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Quick intro to Local PNG
A local non-linear correction to the primordial potential
Oya(x) = Po(x) + fvn(Pa(x)? — (Z))

In CMB, this induces a clean squeezed bispectrum,

]e\fz — 0.8+ 5.0 (Planck constraints, near information limit)
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In LSS, this induces scale-dependent bias N
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NI = —12 221 (Eva-Maria Mueller et. al. 2021 BOSS dataset)

A highly motivated target is o(fng) ~ 1



far=0
Scale dependent bias:
Long-Short decomposition: W /\/ “/\/”V’\’WV\“
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Pra(x) = Di(x) + fvr (%) — (D7) + (1 + 2fnrPi(x)) D (x) + fvr (Ps(x)° — (D))
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o5 (x) = (1 +2fnz ®1(x))Ts

b = constant is response of halo abundance to long-wavelength perturbation d..(kr)

for fnvr # 0, halo abundance on large-scale acquires additional dependence on ¢,
mediated by aloc leading to an additional bias term proportional to &, = §,/k>

On(kr) = bu(kr)om (kL) + Nas bu(k) = by + by ¢ oz{l]ngz) a(k,z) oc k?




Our |ldea:

e In principle, one would be able to constrain fy;with a low noise estimate of local oy

e CNNs give very strong constraints on parameters like os and can potentially tap into
the higher order information encoded in the density field.

We design a NN with small receptive field to learn 7 field which locally estimates o3
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We use Quijote simulations with fixed cosmology and with s € {0.819,0.849} for training.



Interpretation and Validation

Robust 1/k” scale dependence, can’t be faked!

The bias model for 7 similar to that of é;,
7T(kL) — bw(kL)ém(kL) + N'rr'/r 1:
With
NL N e,
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We evaluate this on “unseen, non-gaussian” sims = "} —— o
o Recover 1/k* scaling, constant noise for £k -0 %" N I O

o Find 100% correlation with matter field

It’s more interpretable than a "black box" approach. We can do several field
level null-tests; cross-correlate with noise maps. Also with other cosmological fields.



Likelihood analysis: fnz =0 universe

D(k)' C(k) ™ D(k) ) where

L(8|D) o [}, ———=exp(— 2V

Detc(k)
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b = 0.8380 =+ 0.0050
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D = [0m (K), m(k)]
ke = 0.014 Mpc™!
Mmin ~ 1013M@

Factor of 3.5 improvement with 7 field for a halo catalogue with M, ,.;, ~ 10 M,



Likelihood analysis: fy; = 250 case

Result from analysis of 10 simulations with fyz = 250
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Unbiased estimate of fvz with a factor of 3.5 improvement on error bar!



Summary

We propose a robust and interpretable CNN based approach for constraining fnz

e Robust to small-scale baryonic/galaxy formation uncertainties via the 1/
large-scale bias dependence.
e Unlike fully “black-box” CNN approaches, our formalism is interpretable.

We get a factor of >3.5 improvement on o(fyz) in comparison to a traditional
matter + halo-based analysis. Note however that the CNN gets to see the matter
distribution which is unobservable.

The application to halo catalogs is work in progress.




