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• Chaotic quantum systems are known to scramble quantum 
information.  

• Holographic quantum systems, typically with a large number 
of colour d.o.f, and dual to Black Holes, scramble 
information the fastest.  

• In such systems, OTOCs provide an efficient way to 
characterise such scrambling behaviour.                                   
(See the talks by Pappadodimas, Sunderhauf for a review of OTOCs)

Motivation



• OTOCs measure the growth of an initially ‘local’ operator, in terms of the 
commutator norm                     . The growth rate is given by the “butterfly 
velocity”       . Here W and V are two local operators. Stanford, Shenker et al. ’13-‘14 

• In systems without spatial locality, such as the SYK model in 0+1- dimensions, 
the commutator norm involving initially local operators can grow exponentially 
fast. 

• The growth rate is specified by a Lyapunov exponent       .  

• It has an upper bound which is saturated by the fastest scramblers such as 
Black Holes and the SYK model (at low temperatures). Maldacena, Shenker, Stanford ‘16 

                                                           

• In fact, this was one of the initial motivations for the SYK model to be 
considered a model for the BH.  Kitaev ’15; Maldacena, Stanford ‘16
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• Fast scramblers scramble information at times of order 

                          where S  is the typical system size.  

• Independent estimates for the randomisation of 
quantum states in the Hilbert space suggest timescales 
of order the Heisenberg time, 

• Also the timescales for the onset of RMT-like behaviour 
in generic chaotic quantum systems such as the SYK 
model. Polchinski et al. ’16 (However, see H. Gharibyan’s talk) 

• Glaring shortcoming of the OTOCs: No new 
information beyond scrambling time!
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1
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• Operator growth over this exponentially long timescale remains 
uncharacterised! 

• To characterise dynamics beyond scrambling time, we invoke a 
new quantity called K-complexity. E. Altman et al. ’18  

• The definition of K-complexity coincides with the operator size 
upto scrambling times.  

• The growth of K-complexity in the scrambling regime is in direct 
correspondence with the decay of the OTOCs. E. Altman et al. ’18  

• However, unlike OTOCs, the K-complexity continues to grow 
beyond scrambling times, since it relies on growth in the 
operator Hilbert space! 



K-Complexity



• In the Heisenberg picture, time evolution of an operator is: 

• Krylov basis: An operator basis with elements defined through nested commutators of the 
Hamiltonian with an initial local operator. 

                                                                                                

• To make it into a basis, we perform the Gram-Schmidt orthogonalisation process, 

 where the       ’s are called Lanczos coefficients.   

• Orthogonality is defined through the following non-degenerate inner product in the 
operator algebra:

The Krylov BasisThe Krylov Basis

bnOn = [H ,On−1]− bn−1On−2

On ∼ [H ,[H ,...,[H
n

" #$ %$ ,O0],...],]



• The adjoint action of the Hamiltonian invokes a linear 
operator in the operator vector space, called the Liouvillian.  

• The Liouvillian acts on the basis elements in the following 
way, 

• In the operator basis then, the Liouvillian has a tri-diagonal 
representation in terms of the Lanczos coefficients owing to, 

[H ,On]) = bn+1 On+1)+ bn On−1)



• Any operator      that can be represented in this basis of 
operators generated by      and       , can be written as, 

• Here       ’s are time-dependent complex coefficients.  

• One can set-up a differential equation for the      ‘s  from 
the Heisenberg e.o.m. ,                             , given by 

Solving this differential equation allows us to understand 
the operator growth in this basis, as well as calculate the 
K-complexity.

O
H O0

O) = inϕn On )
n
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ϕn

ϕn
∂tOt = i[H ,Ot ]

∂tϕn = bnϕn−1 − bn+1ϕn+1



• K-complexity is defined as the typical number of H-commutators required to build an 
operator       .  

• Same as the average operator size upto scrambling times!  

• Physically, this object measures how the amplitude of projection of the initial operator 
spreads on the successive basis elements, corresponding to larger and larger operators. 

• This growth slows down, once the growing front of the initial operator becomes as large as 
the operators which are typically the system size, in a finites size system. This happens 
around the scrambling timescales.  

• This growth, however, continues since we can keep applying the Hamiltonian successively 
on the operator, for all times. 

• In fact, replacing the operator       by the time evolved operator         , we notice that this 
definition of K-complexity continues to hold even beyond scrambling timescales.

K-complexityK-Complexity

CK (O) = O( n O) = n |ϕn |
n
∑ 2



• Beyond scrambling time-scales, this object simply measures the 
increasing complexity of the time-evolving operator, 

• Physically, the operator now moves around in the sub-space of large 
operators, all of which are typically the size of the system. This growth is 
what we want to characterise!

