Imperial College London

Non-Gaussianity from preheating of non-minimally coupled inflaton

Pulkit S. Ghoderao

Supervisor: Arttu Rajantie

Theoretical Physics Group Blackett Laboratory, Imperial College London

PNG2022 workshop presentation

Outline

Introduction - the What and the Why

Our NMC preheating model

Tools for Preheating

Separate Universe Approximation Non-perturbative delta N formalism

Results

Variance of spectator field
Simulations
Sub-leading term for non-perturbative delta N

Conclusion and Outlook

PNG from preheating in NMC model
Introduction - the What and the Why

Outline

Introduction - the What and the Why

Our NMC preheating mode

Tools for Preheating Separate Universe Approximation Non-perturbative delta N formalisr

Results

variance of spectator field Simulations Sub-leading term for non-perturbative delta N

Conclusion and Outlook

Non-minimal coupling (NMC) to gravity

What? \implies Term of the form: $\xi \phi^2 R$ in the action. Where,

- ϕ = Inflaton field
- ▶ R = Ricci scalar
- \blacktriangleright ξ = Non-minimal coupling parameter

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi + \frac{1}{2} \xi \phi^2 R \right)$$
 (1)

Why?

- Necessary for renormalisation at one-loop for scalar QFT in curved spacetime (More natural to include than exclude this term) Tagirov, 1973
- Makes $\lambda \phi^4$ chaotic inflation observationally compatible (10⁻⁴ < ξ < 10⁴) Planck 2018 results X

PNG from preheating in NMC model

Introduction - the What and the Why

Preheating

What? ⇒ Reheating through parametric resonance



$$V(\phi, \chi) = \frac{1}{4}\lambda\phi^4 + \frac{1}{2}g^2\phi^2\chi^2$$
 (2)

Why?

- Integral part of the early universe connecting inflationary and BBN epochs
- Numerical evidence suggests can generate significant non-Gaussianity Chambers and Rajantie,2008;Bond et al.,2009

PNG from preheating in NMC model
Our NMC preheating model

Outline

Introduction - the What and the Why

Our NMC preheating model

Tools for Preheating Separate Universe Approximation Non-perturbative delta N formalism

Results

variance of spectator field Simulations Sub-leading term for non-perturbative delta N

Conclusion and Outlook

Action

Our model:

- Massless preheating with only inflaton ϕ non-minimally coupled to gravity
- lacktriangleright Inflaton decays to a massless scalar particle χ during reheating

Action:

$$S = \int d^4x \sqrt{-g} \left(f(\phi)R - \frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi - \frac{1}{2}g^{\mu\nu}\nabla_{\mu}\chi\nabla_{\nu}\chi - V(\phi,\chi) \right)$$

where

$$f(\phi) = \frac{M_P^2}{2} + \frac{1}{2}\xi\phi^2 \text{ and } V(\phi,\chi) = \frac{1}{4}\lambda\phi^4 + \frac{1}{2}g^2\phi^2\chi^2$$
 (3)

Jordan to Einstein frame

Recipe:

- 1. Conformal rescaling of metric to bring back minimal coupling
- 2. Field redefinition to bring back canonical kinetic terms

For our action, metric rescaling required is: $\tilde{g}_{\mu\nu} = (1 + \xi \frac{\phi^2}{M_{\pi}^2})g_{\mu\nu}$ and

field redefinitions occurring are:
$$\frac{M_P d\bar{\phi}}{d\bar{\phi}} = \frac{\xi\bar{\phi}^2 + 1}{\sqrt{\xi(1+6\xi)\bar{\phi}^2 + 1}}; \frac{d\tilde{\chi}}{d\chi} = \sqrt{\frac{M_P^2}{2f(\phi)}},$$
 where $\bar{\phi} = \phi/M_P$.

We choose to work within the case $\xi \ll 1$.

