Robust Neural-Network enhanced approach for estimating f_{NL}^{loc}

Cosmology From Home 2022

Utkarsh Giri University of Wisconsin-Madison

Based on arxiv:2205.12964 and in collaboration with

Moritz Münchmeyer UW-Madison

Kendrick Smith Perimeter Institute

Quick intro to Local PNG

A local non-linear correction to the primordial potential

$$\Phi_{NG}(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{NL}(\Phi_G(\mathbf{x})^2 - \langle \Phi_G^2 \rangle)$$

In CMB, this induces a clean squeezed bispectrum,

$$f_{NL}^{est} = 0.8 \pm 5.0$$

In LSS, this induces scale-dependent bias in the clustering of tracers

$$P_{hh}(k_L) = \left(b_G + \frac{b_{NG}f_{NL}}{k_L^2}\right)^2 P_{mm}(k_L)$$

(Planck constraints, near information limit)

 $f_{NL}^{est} = -12 \pm 21$ (Eva-Maria Mueller et. al. 2021 BOSS dataset)

A highly motivated target is $\sigma(f_{NL}) \sim 1$

$$\sigma_8^{loc}(\mathbf{x}) = (1+2f_{NL}\Phi_l(\mathbf{x}))ar{\sigma}_8$$

 b_h^G = constant is response of halo abundance to long-wavelength perturbation $\delta_m(k_L)$

for $f_{NL} \neq 0$, halo abundance on large-scale acquires additional dependence on Φ_l mediated by σ_8^{loc} leading to an additional bias term proportional to $\Phi_l = \delta_l/k^2$ $\delta_h(\mathbf{k_L}) = b_h(\mathbf{k_L})\delta_m(\mathbf{k_L}) + N_{hh}$ $b_h(k) = b_h^G + b_h^{NG} \frac{f_{NL}}{\alpha(k,z)}$ $\alpha(k,z) \propto k^2$

Our Idea:

 δ_m

- In principle, one would be able to constrain f_{NL} with a low noise estimate of local σ_8
- CNNs give very strong constraints on parameters like σ_8 and can potentially tap into the higher order information encoded in the density field.

We design a NN with small receptive field to learn π field which locally estimates σ_8

We use Quijote simulations with fixed cosmology and with $\sigma_8 \in \{0.819, 0.849\}$ for training.

Interpretation and Validation

The bias model for π similar to that of δ_h

$$\pi(\mathbf{k}_{\mathbf{L}}) = b_{\pi}(k_L)\delta_m(\mathbf{k}_L) + N_{\pi\pi}$$

With

$$b_{\pi}(k) = b_{\pi}^G + b_{\pi}^{NG} \frac{f_{NL}}{\alpha(k,z)}$$

We evaluate this on "unseen, non-gaussian" sims

o Recover $1/k^2$ scaling, constant noise for $k \to 0$

o Find 100% correlation with matter field

It's more interpretable than a "black box" approach. We can do several field level null-tests; cross-correlate with noise maps. Also with other cosmological fields.

Robust $1/k^2$ scale dependence, can't be faked!

Factor of 3.5 improvement with π field for a halo catalogue with $M_{min} \approx 10^{13} M_{\odot}$

Likelihood analysis: $f_{NL} = 250$ case

Result from analysis of 10 simulations with $f_{NL} = 250$

Unbiased estimate of f_{NL} with a factor of 3.5 improvement on error bar!

Summary

We propose a **robust and interpretable** CNN based approach for constraining f_{NL}

- Robust to small-scale baryonic/galaxy formation uncertainties via the $1/k^2$ large-scale bias dependence.
- Unlike fully "black-box" CNN approaches, our formalism is interpretable.

We get a factor of >3.5 improvement on $\sigma(f_{NL})$ in comparison to a traditional matter + halo-based analysis. Note however that the CNN gets to see the matter distribution which is unobservable.

The application to halo catalogs is work in progress.