CK (t) = n |ϕn(t) |
n
∑ 2



• Beyond scrambling time-scales, this object simply measures the increasing 
complexity of the time-evolving operator, 

• Physically, the operator now moves around in the sub-space of large operators, 
all of which are typically the size of the system. This growth is what we want to 
characterise! 

Some quick comments on K-Complexity 

• Notice: K-complexity is different from usual complexity, since it doesn’t require 
an arbitrary tolerance parameter in its definition. On the contrary, it has an 
upper bound given by the dimensionality of the operator Hilbert space. It is 
saturated when the operator “randomizes" over the entire Hilbert space. 

• Important: This definition depends on a particular choice of the Hamiltonian 
and an initial operator, neither of which may not be the most optimal for the 
experiment. This is in contrast with random quantum circuits where one uses 
averaged Hamiltonians at each time-step, and therefore scramble d.o.f. in the 
most efficient way.

CK (t) = n |ϕn(t) |
n
∑ 2



• Fast scramblers are  defined as chaotic quantum systems that 
saturate the Lyapunov bound.  Maldacena et al. ’16 

• For the SYK model, it was shown that in the thermodynamic 
limit, the Lanczos coefficients show a linear growth with n for 
asymptotically large n’s.  Altman et al. ’18 

                                         , 

•   With the above value of      , the resulting K-complexity turns 
out to be exponential, 

K-Complexity of Fast Scramblers

bn ≈αn n→∞

bn

CK (t) ∼ e
2αt



• Conjecture: The rate of K-complexity growth in the scrambling 
region provides an upper bound for the Lyapunov exponent in 
the OTOCs, and is saturated by the fastest scramblers. Altman et al. ‘18 

• At scrambling time,                  , the K-complexity  is , 

•  However, for a finite system of size           , the dimensionality of 
the operator Hilbert space is                 .   

• Since                   , it implies that there is still an enormous scope 
of growth for operator complexity!

λL ≤ 2α

t∗ ∼
1
λL
log(S)

CK (t∗) ∼ n∗ ∼ S

O(S)

S ≪ eO(S )



• To understand the rate of complexity growth in the post-scrambling regime, and the 
corresponding form of the      ’s, we must define the moments. 

• A moment is defined through the Fourier transform of the correlation function as,  

•  Here, 

•  Interestingly, the moments can be bounded from below using “not so simple” combinatorics, 
as  

• For a non-decreasing sequence of the Lanczos coefficients, the moments can also be bounded 
from above as 

• Here Cn’s are the Catalan numbers. 

Moments



• To go beyond scrambling times in finite-size systems, we 
want                     

• The rate of K-complexity growth in this region depends on 
the form of the      ’s. 

• To estimate the form of the        ’s, we consider the spectral 
decomposition of the correlation functions,   

• Plugging this into the expression for the moments,  

n≫ S

bn

bn

!G(ω ) = 1
N

|Oab |
2 2πδ (ω − (Ea − Eb))

a,b
∑

µ2n =
1
N

(Ea − Eb)
2n |Oab |

2
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∑



• Now using ETH, one can estimate the matrix elements of the 
operator in the energy eigenbasis. For this, we get 

where                   is a smooth function of the energies.  

• For            , it can be shown that the above sum is dominated by 
the largest possible energy differences, while the form factor 
can be conveniently ignored.    

• Now, for a system which is extensive in the energy and where 
the UV cut-off is      , the largest energy differences are of order   

K-Complexity and ETH

µ2n ≈
1
N 2 (Ea − Eb)

2n F(Ea − Eb)
a,b
∑

F(Ea − Eb)

n≫ S

Λ
ΛS



• The moments then scale as 

• If the       ’s asymptote to a particular value        for large-n, 
then the upper bound for the moments tells us that,  

• Comparing the result to the upper bound on the moments, 
we conjecture that the Lanczos coefficients, in the post-
scrambling regime, would asymptote to a plateau of 
height,  

Conjecture

µ2n ∼
1
n2

ΛS( )2n n≫ S

b∞ ∼ ΛS( )

µ2n ∼ (cb∞ )
2n+O(n) c >1 n→∞

bn b∞



• It can be quickly verified that at scrambling time, 

  

• For couplings of order unity in a strongly coupled 
system, the Lyapunov exponent is of order the 
characteristic frequency,  

• As a result, the Lanczos sequence grows with a linear 
slope       between                  , beyond which it morphs 
into an approximate plateau which extends upto  

• This, in turn, results in a slower growth of K-complexity, 
which we shall characterise now. 

bn∗ ∼αn∗ ∼αS

λL ∼ 2α ∼ Λ

λL 0 < n < n∗
nmax ∼ e

O(S )



The Lanczos coefficients’ profile



Dynamics of K-Complexity Growth



• To study the complexity growth profile in the post-scrambling region, we 
need to solve the differential equation (discrete in n) in              using the 
conjectured growth of coefficients. 