To get Einstein frame action:

$$S = \int d^4x \, \sqrt{-\tilde{g}} \, \left(\frac{M_P^2}{2} \tilde{R} - \frac{1}{2} \tilde{g}^{\mu\nu} \mathcal{G}_{ij} \tilde{\nabla}_{\mu} \phi^i \tilde{\nabla}_{\nu} \phi^j - \tilde{V}(\phi^i) \right)$$
 with potential:

$$\tilde{V} = \frac{\lambda}{4} \left(\frac{\textit{M}_{\textit{P}}}{\sqrt{\xi}} \tanh(\frac{\sqrt{\xi}}{\textit{M}_{\textit{P}}} \tilde{\phi}) \right)^4 + \frac{g^2}{2} \tilde{\chi}^2 \left(\frac{\textit{M}_{\textit{P}}}{\sqrt{\xi}} \tanh(\frac{\sqrt{\xi}}{\textit{M}_{\textit{P}}} \tilde{\phi}) \right)^2 \tag{4}$$

Simple prescription: $\phi \to (M_P/\sqrt{\xi}) \tanh(\sqrt{\xi}\phi/M_P)$

Parameter constraints from Planck 2018 observations

Parameters: $\xi, q = g^2/\lambda, \lambda$

- ▶ Inflaton power spectrum, $\mathcal{P}_{inf} = 2.1 \times 10^{-9} \implies \lambda$ is completely fixed by a particular choice of ξ irrespective of g^2/λ
- ▶ Tensor to scalar ratio, $r < 0.1 \implies \xi > 0.004$ irrespective of g^2/λ

Only g^2/λ remains a truly free parameter

Typical values:
$$g^2/\lambda = 2$$
, $\xi = 0.004$, $\lambda = 5 \times 10^{-13}$

PNG from preheating in NMC model

Tools for Preheating

Outline

Introduction - the What and the Why

Our NMC preheating model

Tools for Preheating

Separate Universe Approximation Non-perturbative delta N formalism

Results

Variance of spectator field Simulations Sub-leading term for non-perturbative delta N

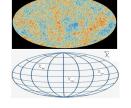
Conclusion and Outlook

Tools for Preheating

Separate Universe Approximation

Separate Universe Approximation

During super-horizon evolution, universe is divided into adiabatic Hubble patches. Assumption is each Hubble patch is individually isotropic.



- Quantum fluctuations of spectator field χ amplified during inflation.
- ► FRW evolution starting from different initial field values in each patch.
- Note presence of cosmic mean $\bar{\chi}$ in $\chi_{\text{ini}} = \bar{\chi} + \delta \chi_{\text{ini}}$. We will have two variances $\langle \delta \chi^2_{\text{ini}} \rangle$ and cosmic variance, $\langle \bar{\chi}^2 \rangle$.

Chaotic spikes in delta N

Curvature using perturbative delta N formalism:

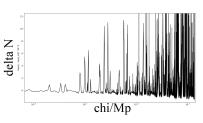
$$\zeta = \delta N(\chi) = N(\chi_0) + N'(\chi_0)(\chi - \chi_0) + \frac{1}{2!}N''(\chi_0)(\chi - \chi_0)^2 + \text{Order}(\chi^3)$$

Using separate universe approximation,

$$\zeta = \delta N = \ln \left(\frac{a(\rho_*, \chi)}{a_{\text{initial}}} \right)$$
 (5)

Bond et al., 2009

Simulations for the massless preheating potential give spikes:



Clearly, perturbative expansion fails!

Non-perturbative delta N formalism

Non-Gaussianity using Non-perturbative delta N

Non-Gaussianity parameter f_{NL} Maldacena,2003:

$$f_{NL} = -\frac{5}{6} \frac{B_{\zeta}(\vec{k}_1, \vec{k}_2, \vec{k}_3)}{P_{\zeta}(\vec{k}_1)P_{\zeta}(\vec{k}_2) + \text{perms}}$$
(6)

Upto leading order in field variance around a Gaussian field distribution Imrith, Mulryne, and Rajantie, 2018:

$$f_{NL} = \frac{5}{6} \frac{\tilde{N}_{\chi} \tilde{N}_{\chi} \tilde{N}_{\chi\chi}}{\left(\frac{P_{\text{inf}}}{P_{\text{ini}}} + \tilde{N}_{\chi} \tilde{N}_{\chi}\right)^{2}}$$
 (7)

where, $\tilde{N}_{\chi} = \Sigma^{-1} \int d\chi \ P_G(\chi) (N(\chi) - \bar{N}) (\delta \chi)$ $\tilde{N}_{\chi\chi} = \Sigma^{-1} \Sigma^{-1} \int d\chi P_G(\chi) (N(\chi) - \bar{N}) (\delta \chi)^2$ What we require:

- $ightharpoonup P_G(\chi)$ i.e. Mean and Variance of χ_{ini}
- $ightharpoonup N(\chi)$ from preheating simulations for Gaussian $\chi_{\rm ini}$ distribution

Thus, we establish our Aim!

Outline

Introduction - the What and the Why

Our NMC preheating mode

Tools for Preheating Separate Universe Approximation Non-perturbative delta N formalism

Results

variance of spectator field Simulations Sub-leading term for non-perturbative delta N

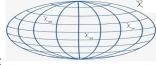
Conclusion and Outlook

Variance of spectator field

Importance of Cosmic Variance

$$\langle \delta \chi^2 \rangle = \int \mathcal{P}(k) \frac{dk}{k} = \int \frac{H(N)^2}{4\pi^2} e^{-F(N)} \left(1 - \frac{H'(N)}{H(N)} \right) dN$$
 (8)

Integration limits: $N = N_{\rm crit} \to N_{\rm obs} \Longrightarrow {\sf Variance}$ of $\chi_{\rm ini}$ while $N = N_{\rm obs} \to \infty \Longrightarrow {\sf Variance}$ of $\bar{\chi} = {\sf Cosmic}$ Variance



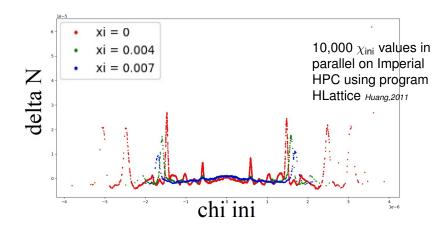
Recall:

Results:

- ▶ A priori, mean $\bar{\chi} = 0$. Cosmic Variance for minimal coupling $\xi = 0$ is infinite Chambers and Rajantie,2008. For even a small non-zero coupling $\xi << 1$, Cosmic Variance becomes finite.
- Cosmic variance << Variance of χ_{ini} for $g^2/\lambda > 1/2$ \Longrightarrow only region around $\bar{\chi}=0$ is important

Non-linear Simulations

Around $\bar{\chi} = 0$



Sub-leading term requirement

Recall: NMC reheating potential symmetric around $\chi = 0$

$$\begin{split} \tilde{V} &= \frac{\lambda}{4} \left(\frac{M_P}{\sqrt{\xi}} \tanh(\frac{\sqrt{\xi}}{M_P} \tilde{\phi}) \right)^4 + \frac{g^2}{2} \tilde{\chi}^2 \left(\frac{M_P}{\sqrt{\xi}} \tanh(\frac{\sqrt{\xi}}{M_P} \tilde{\phi}) \right)^2 \\ \implies \tilde{N}_\chi &= \Sigma^{-1} \int d\chi \; P_G(\chi) (N(\chi) - \bar{N}) \delta \chi = 0 \end{split}$$

(Useful check: also seen from simulation plot)

$$\implies f_{NL} = \frac{5}{6} \frac{\tilde{N}_{X} \tilde{N}_{X} \tilde{N}_{XX}}{\left(\frac{\mathcal{P}_{\text{inf}}}{\mathcal{P}_{0}} + \tilde{N}_{X} \tilde{N}_{X}\right)^{2}} = 0$$

Need to go sub-leading

Boubekeur-Lyth approximation

At sub-leading order:

$$f_{NL} = -\frac{5}{6} \frac{\tilde{N}_{\chi\chi}^3 (\int \Sigma (\vec{q} - \vec{k}_1) \Sigma (\vec{q}) \Sigma (\vec{k}_3 + \vec{q}) d\vec{q})}{\left(\frac{2\pi^2}{\vec{k}^3} \mathcal{P}_{inf} + \tilde{N}_{\chi\chi}^2 \left(\int \Sigma (\vec{q}) \Sigma (\vec{k} - \vec{q}) d\vec{q}\right)\right)^2}$$
(9)

