

Non-Gaussian tails from multifield inflation

Sebastian Cespedes IFT, UAM/CSIC

Based on JHEP 05 (2022) 052 (2112.14712) in collaboration with Achucarro, Davis and Palma

Inflation

• A useful way of thinking about inflation

Quasi de Sitter epoch

Broken time translations

$$ds^2 = -dt^2 + e^{Ht}e^{-2\zeta}d\vec{x}^2$$

- Perturbations around the background are very close to Gaussian
- At CMB scales $\Delta_{\zeta}^2 \sim 10^{-9}$

Gaussian approximation

Tails

- Information about tails can be important
 - PBHs,
 - Eternal inflation
 - Galaxy formation
- Tails have been obtained in several contexts
 - EFT of inflation Celoria et al '21
 - Ultraslow roll Ezquiaga et al '19 Figueroa et al '19

Pattison et al '21

Multified inflation Panagopoulos and Silverstein '19
 Achucarro, SC et al '21

Primordial black holes

 Black holes formed during radiation (also matter) domination due to large amplitude fluctuations of the curvature field

$$\beta(M_{\rm PBH}) = \frac{\rho(M_{\rm PBH})}{\rho_{\rm tot}} = \int_{\delta_c}^{\infty} P(\delta) d\delta$$

All DM to be formed by PBHs requires

$$\Delta_{\zeta}^2 \sim 10^{-2} - 10^{-3}$$

• Formation can be explained by several inflationary mechanisms (USR, multifield, tachyonic instabilities)

Multifield inflation

Multifield inflation

• Considering the simple setup.

$$S = \frac{\mathrm{Mpl}^2}{2} \int d^4x \sqrt{-g} R - \frac{1}{2} \int d^4x \sqrt{-g} \left[\gamma_{ab}(\phi) \partial \phi^a \partial \phi^b + V(\phi) \right]$$

Using background solution $T^a=rac{\phi_0^a}{\dot{\phi}_0}$ N_a $\ddot{\phi}_0+3H\dot{\phi}_0+T^aV_a=0$

Slow roll evolution

$$\epsilon \equiv -\frac{1}{M_{\rm pl}^2} \frac{\dot{\phi}_0^2}{2H^2} \ll 1, \dots$$

Gordons et al '00 Groot Nibelink and Van Tent '00

 $\Omega \equiv N^a \nabla_a V / \dot{\phi}_0$

Measure deviations from geodesic

Perturbations of two fields systems

• We can study perturbations by introducing a Goldstone boson

• Changing to the curvature field

Light Entropy mass

- For $\mu^2 \ll H^2$
 - In general interactions imply that curvature perturbations keep growing after leaving the horizon
 - When $\mu^2 = 0$ ultralight field. Curvature perturbations grow until the end of inflation. Suppressed non-Gaussianity.

Achucarro et al '16

- If $\mu^2 < 0$ tachyonic instability enhances exponentially the curvature mode

Reneaux-Patel and Turzinky '15 Linde and Kallosh '16 Brown '17 Ballesteros, SC, Santoni '21

PBH formation

Stochastic inflation

- Fluctuations during inflation can be understood as an stochastic process
- Separate the field $\phi = \phi_{\text{long}} + \phi_{\text{short}}$

Vilenkin and Ford '82 Starobinsky '82

Linde '82

- Long wavelength dynamics can be understood as a Langevin equation
- $\dot{\phi}_{\text{long}} = -\frac{1}{3H}V_{,\phi} + \eta_{\phi}$
- Equivalently to solve a Fokker-Planck equation for lacksquare

$$\frac{d}{dt}P(\phi,t) = \frac{1}{3H}\frac{\partial}{\partial\phi}(V'(\phi)P(\phi,t)) + \frac{H^3}{8\pi^2}\frac{\partial^2}{\partial\phi^2}P(\phi,t)$$

Light scalar fields

• For single field inflation we find,

$$P(\zeta, t) = \frac{1}{\sqrt{2\pi}\sigma_{\zeta}} \exp\left(-\frac{1}{2\sigma_{\zeta}^2}\zeta^2\right) \qquad \qquad \sigma_{\zeta}^2 = \frac{H^3}{8\epsilon\pi^2}(t-t_0)$$

- For an spectator field $\lim_{t \to \infty} P(\psi) \sim \exp\left(-\frac{8\pi^2 V(\psi)}{3H^4}\right)$
- At large time there is an equilibrium distribution
- Solution is non perturbative in the couplings

Starobinsky and Yokoyama '94

For
$$V(\phi) = \frac{\lambda}{4} \phi^4$$
 one finds $\langle \phi^2 \rangle \sim \frac{H^2}{\lambda^{1/2}}$

Stochastic dynamics of two fields

• Let's consider the linear case first

$$S = \frac{1}{2} \int d^4 x a^3 \left[f_{\zeta}^2 \left(\dot{\zeta} - \frac{2\Omega}{f_{\zeta}} \psi \right)^2 - \frac{f_{\zeta}}{a^2} (\nabla \zeta)^2 + \dot{\psi}^2 + \frac{1}{a^2} (\nabla \psi)^2 + \mu^2 \psi^2 + \dots \right]$$