• However, to get a detailed matching between the scrambling and the 
post-scrambling regions, let us start with the continuum limit by 
introducing a coarse-graining scale       .  

• This allows us to define,                 , as well as a continuum form of the 
differential equation to first order in epsilon. 

where                                      , and  

The Continuum Amplitudes

ϕn(t)

∂tϕn = bnϕn−1 − bn+1ϕn+1

ε

x = εn

∂tϕ = −v(x)∂xϕ − 1
2 ∂x v(x)ϕ +O(ε )

v(x) = 2εb(εn) ≡ 2εbn ϕ(x,t) ≡ϕn(t)



• This can be solved with a simple change of variables given by,  

• The corresponding rescaled amplitude is 

•  In terms of these variables, the differential equation becomes,  

     

with  the solution given by,  

                                    with initial condition 

 The solution describes a simple ballistic motion of the initial amplitude  in the y-
space, towards positive values.  

• The final solution is obtained simply by translating between the x and y space. 

Note: The amplitudes can be shown to be normalised in the continuum limit.

v(x)∂x= ∂ y

ψ ( y,t) = v( y)ϕ( y,t)

(∂ y+ ∂t )ψ ( y,t) = 0+ ...

ψ ( y,t) =ψ i( y − t) ψ i( y) =ψ ( y)



K-Complexity 

An expression for K-Complexity in the continuum 
variables is,

CK (t) =
1
ε 2

dy |ψ i( y) |
2 x( y + t)∫



In the scrambling regime 

For fast scrambling systems with                   , the solution 
in the x-space reads,  

The K-complexity can be correspondingly shown to grow 
exponentially in time,  

Note : For systems that scramble slower,                with          
the K-complexity grows as a power law 

v(x) = λx

ϕscr (x,t) = e
−λt /2ϕ i(xe

−λt )

v(x) ∼ xδ δ <1
∼ (αt)1/(1−δ )

CK (t)scr ≈ e
λ (t−t∗ )CK (t∗)



In the post-scrambling regime 

With our conjectured behaviour of the Lanczos coefficients, the 
velocity turns out to be a constant in this regime. Hence, the x and y 
frames are simply proportional to each other  

The amplitude then simply moves ballistically in x-space as 

It is easy to see then that the K-complexity increases linear in this 
regime as, 

The time-scale for the amplitude to reach the reach                     is,                  

x = v∗y

ϕ post−scr (x,t) =ϕ(x − v(t − t∗),t∗)

CK (t) post−scr ≈ λn∗(t − t∗)+CK (t∗) ∼ λS(t − t∗)+O(S)

nmax ∼ e
O(S )

tK ~
1
λS
eO(S )



K-Complexity Curve

Note: The linear growth of complexity has been conjectured previously in the 
context of the volume and action proposals of complexity, and has been attributed 
to the growth of Black Hole interiors. Susskind et al. ’15-‘19



Operator Randomisation and K-Entropy



• Until now we have characterised the operator growth in the 
scrambling and post-scrambling regimes, that had much to 
do with how the peak of the amplitude moves. However, that 
does not always tell us whether the amplitude randomises 
over the basis in an efficient way.  

• To understand operator randomisation, we introduce a new 
quantity called the K-entropy. 

• K-entropy or operator entropy is a von Neumann entropy 
defined through the amplitudes in the following way,  

K-Entropy

SK = − |ϕn |
2 log |ϕn |

2

n≥0
∑



• The K-entropy can effectively distinguish between a 
scrambled and a non-scrambled profile. 

• If the amplitude is very peaked at a particular n, the K-
entropy is small, whereas, if the entropy is uniform over 
an interval,             , the K-entropy is maximal, 

• In the continuum version, the K-entropy is 

[0,nM ] SK = log(nM )

SK = − 1
ε
dx |ϕ(x,t) |2 log∫ |ϕ(x,t) |2



• It is easy to see that in the scrambling region,  

• This means that there is entropy production leading to a 
linear rise in the K-entropy, which is captured by the 
differential equation to first order in epsilon. 

