Can we actually constrain f_{NL} using the scale-dependent bias effect?

Alex Barreira

ORIGINS Fellow LMU - Munich

Based on:

arXiv:2009.06622, arXiv:2107.06887, arXiv:2112.03253, arXiv:2205.05673, arXiv:2209.07251

In collaboration with:

Giovanni Cabass, Vincent Desjacques, Titouan Lazeyras, Dylan Nelson, Annalisa Pillepich, Fabian Schmidt

"Primordial non-Gaussianity and Beyond", Madrid 2022

Can we actually constrain f_{NL} using the scale-dependent bias effect?

but

only if we <u>understand galaxy formation</u> a lot better than we currently do!

Local PNG leaves a distinct scale-dependent signature on the large-scale galaxy power spectrum.

(Dalal+ 2007)

Local PNG leaves a distinct scale-dependent signature on the large-scale galaxy power spectrum.

(Dalal+ 2007)

 $\delta_g({m x},z) \supset b_1(z) \delta_m({m x},z) + b_\phi(z) f_{
m NL} \phi({m x})$

Slozar+(2008), McDonald(2008), Giannantonio&Porciani(2010), Baldauf+(2011), Assassi+(2015)

• <u>The bias parameters are physical (not nuisance)</u> parameters describing the galaxy-environment connection on large-scales (Desjacques, Jeong & Schmidt 2016).

Local PNG leaves a distinct scale-dependent signature on the large-scale galaxy power spectrum.

(Dalal+ 2007)

k-dependent coefficient, not bias.

There are two bias parameters here.

What do current works do?

Most works assume a tight relation between the bias parameters b_{ϕ} and b_1 . (the idea is to fix b_{ϕ} in terms of b_1 , which can be fit for on small scales)

• The bias estimation

$$b_1(z) = \lim_{k \to 0} \frac{P_{gm}(z)}{P_{mm}(z)}$$

Using the fiducial simulation

$$b_{\phi}(z) = 4 \frac{\mathrm{dln}n_g(z)}{\mathrm{dln}\mathcal{A}_s}$$

Finite differences using separate universe simulations

• The simulation set (Barreira+2020)

Hydro (IllustrisTNG)

L = 75 Mpc/h , Np = 2x1250^3 L = 205 Mpc/h, Np = 2x1250^3 **Gravity-only** L = 560 Mpc/h, Np = 1250^3

Relations assumed in the literature fail for a variety of tracers in simulations.

Barreira 2021, Barreira 2022, Lazeyras+ (2022) 2107.06887, 2112.03253, 2209.07251

Relations assumed in the literature fail for a variety of tracers in simulations.

Barreira 2021, Barreira 2022, Lazeyras+ (2022) 2107.06887, 2112.03253, 2209.07251

Relations assumed in the literature fail for a variety of tracers in simulations.

Barreira 2021, Barreira 2022, Lazeyras+ (2022) 2107.06887, 2112.03253, 2209.07251

Relations assumed in the literature fail for a variety of tracers in simulations.

affect f_{NL} constraints?

Barreira 2021, Barreira 2022, Lazeyras+ (2022) 2107.06887, 2112.03253, 2209.07251

$$b_{\phi} = 2\delta_c(b_1 - p)$$

- Constraints are completely dominated by the assumed b₀(b1) relation. This relation is unknown, and so we do not know which constraint is actually correct!
- Inferred precision on fNL can vary significantly on a range of O(1) values of bφ.
 Be careful with even O(1) uncertainty on bφ.
- Significance of detection is not affected, but it is still misleading to quote bounds on fNL.

For example:

 $f_{NL} = 0.1 \pm 0.02$ vs $f_{NL} = 20 \pm 4$

are both 5σ , but have different implications.

Should constrain fNLbø instead.

$$b_{\phi} = 2\delta_c(b_1 - p)$$

- Constraints are completely dominated by the assumed b_φ(b₁) relation. This relation is unknown, and so we do not know which constraint is actually correct!
- Inferred precision on f_{NL} can vary significantly on a range of O(1) values of b_φ.
 Be careful with even O(1) uncertainty on b_φ.
- Significance of detection is not affected, but it is still misleading to quote bounds on fNL.

For example:

 $f_{NL} = 0.1 \pm 0.02$ vs $f_{NL} = 20 \pm 4$

are both 5σ , but have different implications.

Should constrain fNLbø instead.

$$b_{\phi} = 2\delta_c(b_1 - p)$$

- Constraints are completely dominated by the assumed b_φ(b₁) relation. This relation is unknown, and so we do not know which constraint is actually correct!
- Inferred precision on f_{NL} can vary significantly on a range of O(1) values of b_φ.
 Be careful with even O(1) uncertainty on b_φ.
- Significance of detection is not affected, but it is still misleading to quote bounds on fNL.

For example:

 $f_{NL} = 0.1 \pm 0.02$ vs $f_{NL} = 20 \pm 4$

are both 5σ , but have different implications.