• Splitting the fields $\zeta = \zeta_l + \zeta_s$ $\psi = \psi_l + \psi_s$

$$\psi = \psi_l + \psi_s$$

$$P(\tilde{\zeta}, \psi, t) \sim \exp\left(-\frac{\psi^2}{\sigma_{\psi}^2} - \frac{1}{2\sigma_{\zeta}^2 - 2\kappa^2/\sigma_{\psi}^2} \left(\tilde{\zeta} - \frac{\kappa}{2\sigma_{\psi}^2}\psi\right)^2\right)$$

$$\langle \zeta \zeta \rangle \simeq \langle \psi \psi \rangle \frac{4\Omega^2}{f_{\zeta}^2} (\Delta N)^2$$

Achucarro et al '16

$$\begin{split} \kappa &\equiv \frac{2}{3} t_{\psi} \Delta_{\zeta}^2 f_{\zeta} \Omega (1 - e^{-t/t_{\psi}}) \\ \kappa &\sim H t \Omega / f_{\zeta} \\ & \text{to} \quad H t_{\psi} \Omega / f_{\zeta} \end{split}$$

Result matches perturbative computations

Light scalar fields

 $\sigma_{\psi}^2 \approx \frac{3H^4}{8\pi^2} \left(1 - e^{-\frac{2\mu^2}{3H^2}\Delta N} \right)$

Fields behave as ultralight until

$$\Delta N \geq \frac{H^2}{\mu^2}$$

Adding non linear terms

• Let us consider the cubic action

$$\begin{split} S &= \frac{1}{2} \int d^4 x a^3 \left\{ f_{\zeta}^2 \left(\dot{\zeta} - \frac{2\Omega}{f_{\zeta}} \psi \right)^2 - f_{\zeta}^2 \frac{(\nabla \zeta)^2}{a^2} + \dot{\psi}^2 - \frac{(\nabla \psi)^2}{a^2} - \mu^2 \psi^2 \right. \\ & \left. + \frac{6\Omega^2}{H} \psi^2 \left(\dot{\zeta} - \frac{2\Omega}{f_{\zeta}} \psi \right) + \frac{2f_{\zeta}\Omega}{H} \psi \left(\dot{\zeta} - \frac{2\Omega}{f_{\zeta}} \psi \right)^2 - \frac{\tilde{\lambda}}{3} \psi^3 + \cdots \right\} \\ \\ & \left. \text{Derivative interactions } v_{\zeta}^n \psi^m \right] \end{split}$$

If $\gamma_{ab} = \delta_{ab}$ only two interactions

Interactions with more that two derivatives are turned off after horizon crossing

Adding non linear terms

Langevin equations in phase space

$$\frac{dv_{\zeta}}{dt} + 3Hv_{\zeta} + \frac{6\Omega}{f_{\zeta}}v_{\zeta}\psi + \frac{18\Omega^2}{f_{\zeta}^2}\psi^2 = 3H\eta_{\zeta},$$
$$3H\dot{\psi} + \mu^2\psi + 2\Omega f_{\zeta}v_{\zeta} - \frac{2\Omega^2}{H}\psi v_{\zeta} - \frac{\Omega f_{\zeta}}{H}v_{\zeta}^2 = \eta_{\psi}$$

We have that

$$\frac{6\Omega^2}{f_{\zeta}^2}\frac{\psi^2}{Hv_{\zeta}} \ll 1$$

- At leading order we can consider the first equation to be linear
- Larger effect from $v_\zeta \psi^2$
- Velocity field decays faster than the other variables and can be systematically integrated out from the Fokker Plank equation

$$t_v \sim 1/H \ll t_\psi \sim H/\mu^2$$

Non linear PDF

• Integrating out the velocity field we find the Fokker-Plank equation,

$$\frac{\partial P}{\partial t} = \frac{\partial}{\partial \psi} \left(\frac{\psi P}{t_{\psi}} + \frac{D_{\psi}}{2} \frac{\partial P}{\partial \psi} \right) + \frac{2\Omega}{3} \Delta_{\zeta}^2(t) \frac{\partial^2}{\partial \psi \partial \zeta} \left(\frac{\Omega}{H} \psi P - f_{\zeta} P \right) + \frac{H \Delta_{\zeta}^2(t)}{2} \frac{\partial^2 P}{\partial^2 \zeta} \frac{\partial^2 P}{\partial \zeta} \frac{\partial^2 P}{$$

We can solve it analytically in some limits

$$P(\zeta,\psi) = \exp\left[-\frac{\psi^2}{2\sigma_{\psi}^2} - \frac{1}{2\sigma_{\zeta}^2}\left(\zeta + \frac{2f_{\zeta}\Omega}{3H}\frac{\sigma_{\zeta}^2}{\sigma_{\psi}^2}\psi - \frac{\Omega^2}{3H^2}\frac{\sigma_{\zeta}^2}{\sigma_{\psi}^2}\psi^2\right)^2\right] \quad 1 \ll Ht \ll Ht_{\psi}$$