• However, in the post-scrambling regime, no significant 
growth of the K-entropy is observed.  

• Must go to higher orders in the derivative expansion!

SK = SK (0)+ λt



The following terms appear at sub-leading order in the derivative 
expansion of the differential equation. 

  

This corrects the velocity, has a small effect in the scrambling regime, 
completely ignorable in the post-scrambling regime 

The first is a diffusion term with the wrong sign, negligible effect. 

The second, active throughout the post-scrambling era, leading correction!

Higher Orders in the Continuum Limit

O(ε )

O(ε 2 )

− 1
2 ε ∂x v(x)∂xϕ(x,t)

− 1
4 ε

2 ∂x v(x)∂x
2ϕ(x,t)− 1

6 ε
2v(x)∂x

3ϕ(x,t)



The differential equation at          in the y-frame is, 

where                          is small.  

This equation can be solved by going to Fourier space, 
and admits the following solution,    

where,                   , and the Airy function is convoluted with  

the initial wave function profile.

O(ε 2 )

(∂t+ ∂ y )ψ ( y,t) = −γ ∂ y
3ψ ( y,t)

γ = 1
6
ε 2

v2
∼

1
(λS)2

ψ ( y,t) = dwAi(z − w)ψ i[(3γΔt)
1/3w]∫

z = y − Δt
(3γΔt)1/3



For an initial Gaussian wave profile,  

the solution is, 

with, 

Looking at the long time tail,           , one finds   

Exponential suppression, unless             , for which there 
is very efficient randomisation! 

ψ i( y,t∗) = π
−1/4 ε

δ
exp −

( y − y∗)
2

2δ 2
⎛

⎝⎜
⎞

⎠⎟

ψ ( y,t) = π −1/4 2εδ
(3γΔt)1/3

eBAi Δy − Δt +C
(3γΔt)1/3

⎡

⎣
⎢

⎤

⎦
⎥

B = − δ
2

6γ
1− Δy

Δt
⎛
⎝⎜

⎞
⎠⎟
+ δ 6

108γ 2Δt2
C = δ 2

12γΔt

Δy≪ Δt

ϕtail ∼ δλn∗e
−(δλn∗ )

2 1
2bt

×Osc[0,2bt ]

δ ∼1/ (λS)



Amplitude for a very narrow initial 
pulse, displaying efficient 
randomisation

Amplitude for a wide initial pulse, 
displaying an exponentially damped 
tail.



Quick Summary 

• We solve for the third order equation, in terms of an Airy 
function convoluted with the initial wave function profile 
(typically a Gaussian).  

• The tail is exponentially damped, unless the width is  

• So, for the most physical scenario of a sufficiently broad 
Gaussian, the solution to this order seemingly fails to capture 
any randomisation of the operator in the K-basis. 

• Efficient randomisation, however, occurs for                   
indicating that one could still  hope to solve for the full discrete 
equation, in the hope of getting efficient randomisation over 
the K-basis.

δ ∼1/ (λS)

δ ∼1/ (λS)



• To understand K-entropy production in the post-scrambling 
regime, let us look at the discrete equation. 

• The discrete equation to be solved is: 

• It allows for a very simple solution, the Bessel function, which 
has the exact desired properties, the precise long tail we desire 
for effective randomisation. 

  

• However, it does not satisfy the correct boundary conditions, 
and hence can only be treated as a toy model. 

The Discrete Amplitude

∂tϕn = b(ϕn−1 −ϕn+1)

ϕn(t) = Jn(2b∞t)



The Discrete Amplitude

∂tϕn = b(ϕn−1 −ϕn+1)

ϕn(t) = Jn(2b∞t)

• To understand K-entropy production in the post-scrambling 
regime, let us look at the discrete equation. 

• The discrete equation to be solved is: 

• It allows for a very simple solution, the Bessel function, which 
has the exact desired properties, the precise long tail we desire 
for effective randomisation. 

  

• However, it does not satisfy the correct boundary conditions, 
and hence can only be treated as a toy model. 



• To get the right boundary conditions, we consider the 
following linear combination of the Bessel functions, 

• This function, then satisfies the differential equation with the 
right boundary condition      

• However, it is still unphysical, since it has a zero right next to 
the peak value at t=0, and moreover, a delta function profile to 
start with! 

• Moreover, any function in the post-scrambling regime is 
bound to have undergone a long phase of scrambling and 
randomisation, and hence has a significant width while it 
enters the region of constant      ’s!