Should constrain fNLbø instead.

$$b_{\phi} = 2\delta_c(b_1 - p)$$

- Constraints are completely dominated by the assumed b_φ(b₁) relation. This relation is unknown, and so we do not know which constraint is actually correct!
- Inferred precision on f_{NL} can vary significantly on a range of O(1) values of b_φ.
 Be careful with even O(1) uncertainty on b_φ.
- Significance of detection is not affected, but it is still misleading to quote bounds on fNL.

For example:

 $f_{NL} = 0.1 \pm 0.02$ vs $f_{NL} = 20 \pm 4$

are both 5σ , but have different implications.

Should constrain fNLbø instead.

1) Given our current poor knowledge on $b_{\phi}(b_1)$, we should start quoting bounds on $f_{NL}b_{\phi}$. Detecting $f_{NL}b_{\phi}$ also rules out single-field inflation; we just won't know the f_{NL} value.

2) Need to develop dedicated research programs for b₀(b₁) in order to constrain f_{NL}.
 <u>Challenges:</u> (i) galaxy formation physics and (ii) connection to observations.
 <u>Opportunity:</u> theory priors on b₀ let us optimize galaxy selection strategies to detect local PNG.

1) Given our current poor knowledge on $b_{\phi}(b_1)$, we should start quoting bounds on $f_{NL}b_{\phi}$. Detecting $f_{NL}b_{\phi}$ also rules out single-field inflation; we just won't know the f_{NL} value.

2) Need to develop dedicated research programs for b₀(b₁) in order to constrain f_{NL}.
 <u>Challenges:</u> (i) galaxy formation physics and (ii) connection to observations.
 <u>Opportunity:</u> theory priors on b₀ let us optimize galaxy selection strategies to detect local PNG.

1) Given our current poor knowledge on $b_{\phi}(b_1)$, we should start quoting bounds on $f_{NL}b_{\phi}$. Detecting $f_{NL}b_{\phi}$ also rules out single-field inflation; we just won't know the f_{NL} value.

2) Need to develop dedicated research programs for b₀(b₁) in order to constrain f_{NL}.
 <u>Challenges:</u> (i) galaxy formation physics and (ii) connection to observations.
 <u>Opportunity:</u> theory priors on b₀ let us optimize galaxy selection strategies to detect local PNG.

1) Given our current poor knowledge on $b_{\phi}(b_1)$, we should start quoting bounds on $f_{NL}b_{\phi}$. Detecting $f_{NL}b_{\phi}$ also rules out single-field inflation; we just won't know the f_{NL} value.

2) Need to develop dedicated research programs for b₀(b₁) in order to constrain f_{NL}.
 <u>Challenges:</u> (i) galaxy formation physics and (ii) connection to observations.
 <u>Opportunity:</u> theory priors on b₀ let us optimize galaxy selection strategies to detect local PNG.

Summary

Can we actually constrain f_{NL}?

Galaxy data does not primarily constrain fNL, but its product with uncertain bias parameters $(f_{NL}b_{\phi})$.

• Existing fnl constraints/forecasts are dominated by poor galaxy bias assumptions.

Current large theory uncertainty on $b_{\phi}(b_1)$, implies a serious systematic error on f_{NL} bounds.

• Need to revisit our approach to fNL constraints

Dedicated research programs to determine $b_{\phi}(b_1)$ for real galaxy samples.

Survey planning/performance needs to take PNG bias into account. What if our future surveys are targeting the wrong galaxies, i.e., with $b_{\phi} << 1$?

Signature $\propto b_1 b_{\phi} f_{\rm NL}$

Cosmology

Local-type primordial non-Gaussianity (PNG)

 $\phi = \phi_{\rm G} + f_{\rm NL} \left[\phi_G^2 - \langle \phi_G^2 \rangle \right]$

Komatsu&Spergel(2001)

Detecting fNL would be immensely profound: it rules out single-field inflation! The early universe was not as simple as it could have been! (Creminelli&Zaldarriaga 2004, Creminelli+ 2011, Tanaka&Urakawa 2011, Pajer+ 2013)

Separate Universe theorem: local structure formation inside long-wavelength perturbations is equivalent to global structure formation in a modified cosmology.

Separate Universe theorem: local structure formation inside long-wavelength perturbations is equivalent to global structure formation in a modified cosmology.

Simulation of one cosmology (A)

Separate Universe theorem: local structure formation inside long-wavelength perturbations is equivalent to global structure formation in a modified cosmology.

Simulation of one cosmology (A)

Simulation of another cosmology (B)

Separate Universe theorem: local structure formation inside long-wavelength perturbations is equivalent to global structure formation in a modified cosmology.

Simulation of one cosmology (A)

bias =
$$\frac{1}{A-B} \left[\frac{n^A}{n^B} - 1 \right]$$

Bias as the **response** of the galaxy abundance to changes in the **cosmological parameters.**

Big advantage for b_{ϕ} studies: simulation does not have to be large volume to resolve the large-scale signature.

Simulation of another cosmology (B)

A few FAQs

• Can we marginalize over the b_{ϕ} parameter?

No, this is ill defined. The perfect degeneracy makes any prior invariably informative. In particular, wide priors introduce spurious projection effects.

