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The name of the game

• Reconstruct the initial conditions of the universe (as set by e.g. inflation)


• Primordial non-Gaussianity (pnG) constrains the theory space

• Infer from the ‘late’-time density distribution


• Complicated by non-linear and unknown physics
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Non-linear evolution

• Induces (secondary) non-Gaussianities


1. Swamps any weak primordial signal


2. Couples modes of different wavelength (off-diagonal covariance)

• Accurate modeling to infer primordial physics


• Less constraining power for fNL
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large scales (SPT)


• Breaks down on small scales

kNL(z) = [ 1
6π2 ∫

∞
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BSPT
δ (k1, k2, k3) = F2(k1, k2)Pδ(k1)Pδ(k2)

• Different approaches (e.g. EFTofLSS) can push to smaller scales


• But: biases to marginalize over, increasing σ( fNL)
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Mode coupling

• Non-linear evolution introduces non-Gaussian covariance

e.g. power spectrum:    CP = ⟨ ̂P(ki) ̂P(kj)⟩ ∼ P(ki)2δij + T(ki, kj)

• Affects (S/N) well below 


• Appreciated at low redshifts (e.g. Chan & Blot ’16)

kNL
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Primordial non-Gaussianity

• Primordial bispectra peak for specific triangle configurations

• Bispectrum covariance also has shape dependence


• Largest for squeezed triangle configurations 
(Biagetti et al. ’21)

1. Local pnG more affected?


2. What happens at high redshifts?



Our Approach

1. Analytically model covariance up to  using SPT


2. Fisher forecast  using tree-level pnG


3. Verify with Quijote ( ) and 3LPT ( ) 


4. High redshifts (e.g. Dark Ages)

kNL(z)

σ( fNL)

z = 0, 3 z = 10

CB
T,T′ 

∼ P3δT,T′ 
+ [BB]T,T′ 

+ [PT]T,T′ 

Fij = ∑
T,T′ 

∂BT

∂fNL
(CB

T,T′ )
−1 ∂BT′ 

∂fNL
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Results

Figures:  with nG covariance for local and equilateral primordial bispectra for a fictitious survey of  at different redshifts up to σ( fNL) V = (1 Gpc)3 kNL
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Revisiting the PUMA forecast

• PUMA is a proposed high-z ( ) 21-cm intensity mapping experiment
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2 < z < 6



Revisiting the PUMA forecast

• PUMA is a proposed high-z ( ) 21-cm intensity mapping experiment


• Forecast without off-diagonal covariance (Karagiannis et al. ’19)

2 < z < 6

• Our nG covariance model:
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Conclusion & Outlook

• Non-Gaussian covariance limits our ability to constrain (local) primordial non-
Gaussianity


• High redshift surveys might not perform as well as we had hoped

• Based on summary statistics


• We know how gravity acts on large scales


• ‘De-gravitate’ (reconstruct) density field


