The role of the galaxy bispectrum and trispectrum for PNG detections in LSS

Héctor Gil-Marín, in collaboration with Davide Gualdi & Licia Verde Institut de Ciències del Cosmos at U. Barcelona (ICCUB)

A window to fundamental physics, PNG and beyond. Madrid Sept. 2022

European Research Council

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Motivation

- Measuring f_{nl} , g_{nl} signal would be a direct probe of inflation. Current and on-going LSS data open a new window for this potential detection

- Main technique relies on the scale-dependent bias detection (see Eva's talk on eBOSS data).
- But it has drawbacks, we need to know very well galaxy
- formation and evolution (see Alex talk)
- •An alternative is a measurement of f_{nl} from the actual shape of the matter bispectrum and trispectrum

Joint analysis of anisotropic power spectrum, bispectrum and trispectrum: application to N-body simulations

Davide Gualdi,^{*a,b*} Héctor Gil-Marín^{*a,b*} and Licia Verde^{*a,c*}

^aInstitut de Ciències del Cosmos, University of Barcelona, ICCUB, Barcelona 08028, Spain ^bInstitute of Space Studies of Catalonia (IEEC), E-08034 Barcelona, Spain ^eInstitució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain

E-mail: dgualdi@icc.ub.edu, hectorgil@icc.ub.edu, liciaverde@icc.ub.edu

JCAP Vol 2021, Issue 07, id.008

arXiv: 2104.03976

Summary Statistics

$$P(\mathbf{k}) \oplus B(\mathbf{k}_1, \mathbf{k}_2) \oplus C$$

 $\langle \delta_k \delta'_k \rangle = P(\mathbf{k}) \delta^D(\mathbf{k} + \mathbf{k}')$ $\langle \delta_{k_1} \delta_{k_2} \delta_{k_3} \rangle = B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \delta^D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)$ $\langle \delta_{k_1} \delta_{k_2} \delta_{k_3} \delta_{k_4} \rangle = T(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) \delta^D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4)$

Line-of-sight expansion

$$P^{(\ell)}(k) = \frac{(2\ell+1)}{2\alpha_{\parallel}\alpha_{\perp}^2} \int_{-1}^{+1} d\mu \,\mathcal{L}_{\ell}(\mu) \,P(p,\eta)$$

$$B^{(\ell_i)}(k_1, k_2, k_3) = \frac{(2\ell+1)}{8\pi\alpha_{\parallel}^2 \alpha_{\perp}^4} \int_{-1}^{+1} d\mu_1 \int_0^{2\pi} d\phi \,\mathcal{L}_{\ell}(\mu_i) B(p_1, p_2, p_3, \eta_1, \eta_2) \,,$$
$$B^{(\ell_1)} = B^{(\ell', 0, 0)}; \quad B^{(\ell'_2)} = B^{(0, \ell', 0)}; \quad B^{(\ell'_3)} = B^{(0, 0, \ell')}$$
$$B^{(0, 2)} \equiv B^{(0)} \oplus B^{(2_1)} \oplus B^{(2_2)} \oplus B^{(2_3)}$$

•We aim to use the full P+B+T multipoles to jointly constrain { α_{para} , α_{perp} , f, σ_8 , f_{nl}}

BAO dilation scales

RSD parameter

$$\alpha_{\parallel} \equiv \frac{D_H/r_s}{[D_H/r_s]^{\text{fid}}}$$
$$\alpha_{\perp} \equiv \frac{D_M/r_s}{[D_M/r_s]^{\text{fid}}}$$

 $f(z) = \Omega_m(z)^{\gamma}$

- •We will run both Fisher-like and a Monte Carlo Markov Chain like analyses.
- The aim is to extract f_{nl} from the shape of the summary statistics.
- •We will not employ the scale-dependent bias feature to measure f_{nl}

Primordial features

$$\sigma_8^2 = \int dk P_{\rm lin}(k, z=0) W_{TH}(k)$$
$$f_{\rm nl}$$

• We use Quijote N-body sim 1 [Gpc/h]³ boxes to get the data-vector and its covariance

Theoretical modelling: Gravitational evolution

We take the SPT functional form for the tree-level expressions for both B and T

$$B_{\rm FPT}({f k}_1,{f k}_2,{f k}_3) = 2Z_{\rm FP}^{(1)} + 2 {f p}$$

$$\begin{aligned} T_{\rm FPT}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) &= 4P(k_1 \\ &\times \left\{ Z_{\rm FP'}^{(2)} \\ &+ Z_{\rm FPT}^{(2)} \\ &+ 6 \ Z_{\rm SP}^{(1)} \\ &+ 3 \ {\rm p.}, \end{aligned} \end{aligned}$$