Momentum integrals

Boubekeur and Lyth Boubekeur and Lyth,2006 take power spectrum to be scale-invariant: $\Sigma(k) = 2\pi^2 \mathcal{P}_0/k^3$ along with the approximation a << k

$$f_{NL}^{B-L} = -\frac{5}{6} \frac{\tilde{N}_{\chi\chi}^3 \frac{8\pi^6 \mathcal{P}_0^3}{k^3 k^3} \int 4\pi q^2 dq \left(\frac{1}{q^3}\right)}{\frac{4\pi^4 \mathcal{P}_{\text{inf}}^2}{k^6}} = -\frac{20\pi^3}{3} \frac{\mathcal{P}_0^3}{\mathcal{P}_{\text{inf}}^2} \tilde{N}_{\chi\chi}^3 \ln(kL) \quad (10)$$

From simulations, $\tilde{N}_{\chi\chi} \sim \text{Order}(10^6)$.

Therefore, $f_{NL} \approx 9.1 \times 10^{-13} \tilde{N}_{\chi\chi}^3 \sim \text{Order}(10^5)$ **Detectable Non-Gaussianity**?!

-Sub-leading term for non-perturbative delta N

Scale dependent power spectrum

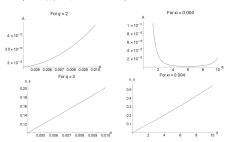
Consistency requirement: Use first order theory to calculate momentum integrals ← Power spectrum is not scale-invariant! Assuming fixed H_0 , $\Sigma(k) = A/k^{3-n_s}$ where,

$$A = \frac{H_0^{2-n_S}}{2} \exp \left(3 \left(N_{crit} + \frac{\sqrt{32\xi+1} - 1}{48\xi} \sqrt{9 - 48\frac{g^2}{\lambda} \sqrt{\frac{\lambda}{12}} \frac{M_P}{H_0}} - \frac{2\frac{g^2}{\lambda}}{\sqrt{9 - 48\frac{g^2}{\lambda}\xi}} \tanh^{-1} \left(\sqrt{\frac{3 - 16\frac{g^2}{\lambda} \sqrt{\frac{\lambda}{12}} \frac{M_P}{H_0}}{3 - 16\frac{g^2}{\lambda}\xi} \right) \right) \right) \right)$$

$$(11)$$

$$n_{\rm S} = 3 - \sqrt{9 - 48 \frac{g^2}{\lambda} \xi \left(\frac{16\xi N_{\rm obs} + \sqrt{32\xi + 1} + 1}{16\xi N_{\rm obs} + \sqrt{32\xi + 1} - 1} \right)}$$

(12)



Making equilateral assumption $k_1 = k_2 = k_3 = k$ with q << k,

$$f_{NL} = -\frac{20\pi^3}{3} \frac{A^3}{\mathcal{P}_{inf}^2} \tilde{N}_{\chi\chi}^3 \frac{k^{3n_s}}{3n_s}$$
 (13)

Typical values: $A \sim 10^{-12} M_P^{2-n_s}$, $k_{Planck} = 0.05 MPc^{-1} \sim 10^{-58} M_P$ and $n_s \sim 0.1$ while $\tilde{N}_{\chi\chi}$ remains of Order(10⁶) from simulations. Giving, $f_{NL} \sim \text{Order}(10^{-16})$ Undetectable!

- Difference from Boubekeur-Lyth approx. $f_{NL} = -\frac{20\pi^3}{3} \frac{\mathcal{P}_{0}^3}{\mathcal{P}_{inf}^2} \tilde{N}_{\chi\chi}^3 \ln(kL)$:
 - ▶ A is two orders of magnitude less than \mathcal{P}_0
 - $\sim n_s$ causes power law integration, no log suppression of $k_{\rm Planck} \sim 10^{-58} M_P$

Outline

Introduction - the What and the Why

Our NMC preheating mode

Tools for Preheating

Separate Universe Approximation Non-perturbative delta N formalism

Results

Variance of spectator field Simulations Sub-leading term for non-perturbative delta N

Conclusion and Outlook

Take aways

- We have found that preheating does not produce significant non-Gaussianity in our non-minimal coupling model
- ▶ Parameter dependence on ξ , g^2/λ remains to be studied
- Using separate universe approximation with the delta N formalism requires us to find out variances. Cosmic variance then becomes important.
- Many inflationary potentials are symmetric and might require sub-leading terms in the non-perturbative delta N formalism
- Tools and methods used can be applied to other reheating scenarios

Thank you for your attention!

