PNG sensitivity in galaxy correlations of order n > 2

Zachery Brown Advisor: Regina Demina University of Rochester On behalf of the DESI Collaboration

A Cosmic Window to Fundamental Physics: Primordial Non-Gaussianity (PNG) and Beyond Instituto de Física Teórica, Madrid September 2022

PNG simulations and clustering statistics

U.S. Department of Energy Office of Science

Questions:

Are galaxy *n*-pt functions sensitive to primordial non-gaussianity? Which orders?

How do we appropriately model bias when constraining f_{NL} ?

- 3 ensembles of mocks* from Santiago Avila
 - Cubic boxes with L = 1 Gpc/h
 - 512³ particles at z = 32 evolved to z = 1
 - Halos with >10 particles identified
- Mocks with $f_{NL} = 0, 10, 100$
- Measure equidistant npcf (s₁ = s₂ = ... = s_{n-1}) with the ConKer algorithm** (convolves spherical kernels with the matter distribution)

*https://arxiv.org/abs/2007.14962 Wang et al. (2020): Mock details **https://arxiv.org/abs/2108.00015 Brown et al. (2022) preprint: ConKer algorithm

PNG simulations npcf

U.S. Department of Energy Office of Science

- Measure ξ_n (equidistant/diagonal case) monopole in bins of $\Delta s = 8 \text{ Mpc}/h$ from 20—140 Mpc/h
- *f_{NL}* sensitivity observed especially in even *n*pcf
- Choose the n = 2, 4, 6 cases and a window from s = 20—76 Mpc/h to construct our model (grey box)
- Characterize the PNG sensitivity of each model bin with $\delta \xi_n(f_{NL}, s)$

Z. Brown (zbrown5@ur.rochester.edu)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

Derivation of PNG sensitivity

U.S. Department of Energy Office of Science

 $b = b_g \left(1 + \frac{b_{\phi}}{b_g} \alpha^{-1} f_{NL} \right)$ Primary sdependence $\alpha^{-1}(s, z) = \frac{3\Omega_m(z)}{2D(z)} \frac{g(z_{rad})}{g(0)} T^*(s)^{-1} \frac{s^2}{4\pi^2 d_{Tr}^2}$

- Expand in α^{-1} when $s \ll d_H$
- Predicted and observed sensitivity (*A_n*) is quadratic in *s*

$$\xi_n(b_g, f_{NL}) = b^n \xi_n(1,0) = b_g^n \left(1 + n\alpha^{-1} \frac{b_\phi}{b_g} f_{NL}\right) \xi_n(1,0)$$

- ξ_n scales as b_g^n , linear in f_{NL}
- Fit $\delta \xi$ vs f_{NL} to 1st order polynomial with slope $A_n(s)$

$$\delta\xi_n = n\alpha^{-1} \frac{b_\phi}{b_g} f_{NL}$$

20

30

40

50

 $s [h^{-1} \text{Mpc}]$

60

 $\delta \xi_n(s)$

 $\delta\xi_n(s)$

70

DARK ENERGY SPECTROSCOPIC INSTRUMENT

Toy models with DESI LRG covariance

U.S. Department of Energy Office of Science

- Using DESI north luminous red galaxy (LRG) mocks (f_{NL} = 0), evaluate average npcf, ξ_nDESI(s) with covariance, C
- Using δξ from PNG mock model calculate the expected value, μ_i(f_{NL}) for a given f_{NL}

 $\mu_{i}(f_{NL}) = \xi_{n}^{DESI}(s_{i}) \begin{bmatrix} 1 + \delta \xi_{n}^{model}(f_{NL}, s_{i}) \end{bmatrix}$ From DESI
LRG mocks
From PNG
mocks

- Generate "toy" model data $\xi_{n^{toy}}(s)$ distributed about $\mu_i(f_{NL})$ according to covariance, *C*
- Concatenate ξ₂, ξ₄, ξ₆, to form an observable, Õ