Non-Gaussian tails

• Let us study the simplified PDF

$$P(\zeta,\psi) = \exp\left[-\frac{\psi^2}{2\sigma_{\psi}^2} - \frac{1}{2\sigma_{\zeta}^2}\left(\zeta - \bar{\kappa}\frac{\psi^2}{2\sigma_{\psi}^2}\right)^2\right]$$

$$\begin{split} f_{\rm NL}\zeta &\sim \frac{\Omega^2}{H^2}\zeta \geq 1\\ \bar{\kappa} &\equiv \frac{2\Omega^2}{3H^2}\sigma_{\zeta}^2\\ \text{Integrating out } \psi\\ \text{Saddle points at } \psi &= 0\\ \bar{\psi} &= \pm \sqrt{\frac{2\sigma_{\psi}^2}{\bar{\kappa}}}\sqrt{\zeta - \frac{\sigma_{\zeta}^2}{\bar{\kappa}}} \end{split}$$

 $P(\zeta) \sim \exp(-\zeta^2/2\sigma_{\zeta}^2)$

Non-Gaussian tails

• Let us study the simplified PDF

$$P(\zeta,\psi) = \exp\left[-\frac{\psi^2}{2\sigma_{\psi}^2} - \frac{1}{2\sigma_{\zeta}^2}\left(\zeta - \bar{\kappa}\frac{\psi^2}{2\sigma_{\psi}^2}\right)^2\right]$$

$$\bar{\kappa} \equiv \frac{2\Omega^2}{3H^2} \sigma_{\zeta}^2$$

For
$$\zeta \gg \sigma_\zeta^2/\bar\kappa \sim 1/f_{\rm NL}$$

The second saddle point becomes real

$$P(\zeta) \sim \exp\left(-\frac{\zeta}{\overline{\kappa}}\right)$$

See also Panagopoulos and Silverstein '19

When is the tail important?

Adding other terms

- Non perturbative effects come from the spectator field.
- In general adding higher order corrections will modify the tail making it heavier
- It will also be modifications to the variance for large $|\zeta|$
- The coupling parameters κ , $\bar{\kappa}$ are quasi constant until the end of inflation

General potential

• We can study a general $V(\psi)$

$$P(\zeta,\psi) \sim \exp\left[-\frac{8\pi^2 V(\psi)}{3H^2} - \frac{1}{2\sigma_{\zeta}^2} \left(\zeta - \frac{\bar{\kappa}'}{2\sigma_{0\psi}^2}\psi^2\right)^2\right]$$

Example: If we add a quartic term

For
$$\zeta \gg \sigma_{\zeta}^2/\bar{\kappa}$$

 $P(\zeta) \sim \exp\left(-\frac{\zeta^2}{\frac{H\bar{\kappa}^2}{3t_{\psi}\lambda\sigma_{\zeta}\sigma_{\psi}^2} + 2\sigma_{\zeta}^2} - \frac{\zeta}{\bar{\kappa} + \frac{6t_{\psi}\lambda\sigma_{\psi}^2\sigma_{\zeta}^2}{H\bar{\kappa}}}\right)$
 $\frac{f_{\rm NL}^{(\lambda)}}{f_{\rm NL}} \sim \frac{\lambda}{\Omega^2}\sigma_{\psi}^2$

Summary

- Non perturbative effects can be obtained using stochastic techniques
- On multi field models we have computed that interactions between fields leads to non perturbative effects
- Many things to understand, generalisation to other models, factorial enhancements, observation consequences

Fokker-Planck equation including all terms

$$\begin{split} \frac{\partial P}{\partial t} &= \frac{\partial}{\partial \psi} \left(\frac{V'(\psi)}{3H} P + \frac{D_{\psi}}{2} \frac{\partial P}{\partial \psi} \right) + H \Delta_{\zeta}^{2}(t) \frac{\partial^{2}}{\partial \psi \partial \zeta} \left(\left(\frac{2\Omega^{2}}{H^{2}} \psi + \frac{2f_{\zeta}\Omega}{3H} \right) P \right) \\ &+ \frac{H \Delta_{\zeta}(t)^{2}}{2} \frac{\partial^{2} P}{\partial \zeta^{2}} + \frac{6\Omega^{2}}{f_{\zeta}^{2}H} \frac{\partial}{\partial \zeta} \left(\psi^{2} P \right) - \frac{\Omega \Delta_{\zeta}^{2}(t)}{f_{\zeta}} \frac{\partial^{2}}{\partial \zeta^{2}} (\psi P) - \frac{1}{4} \Omega f_{\zeta} \Delta_{\zeta}^{4}(t) \frac{\partial^{3} P}{\partial^{2} \zeta \partial \psi} \end{split}$$

Green and Kavanagh '20