Non-perturbative non-Gaussianity and primordial black holes AG+ (in prep)

Andrew Gow

IFT Madrid, 20 September 2022

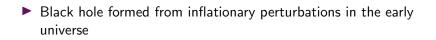
 \blacktriangleright Stochastic inflation can produce significant non-Gaussianity in the tail of $P(\zeta)$

- \blacktriangleright Stochastic inflation can produce significant non-Gaussianity in the tail of $P(\zeta)$
- PBHs form in the tail, so will be affected

Andrew Gow

ICG Portsmouth

20/09/2022


Introduction to Primordial Black Holes

A non-perturbative treatment of general non-Gaussianity

Conclusions

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	2/12

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	3/12

- Black hole formed from inflationary perturbations in the early universe
- Quantum fluctuations during inflation generate overdensities

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	3/12

- Black hole formed from inflationary perturbations in the early universe
- Quantum fluctuations during inflation generate overdensities

• Density contrast
$$\delta = \frac{\delta \rho}{\rho} \rightarrow$$
 "compaction" C

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	3/12

- Black hole formed from inflationary perturbations in the early universe
- Quantum fluctuations during inflation generate overdensities
- Density contrast $\delta = \frac{\delta \rho}{\rho} \rightarrow$ "compaction" C
- If $C > C_c$ at horizon entry \Rightarrow PBH

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	3/12

Different to astrophysical BHs

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	4/12

- Different to astrophysical BHs
- Dark matter candidate

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	4/12

- Different to astrophysical BHs
- Dark matter candidate
- Seeds of supermassive black holes

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	4/12

- Different to astrophysical BHs
- Dark matter candidate
- Seeds of supermassive black holes
- LIGO–Virgo–KAGRA merger events

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	4/12

- Different to astrophysical BHs
- Dark matter candidate
- Seeds of supermassive black holes
- LIGO–Virgo–KAGRA merger events
- Constraining early universe physics

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Introduction to Primordial Black Holes	4/12

Introduction to Primordial Black Holes

A non-perturbative treatment of general non-Gaussianity

Conclusions

Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	5/12
Andrew Gow	ICG Portsmouth	20/09/2022

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	6/12

- \blacktriangleright Non-Gaussianity enhances probability of large ζ
- Common to write $\zeta = \zeta(\zeta_G)$

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	6/12

- ▶ Non-Gaussianity enhances probability of large ζ
- Common to write $\zeta = \zeta(\zeta_G)$
- ▶ Typically treated perturbatively (*f*_{NL}, *g*_{NL}, ...)

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	6/12

- Non-Gaussianity enhances probability of large
- Common to write $\zeta = \zeta(\zeta_G)$
- ▶ Typically treated perturbatively (*f*_{NL}, *g*_{NL}, ...)
- Not sufficient for non-G in the far tail

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	6/12

► Recent transformation [Kitajima+ 2021]

$$\zeta = -\frac{1}{3}\ln\left(1 - 3\zeta_G\right)$$

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	7/12

► Recent transformation [Kitajima+ 2021] $\zeta = -\frac{1}{3}\ln(1 - 3\zeta_G)$

Not fully non-perturbative

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	7/12

► Recent transformation [Kitajima+ 2021] $\zeta = -\frac{1}{3}\ln(1 - 3\zeta_G)$

- Not fully non-perturbative
- Want general $P(\zeta_G) \to P(\zeta)$

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	7/12

Recent transformation [Kitajima+ 2021]

$$\zeta = -\frac{1}{3}\ln\left(1 - 3\zeta_G\right)$$

- Not fully non-perturbative
- Want general $P(\zeta_G) \to P(\zeta)$
- Can do in general with CDF transformation:

$$\zeta = F_{\zeta}^{-1}[F_G(\zeta_G)]$$

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	7/12

▶ PBHs depend on compaction C, rather than ζ

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	8/12

- ▶ PBHs depend on compaction C, rather than ζ
- Additional non-linearity in this relation

$$C = C_l - \frac{3}{8}C_l^2, \quad C_l = -\frac{4}{3}r\zeta'$$

		00/00/0000
Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	8/12

- ▶ PBHs depend on compaction C, rather than ζ
- Additional non-linearity in this relation

$$C = C_l - \frac{3}{8}C_l^2, \quad C_l = -\frac{4}{3}r\zeta'$$

▶ Need to get $P(C_l)$ to determine PBH properties

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	8/12

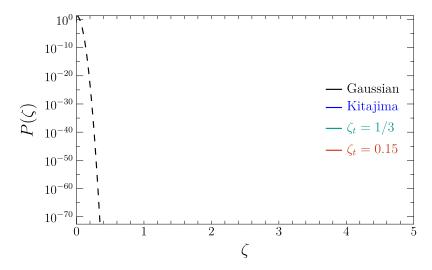
Compaction probability

• Bivariate Gaussian P(X, Y)

