classifiers for Supervised Learning

Training results (averaged 
over many runs)

Tree TN MERA

Wrongly classified 
training samples:

• Optimization algorithm generally converges well and can easily be 
scaled to larger system sizes and higher bond dimensions

• Disentanglers have a significant effect (MERA is vastly more 
accurate than a tree TN)

• Good generalization from training to test samples (i.e. we are not 
just overfitting to the training data) 

Tree TN: 14%

MERA: 1%

Wrongly classified 
test samples:

Tree TN: 15%
MERA: 2%



Conclusions

Can we apply 2D MERA 
to difficult problems? In 

progress…

Unrestricted Tensor 
Networks

Isometric 
Constraints

Number state 
preserving constraints

• number state preserving tensors seems to be a natural restriction for 
tensor networks when applying to classification problems

• we have efficient training algorithms for this class of network

• performs well in toy classification problems

Thanks!
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