Outline

Introduction - the What and the Why

Our NMC preheating model

Tools for Preheating

Separate Universe Approximation Non-perturbative delta N formalism

Results

Variance of spectator field Simulations Sub-leading term for non-perturbative delta N

Conclusion and Outlook

Non-peturbative delta N

Central Object → Correlators of the curvature:

$$\langle \zeta_1 \zeta_2 ... \rangle = \int d\chi_1 d\chi_2 ... P(\chi_1, \chi_2, ...) (N_1 - \bar{N})(N_2 - \bar{N})...$$

subscript indicates space points $x_1, x_2, ...$

Idea: Expand the joint probability distribution $P(\chi_1, \chi_2, ...)$ around Gaussian distribution \leftarrow early universe fields are near Gaussian

- ► First, expand around Gaussian joint pdf *P*_G using Gauss-Hermite expansion
- Second, expand P_G in terms of the variance $\Sigma = \langle \delta \chi^2 \rangle$

Keeping only leading term:

$$\langle \zeta_1 \zeta_2 \rangle = \Sigma_{12} \tilde{N}_{\chi}^2 \text{ and } \langle \zeta_1 \zeta_2 \zeta_3 \rangle = \Sigma_{12} \Sigma_{23} \tilde{N}_{\chi} \tilde{N}_{\chi\chi} \tilde{N}_{\chi} + \text{perms}$$
 (14)

where,

$$\tilde{N}_{\chi} = \Sigma^{-1} \int d\chi \ P_{G}(\chi) (N(\chi) - \bar{N}) \delta \chi \tag{15}$$

$$\tilde{N}_{\chi\chi} = \Sigma^{-1} \Sigma^{-1} \int d\chi P_{G}(\chi) (\delta\chi)^{2} (N - \bar{N})$$
 (16)

Calculation of variance

$$\phi = \bar{\phi}(t) + \delta\phi(x, t)$$
 and $\chi = \bar{\chi}(t) + \delta\chi(x, t)$ (17)

Perturbation satisfies damping harmonic oscillator equation:

$$\ddot{\delta\chi} + 3H\dot{\delta\chi} + g^2\hat{\phi}^2\delta\chi = 0 \text{ where } \hat{\phi} = \frac{M_P}{\sqrt{\xi}} \tanh\left(\frac{\sqrt{\xi}}{M_P}\phi\right)$$
 (18)

(Hartree approximation in Longitudinal Gauge) Timeline: Scale-invariant before exiting horizon $(=H^2/4\pi^2) \rightarrow$ overdamped oscillator envelope $(=e^{-\int (3H/2-\sqrt{9H^2/4}-g^2\hat{\phi}^2)dt})$ Write everything in terms of N:

$$\langle \delta \chi^2 \rangle = \int \mathcal{P}(k) \frac{dk}{k} = \int \frac{H(N)^2}{4\pi^2} e^{-F(N)} \left(1 - \frac{H'(N)}{H(N)} \right) dN$$
 (19)

HLattice

Program written in FORTRAN language. Simulates scalar fields and gravity during inflation and reheating.

- Variable evolved: $\beta_{ij} = \ln(g_{ij})$, where 3 × 3 metric $g_{ij} = a(t)^2(\delta_{ij} + h_{ij})$ is in synchronous gauge
- Scale factor at each step: $a(t) = \frac{1}{I^3} \left(\int \sqrt{g} d^3 x \right)^{1/3}$
- Spatial gradients using a specified discretisation scheme
- Symplectic sixth order integrator with fourth order Runge-Kutta integrator to obtain β_{ij} at each time step