$$X = r\zeta'_G, \quad Y = \zeta_G$$

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	9/12

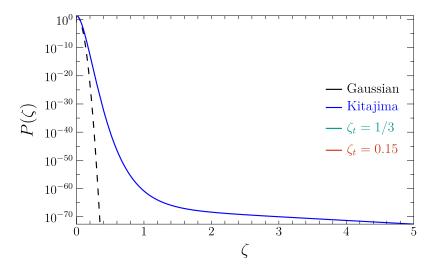
Compaction probability

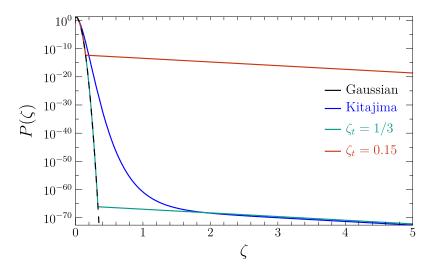

• Bivariate Gaussian
$$P(X, Y)$$

 $X = r\zeta'_G, \quad Y = \zeta_G$

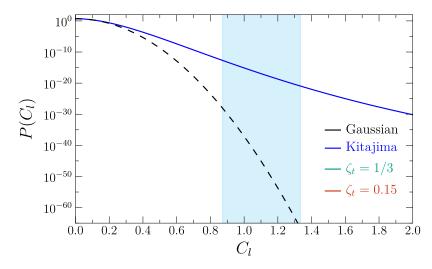
• Compaction probability $P(C_l) = \int \mathsf{d}\zeta_G \frac{3}{4|\mathcal{J}_1(\zeta_G)|} P\left[-\frac{1}{\mathcal{J}_1(\zeta_G)} \left(\frac{3}{4}C_l + 2\Sigma_{XY}\mathcal{J}_2(\zeta_G)\right), \zeta_G\right]$ $\mathcal{J}_l(\zeta_G) = \frac{\mathsf{d}\zeta}{\mathcal{J}_l(\zeta_G)} - \frac{\mathsf{d}\zeta}{\mathcal{J}_l(\zeta_G)} = \frac{\mathsf{d}\zeta}{\mathcal{J}_l(\zeta_G)}$

$$\mathcal{J}_1(\zeta_G) = \frac{\mathrm{d}\varsigma}{\mathrm{d}\zeta_G}, \quad \mathcal{J}_2(\zeta_G) = \frac{\mathrm{d}\varsigma}{\mathrm{d}\Sigma_{YY}}$$


Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	9/12

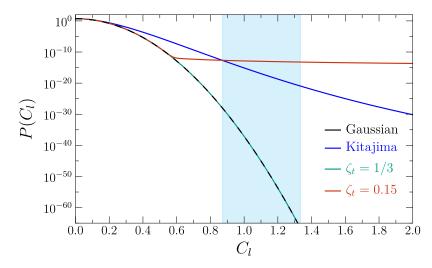

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	10/12

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	10/12

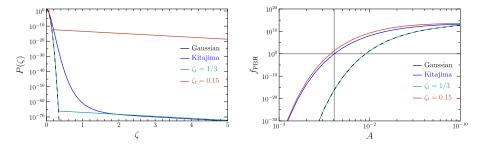


Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	10/12

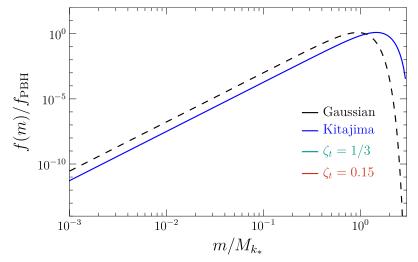
Tail vs transition



Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	10/12


Tail vs transition

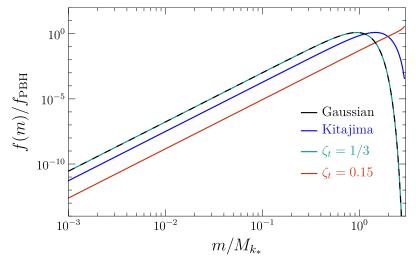
Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	10/12



Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	10/12

PBH mass distribution

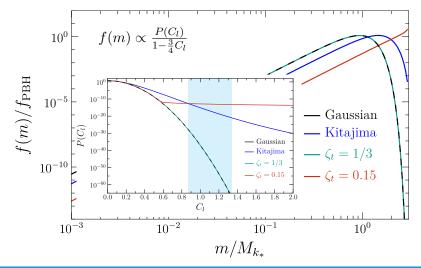
Andrew Non-per



/ Gow	ICG Portsmouth	20/09/2022
rturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	11/12

PBH mass distribution

Non-p



ew Gow	ICG Portsmouth	20/09/2022
perturbative non-Gaussianity & PBHs	Non-perturbative non-Gaussianity	11/12

PBH mass distribution

ICG Portsmouth		20/09/2022
-Gaussianity & PBHs	Non-perturbative non-Gaussianity	11/12

Non-perturbative non-

Andrew Gow

► Non-Gaussianity can greatly enhance PBH formation

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Conclusions	12/12

- ► Non-Gaussianity can greatly enhance PBH formation
- Perturbative treatment may miss deviations from Gaussianity in the far tail

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Conclusions	12/12

- ► Non-Gaussianity can greatly enhance PBH formation
- Perturbative treatment may miss deviations from Gaussianity in the far tail
- Non-perturbative treatment can be used for any $P(\zeta)$

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Conclusions	12/12

- ► Non-Gaussianity can greatly enhance PBH formation
- Perturbative treatment may miss deviations from Gaussianity in the far tail
- Non-perturbative treatment can be used for any $P(\zeta)$
- Transition between Gaussian and non-Gaussian behaviour is more important than the far tail

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Conclusions	12/12

- ► Non-Gaussianity can greatly enhance PBH formation
- Perturbative treatment may miss deviations from Gaussianity in the far tail
- Non-perturbative treatment can be used for any $P(\zeta)$
- Transition between Gaussian and non-Gaussian behaviour is more important than the far tail
- Shallow tail in $P(\zeta)$ highlights divergence in mass distribution

AG+ (in prep)

Andrew Gow	ICG Portsmouth	20/09/2022
Non-perturbative non-Gaussianity & PBHs	Conclusions	12/12