Barreira (2022), 2205.05673

• Can multitracer or lensing cross-correlations help?

Also no. The additional information is unable to break this degeneracy.

• Can the bispectrum help?

The galaxy bispectrum can probe f_{NL} directly via the primordial signal, but marginalizing over the scale-dep. bias terms yields uncompetitive bounds.

Barreira (2020), 2009.06622 Moradinezhad+ (2020), 2010.14523 Barreira (2021), 2107.06887 Cabass+ (2022), 2204.01781

Ways to break the **b**ofnl degeneracy? #1

• Multitracer analyses cannot break the degeneracy.

$$\begin{split} \langle \delta_{g}^{A} \delta_{g}^{A} \rangle &= [b_{1}^{A}]^{2} \langle \delta_{m} \delta_{m} \rangle + 2b_{1}^{A} [b_{\phi}^{A} f_{\mathrm{NL}}] \langle \delta_{m} \phi \rangle + [b_{\phi}^{A} f_{\mathrm{NL}}]^{2} \langle \phi \phi \rangle \\ \langle \delta_{g}^{A} \delta_{g}^{B} \rangle &= b_{1}^{A} b_{1}^{B} \langle \delta_{m} \delta_{m} \rangle + (b_{1}^{A} [b_{\phi}^{B} f_{\mathrm{NL}}] + b_{1}^{B} [b_{\phi}^{A} f_{\mathrm{NL}}]) \langle \delta_{m} \phi \rangle + [b_{\phi}^{A} f_{\mathrm{NL}}] [b_{\phi}^{A} f_{\mathrm{NL}}] \langle \phi \phi \rangle \\ \langle \delta_{g}^{B} \delta_{g}^{B} \rangle &= [b_{1}^{B}]^{2} \langle \delta_{m} \delta_{m} \rangle + 2b_{1}^{B} [b_{\phi}^{B} f_{\mathrm{NL}}] \langle \delta_{m} \phi \rangle + [b_{\phi}^{B} f_{\mathrm{NL}}]^{2} \langle \phi \phi \rangle \end{split}$$

- Every new sample brings with it an additional $b_{\varphi}f_{\text{NL}}$ term

• Cross-correlation with lensing cannot break the degeneracy

$$\langle \delta_g \delta_g \rangle = b_1^2 \langle \delta_m \delta_m \rangle + 2b_1 [b_\phi f_{\rm NL}] \langle \delta_m \phi \rangle + [b_\phi f_{\rm NL}]^2 \langle \phi \phi \rangle$$

$$\langle \delta_g \delta_m \rangle = b_1 \langle \delta_m \delta_m \rangle + b_1 [b_\phi f_{\rm NL}] \langle \delta_m \phi \rangle$$

- Lensing does break degeneracies between b_1 and $\sigma_8,$ but not between b_{φ} and $f_{\text{NL}}.$
- Lensing bispectrum is not a sensitive probe of f_{NL}. (Jeong, Schmidt & Sefusatti 2011)

• The 1-loop power spectrum breaks the degeneracy, but only negligibly.

Can we marginalize over the PNG bias ?

Marginalizing over the local PNG bias parameters is ill-defined.

$$b_{\phi} = 2\delta_c(b_1 - p)$$

- **Narrow priors** bias the result if they are centered at the wrong value.
- Wide priors bias the result due projection effects that drive the constraints to zero.

Be careful with "loose" priors: they still dominate the constraints! (cf. also Moradinezhad+ (2020))

Can the bispectrum help?

Types of contributions to the galaxy bispectrum:

Leading-order PNG bias

Contributes also to the power spectrum.

Primordial bispectrum

 $f_{\rm NL}b_1^3$

Higher-order PNG bias

 $f_{\rm NL}b_{\phi\delta}$

Can the bispectrum help?

Types of contributions to the galaxy bispectrum:

Can the bispectrum help?

Types of contributions to the galaxy bispectrum:

Contributes also to the

power spectrum.

Have similar scale-dependence in the galaxy bispectrum, i.e. the higher-order PNG bias washes the primordial signal.

Assembly bias in the local PNG halo bias

- Halo concentration impacts the $b_{\phi}(b_1)$ relation very significantly.
- Halo spin and sphericity have a much milder impact on the $b_{\phi}(b_1)$ relation.

Assembly bias in the local PNG halo bias

- The constraints on f_{NL} depend strongly on the concentration of the halos that are assumed to host these galaxies.
- A good knowledge of (at least) the host halo concentration distributions of galaxies is necessary in order to robustly constrain f_{NL}.

Lazeyras, Barreira, Schmidt, Desjacques (2022)

Significance of detection analyses

Independently of the PNG galaxy bias relations, we can only constrain the product f_{NL}bφ.

Pros:

- Can still be used to detect local PNG, and thus rule out single-field inflation!
- Independent of assumptions about galaxy bias;

Cons:

- The value and error bar on fnl cannot be known. "When do we stop looking for fnl?"
- Cannot compare/combine constraints with the CMB;
- The bispectrum becomes less useful.

Barreira (2020), 2009.06622 Barreira (2021), 2107.06887