 $s [h^{-1} \text{Mpc}]$

Simple 1 parameter model

U.S. Department of Energy Office of Science

To extract an observed value of f_{NL} , minimize χ^2 for each of 5000 toy realization \widetilde{O} ($\widetilde{f}_{NL} = 0$, $\widetilde{f}_{NL} = 50$)

$$\chi^{2}(f_{NL}) = \sum_{ij} (\tilde{O}_{i} - \mu_{i}(f_{NL}))^{T} C_{ij}^{-1} (\tilde{O}_{j} - \mu_{j}(f_{NL}))$$

$$\sum_{ij \in \mathcal{T}_{OY} \text{ observable interpolated model}} DESI LRG covariance$$

55

2 parameter model with strict bias priors

U.S. Department of Energy Office of Science

 We assume b_{\u03c6}/b_g is equal to value assumed in the PNG mocks

Benefit of higher order correlations

U.S. Department of Energy Office of Science

68

20

68

44 20

68

20 44 68 20 44

n = 2

9 = 44

n = 4

 $\begin{array}{c} 7 \\ 7 \\ 1 \\ 1 \\ 2 \end{array}$

 $s_j \; [h^{-1} \mathrm{Mpc}]$

- Repeat procedure for toy models with *f*_{NL} = 0 that include only *n* = 2, *n* = 2, 4, and *n* = 2, 4, 6
- Significant gain in sensitivity when including higher orders

20 44

n = 6

n = 4

 $s_i [h^{-1} \text{Mpc}]$

More

correlated

Less

correlated

Benefit of higher order correlations

U.S. Department of Energy Office of Science

68

20

68

44 20

68

20

20 44 68 20 44

n = 2

9 = 44

n = 4

 $\begin{array}{c} 7 \\ 7 \\ 1 \\ 1 \\ 2 \end{array}$

 $s_j \; [h^{-1} \mathrm{Mpc}]$

- Repeat procedure for toy models with $\tilde{f}_{NL} = 50$ that include only n = 2, n = 2, 4, and n = 2, 4, 6
- Significant gain in sensitivity when including higher orders

20 44

n = 6

n = 4

 $s_i [h^{-1} \text{Mpc}]$

More

correlated

Less

correlated

Z. Brown (zbrown5@ur.rochester.edu) Slide 9

Summary and outlook

- U.S. Department of Energy Office of Science
 - Higher order correlations provide additional sensitivity to f_{NL} !
 - Investigate window (s-range) dependence of bias constraints and use b_g, b_φ relations
 - To apply this method to DESI data...
 - 1. Simulations with known priors on p/b_g
 - 2. Understand the effects of HOD choices at small scales
 - 3. Study systematics due to fiber collisions
 - 4. Optimal galaxy weighting scheme* for constraining f_{NL}

*https://arxiv.org/pdf/1702.05088 Mueller et al. (2018): Optimized PNG weights

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!

Disconnected term removal

U.S. Department of Energy Office of Science

- Measured (full) npcf is the sum of reduced and disconnected terms
- Repeat the procedure using n = 2, 4 for the full and reduced case (PNG mocks only)
- Removing the disconnected terms does little to overall constraints

$$\xi_{4,full}^{diag}(s) = \xi_{4,red}^{diag}(s) + 3\xi_2^{diag}(s)$$

U.S. Department of Energy Office of Science

Choice of covariance matrix

• Some change in f_{NL} sensitivity when using covariance NOT corresponding to $f_{NL} = 0$ (using PNG mocks only)

Fast npcf calculations with ConKer

U.S. Department of Energy Office of Science

- Matter tracers are mapped onto a 3D grid
- Spherical kernels are constructed and populated by Legendre polynomials (wrt LOS)
- Kernels are convolved with the matter map at desired scales using an FFT convolution
- Fast *n*pcf estimates with manageable complexity

arXiv: 2108.00015 Upcoming A&A article!

Includes 2pcf (*l=0,2,4*), 3pcf, diag. *n*pcf 2<*n*<5