Promote the SPT kernels to an effective kernels (FPT) where we fit for f₁,f₂,f₃,g₁,g₂,g₃ (Scoccimarro 2001, Gil-Marin 2011,2014)

$$F_{\rm FPT}^{(2)} \left[\mathbf{k}_a, \mathbf{k}_b \right] = f_1 \frac{5}{7} + f_2 \frac{1}{2} \frac{\mathbf{k}_a \cdot \mathbf{k}_b}{k_a k_b} \left(\frac{k_a}{k_b} + \frac{k_b}{k_a} \right) + f_3 \frac{2}{7} \frac{(\mathbf{k}_a \cdot \mathbf{k}_b)^2}{k_a^2 k_b^2}$$
$$G_{\rm FPT}^{(2)} \left[\mathbf{k}_a, \mathbf{k}_b \right] = g_1 \frac{3}{7} + g_2 \frac{1}{2} \frac{\mathbf{k}_a \cdot \mathbf{k}_b}{k_a k_b} \left(\frac{k_a}{k_b} + \frac{k_b}{k_a} \right) + g_3 \frac{4}{7} \frac{(\mathbf{k}_a \cdot \mathbf{k}_b)^2}{k_a^2 k_b^2} \,.$$

 $\sum_{T}^{0} [\mathbf{k}_{1}] Z_{FPT}^{(1)} [\mathbf{k}_{2}] Z_{FPT}^{(2)} [\mathbf{k}_{1}, \mathbf{k}_{2}] P(k_{1}) P(k_{2})$ ermutations,

 $P(k_2)Z_{\rm SPT}^{(1)}[\mathbf{k}_1]Z_{\rm SPT}^{(1)}[\mathbf{k}_2]$ $V_{\rm T} [{f k}_1, -{f k}_{13}] Z_{\rm FPT}^{(2)} [{f k}_2, {f k}_{13}] P(k_{13})$ $\{\mathbf{k}_{1}, -\mathbf{k}_{14}\} Z_{\text{FPT}}^{(2)} [\mathbf{k}_{2}, \mathbf{k}_{14}] P(k_{14}) \} + 5 \text{ p.}$) $T_{\rm T}[\mathbf{k}_1] Z_{\rm SPT}^{(1)}[\mathbf{k}_2] Z_{\rm SPT}^{(1)}[\mathbf{k}_3] Z_{\rm FPT}^{(3)}[\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3] P(k_1) P(k_2) P(k_3)$

- Extend the k-range of validity of SPT
- Same f_i , g_i for different redshifts and cosmologies

Theoretical modelling: PNG (fnl)

$$\begin{split} B^{\rm PNG}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) &= Z^{(1)}(k_1) Z^{(1)}(k_2) Z^{(1)}(k_3) \frac{\mathcal{M}(k_1)}{\mathcal{M}(k_2) \mathcal{M}(k_3)} \frac{2f_{\rm nl}}{c^2} \mathcal{P}(k_2) \mathcal{P}(k_3) + \text{ cyc.} \, . \\ T^{\rm PNG}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) &= \underbrace{\frac{f_{\rm nl}}{c^2}}_{\mathcal{M}^{(1)}(k_1) Z^{(1)}(k_2) Z^{(1)}(k_3)} \\ & \times \left\{ \begin{bmatrix} 4\frac{\mathcal{M}(k_1)}{\mathcal{M}(k_2)} \mathcal{P}(k_2) \mathcal{P}(k_3) \frac{\mathcal{P}(|\mathbf{k}_3 + \mathbf{k}_4|)}{\mathcal{M}(|\mathbf{k}_3 + \mathbf{k}_4|)} Z^{(2)}_{\rm FPT} \left[-\mathbf{k}_3, \mathbf{k}_3 + \mathbf{k}_4 \right] + 5 \, \mathrm{p.} \right\} \\ & + \left[2\frac{\mathcal{M}(|\mathbf{k}_3 + \mathbf{k}_4|)}{\mathcal{M}(k_1) \mathcal{M}(k_2)} \mathcal{P}(k_1) \mathcal{P}(k_2) \mathcal{P}(k_3) Z^{(2)}_{\rm FPT} \left[\mathbf{k}_3 + \mathbf{k}_4, -\mathbf{k}_3 \right] + 2 \, \mathrm{p.} \right] \right\} \\ & + 3 \, \mathrm{p.} \, . \end{split}$$