Rn(2b∞t) = Jn(2b∞t)+ Jn+2(2b∞t) =
(n+1)
bt

Jn+1(2b∞t)

ϕ−1(t) = 0

bn



• To get the right boundary conditions, we consider the 
following linear combination of the Bessel functions, 

• This function, then satisfies the differential equation with the 
right boundary condition      

• However, it is still unphysical, since it has a zero right next to 
the peak value at t=0, and moreover, a delta function profile to 
start with! 

• Moreover, any function in the post-scrambling regime is 
bound to have undergone a long phase of scrambling and 
randomisation, and hence has a significant width while it 
enters the region of constant      ’s!

Rn(2b∞t) = Jn(2b∞t)+ Jn+2(2b∞t) =
(n+1)
bt

Jn+1(2b∞t)

ϕ−1(t) = 0

bn



• To solve the problem of the zero next to the peak, and simulate 
a more physical initial amplitude, we first define a new function 
of the following kind: 

• With this function, we can manufacture a zero at any n=k>0 at 
will, and arbitrarily far away from n=0.

Rn
(k ) (2b∞t) = Jn−k (2b∞t)+ (−1)

k Jn+k+2(2b∞t)



• To solve the second problem of an amplitude with a significant width, we can take 
a linear combination of the above function and define a general function that 
solves the differential equation, satisfies the boundary conditions, and simulates a 
more realistic scenario. 

                                                                                              with 

  

where         is the signal width.  

• For a signal of width               , the above amplitude simulates a signal prepared by 
a previous period of fast-scrambling. 

• From the plot with a square pulse, one can estimate that with an average tail of 
height                and a width of order        , efficient randomisation occurs in order 
of magnitude. 

• As a result, the K-entropy grows as 

ϕn(t) = α k Rn
(k ) (2b∞t)

k=0

K0−1

∑ |α k
k=0

K0−1

∑ |2= 1

K0

K0 ∼ S

1/ 2bt 2bt

SK (t) ∼ log(2b∞t)



• To solve the second problem of an amplitude with a significant width, we can take 
a linear combination of the above function and define a general function that 
solves the differential equation, satisfies the boundary conditions, and simulates a 
more realistic scenario. 

                                                                                              with 

  

where         is the signal width.  

• For a signal of width               , the above amplitude simulates a signal prepared by 
a previous period of fast-scrambling. 

• From the plot with a square pulse, one can estimate that with an average tail of 
height                and a width of order        , efficient randomisation occurs in order 
of magnitude. 

• As a result, the K-entropy grows as 

ϕn(t) = α k Rn
(k ) (2b∞t)

k=0

K0−1

∑ |α k
k=0

K0−1

∑ |2= 1

K0

K0 ∼ S

1/ 2bt 2bt

SK (t) ∼ log(2b∞t)



K-Entropy Curve



Summary

Growth of Lanczos coefficients Growth of K-Complexity

Growth of K-entropy



• We defined an algebraic notion of  operator complexity, called K-
complexity, that relies on the effective dimensionality of the linear subspace 
generated under the operator’s time evolution. 

• The time dynamics of this quantity was already known, upto scrambling 
times, and had been used as an effective characterisation of chaotic 
behaviour, being governed by the same Lyapunov exponent as in OTOCs. 

• Using ETH, we conjectured its post-scrambling behaviour to correspond to 
a linear growth with a rate that is extensive in the system size S. 

• We simultaneously argued that the linear growth of the K-complexity must 
saturate to a constant value of about             , at time-scales also of about   
and remain constant thereafter upto Poincare recurrence times, which are 
of order                      .

Discussions and Conclusion

eO(S ) eO(S )

tP ~ e
eO ( S )



• Upto scrambling times, the operator grows in size, while 
simultaneously randomising over the operator space. 

• To characterise whether the operator randomises post-scrambling, 
we invoke the notion of K-entropy.  

• The K-entropy effectively measures the degree of uniformity of the     
’s. 

• It grows during the linear growth of K-complexity, post-scrambling, 
signifying randomisation in operator space. 

• When K-complexity saturates, the K-entropy saturates to                                                
signifying complete randomisation in order of magnitude. 

SK (t) ∼ log(2b∞t)

ϕn



• What is the effect of this randomisation on correlation 
functions? Does it pave the way for an RMT description 
of the system beyond Heisenberg times? 

• During scrambling, K-complexity is equivalent to 
operator size. Under the holographic dictionary, 
increasing operator size, corresponds to a free falling 
particle towards the horizon. Does it imply that the post-
scrambling linear growth of operator complexity 
effectively describes particle motion in the black hole 
interior?

Open Questions