$$\mathcal{M}_k \equiv \frac{3}{5} k^2 \mathbb{T}_k D_+ / (\Omega_m H_0^2)$$

\mathbb{T}_k Power Spectrum transfer function

Theoretical modelling: PNG (fnl)

$$\begin{split} B^{\mathrm{PNG}}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}) &= Z^{(1)}(k_{1})Z^{(1)}(k_{2})Z^{(1)}(k_{3}) \frac{\mathcal{M}(k_{1})}{\mathcal{M}(k_{2})\mathcal{M}(k_{3})} \frac{2f_{\mathrm{nl}}}{c^{2}} \mathcal{P}(k_{2})\mathcal{P}(k_{3}) + \operatorname{cyc..} \\ T^{\mathrm{PNG}}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4}) &= \left(\frac{f_{\mathrm{nl}}}{c^{2}} \mathcal{I}^{(1)}(k_{1})Z^{(1)}(k_{2})Z^{(1)}(k_{3})\right) \\ &\times \left\{ \left[4\frac{\mathcal{M}(k_{1})}{\mathcal{M}(k_{2})}\mathcal{P}(k_{2})\mathcal{P}(k_{3})\frac{\mathcal{P}(|\mathbf{k}_{3}+\mathbf{k}_{4}|)}{\mathcal{M}(|\mathbf{k}_{3}+\mathbf{k}_{4}|)}\mathcal{I}^{(2)}_{\mathrm{FPT}} \right] - \mathbf{k}_{3},\mathbf{k}_{3}+\mathbf{k}_{4} + 5\mathrm{p.} \right] \\ &+ \left[2\frac{\mathcal{M}(|\mathbf{k}_{3}+\mathbf{k}_{4}|)}{\mathcal{M}(k_{1})\mathcal{M}(k_{2})}\mathcal{P}(k_{1})\mathcal{P}(k_{2})\mathcal{P}(k_{3})\mathcal{I}^{(2)}_{\mathrm{FPT}} \left[\mathbf{k}_{3}+\mathbf{k}_{4},-\mathbf{k}_{3} \right] + 2\mathrm{p.} \right] \right\} \\ &+ 3\mathrm{p..} \end{split}$$

In the bispectrum fnl signal is purely primordial, in the trispectrum it couples with Z⁽²⁾ kernel (gravity)

$$\mathcal{M}_k \equiv \frac{3}{5} k^2 \mathbb{T}_k D_+ / (\Omega_m H_0^2)$$

 \mathbb{T}_k Power Spectrum transfer function

Methodology

Estimate the errors: 1) à la Fisher; 2) à la MCMC

Simultaneously vary all of them, as if we were fitting an actual galaxy field

Full PBT covariance matrix (trispectrum-only covariance shown)

Scaled to a volume of 25 [Gpc/h]³

+ Sellentin & Heavens correction

7 Nuisance / galaxy variables

 $\{\alpha_{\parallel}, \alpha_{\perp}, f, \sigma_8, f_{nl}, | b_1, b_2, b_3, A_{noise}, \sigma_P, \sigma_B, \sigma_T\}$

5 physical variables

 $+b_{3nl}, b_{s2}$

2 non-local biases fixed to **local Lagrangian**

Results I. Signal-to-Noise

How much do we gain as we go to larger k-values?

$$\langle \mathrm{S/N} \rangle = \frac{1}{N_{\mathrm{sim}}} \sum_{i=1}^{N_{\mathrm{sim}}} \sqrt{\hat{\mathbf{d}}_i^{\intercal} \operatorname{Cov}_{\mathbf{d}}^{-1} \hat{\mathbf{d}}_i},$$

- Above k>0.1 adding higher order multipoles boosts SN.
- Adding bispectrum quadrupole is very complementary to trispectrum monopole

Fisher

H. Gil-Marin (ICCUB)

Fisher

H. Gil-Marin (ICCUB)

Parameter er For P(0,2)	rror 3(⁰⁾													
		MCMC (Fisher Forecasts) $V = 25 [\text{Gpc/h}]^3$												
			$\Delta \theta$	$1 - (\Delta \theta / \Delta \theta_{P^{(0,2)}B^{(0)}}) [\%]$										
		$P^{(0,2)}B^{(0)}$		P ^(0,2)	$P^{(0,2)}B^{(0)}\mathcal{T}^{(0)}$		$P^{(0,2)}B^{(0,2)}$		$P^{(0,2)}B^{(0,2)}\mathcal{T}^{(0)}$		$P^{(0,2)}B^{(0,2)}\mathcal{T}^{(0,2)}$			
	f	0.140	(0.090)	42.8	(48.8)	46.4	(66.8)	57.7	(70.4)	71.9	(76.5)			
	σ_8	0.078	(0.062)	52.3	(64.1)	40.6	(71.5)	62.3	(77.8)	78.2	(85.1)			
	$f_{ m nl}$	536	(282)	49.1	(44.4)	9.5	(9.5)	55.1	(48.6)	71.7	(68.7)		$f_{\rm nl} = \pm$	= 15
	α_{\parallel}	0.036	(0.022)	13.9	(10.6)	30.6	(37.2)	34.2	(39)	46.8	(47.7)			
	$lpha_{\perp}$	0.032	(0.018)	14.3	(14.5)	29.1	(35.8)	33	(39.2)	46.3	(46.3)			
	aver	age imp	rovement	31.3	(36.5)	32.1	(44.2)	44.6	(55)	61	(64.9)			

Parameter er For P ^(0,2)	ror 3(⁰⁾											
		MCMC (Fisher Forecasts) $V = 25 [\text{Gpc/h}]^3$										
			$\Delta \theta$	$1 - (\Delta \theta / \Delta \theta_{P^{(0,2)}B^{(0)}})$ [%]								
		$P^{(0,2)}B^{(0)}$		$P^{(0,2)}B^{(0)}\mathcal{T}^{(0)}$		$P^{(0,2)}B^{(0,2)}$		$P^{(0,2)}B^{(0,2)}\mathcal{T}^{(0)}$		$P^{(0,2)}B^{(0,2)}\mathcal{T}^{(0,2)}$		
	f	0.140	(0.090)	42.8	(48.8)	46.4	(66.8)	57.7	(70.4)	71.9	(76.5)	$f = \pm 0.04$
	σ_8	0.078	(0.062)	52.3	(64.1)	40.6	(71.5)	62.3	(77.8)	78.2	(85.1)	$\sigma_8 = \pm 0.01$
	$f_{ m nl}$	536	(282)	49.1	(44.4)	9.5	(9.5)	55.1	(48.6)	71.7	(68.7)	$f_{\rm nl} = \pm 15$
	α_{\parallel}	0.036	(0.022)	13.9	(10.6)	30.6	(37.2)	34.2	(39)	46.8	(47.7)	$\alpha_{\parallel} = \pm 0.0$
	$lpha_{\perp}$	0.032	(0.018)	14.3	(14.5)	29.1	(35.8)	33	(39.2)	46.3	(46.3)	$\alpha_{\perp} = \pm 0.0$
	aver	age imp	rovement	31.3	(36.5)	32.1	(44.2)	44.6	(55)	61	(64.9)	

Conclusions

- Covariance corresponds to 25 [Gpc/h]³ of order of what DESI/EUCLID/VR will map
- •Number density of objects is similar to what you expect from LRGs 5x10-4
- $f = \pm 0.040$ •k-range for B & T is realistic to the current modelling techniques 0.04 < k < 0.12
- •We have marginalised over the rest of relevant cosmological variables, and bias

parameters

- The covariance have been inferred from actual Nbody simulations
- This approach is a complementary approach to the scale-dependent bias and does not rely on b_{ϕ} or p calibration issue. Complementarity => Robustness!

- $\sigma_8 = \pm 0.017$
- $f_{n1} = \pm 150$
- $\alpha_{\parallel} = \pm 0.019$
- $\alpha_{\perp} = \pm 0.017$

Results III. Trispectrum detection in BOSS

Detection of iT in BOSS DR12 LRG sample

Integrated trispectrum detection from BOSS DR12 NGC CMASS

Davide Gualdi,^{*a,b*} and Licia Verde^{*a,c*}

^aInstitut de Ciències del Cosmos, University of Barcelona, ICCUB, Barcelona 08028, Spain ^bInstitute of Space Studies of Catalonia (IEEC), E-08034 Barcelona, Spain ^cInstitució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain

E-mail: dgualdi@icc.ub.edu, liciaverde@icc.ub.edu

2022arXiv220106932

Detection of iTrispectrum,

- T^(0,0,0,0) at 10.4σ
- T^(2,0,0,0) at 5.2σ
- T^(0,2,0,0) at 8.3σ
- T^(0,0,2,0) at 1.1σ
- T^(0,0,0,2) at 3.1σ

Full data-vector

H. Gil-Marin (ICCUB)

Full model data-vector

Power Spectrum

Bispectrum

Trispectrum

Full model data-vector: Ratios

Power Spectrum

Bispectrum

Trispectrum

f_{nl}=0 results

FPT model parameters

Covariance Hartlap Correction precision

