Small-Scale Tests of Inflation

PNG Conference @ IFT, Madrid, Sept 23rd 2022

Laura Iacconi (Queen Mary University of London)

Revisiting small-scale fluctuations in α -attractors

LI et al (2022) 2112.05092

Revisiting small-scale fluctuations in α -attractors

Based on: LI *et al* (2020) 1910.12921 & LI *et al* (2020) 2008.00452 in collaboration with Fasiello, Wands, Assadullahi & Dimastrogiovanni

LI et al (2022) 2112.05092

π

<u>π</u> 2

θ

 ϕ

EFT of spinning particles in inflation on quasi de Sitter space, a <u>non-minimal coupling</u> with the inflaton makes the spin-2 effectively lighter ($m \ll H$) Bordin *et al* (2020) 1806.10587

• action for the tensor sector:

$$\mathscr{L}^{(2)} \supseteq a^3 \frac{1}{2} \rho \dot{\gamma}_c \sigma^{ij}$$

LI et al (2020) 1910.12921

LI et al (2020) 2008.00452

Sourced primordial GWs

{Bartolo et al (2016), 1610.06481}

 $P_{\gamma}(k) \propto \frac{1}{c_2^{2\nu}} \to \frac{1}{c_2^{2\nu}} \left(\frac{k}{k_{\star}}\right)^{-2\nu s_2}$

Example of our analysis

10¹⁶

Example of our analysis

Tensor non-Gaussianities

see Ameek's talk for $\langle \zeta \gamma \gamma \rangle$

- characterised in terms of amplitude and shape
- source of a wealth of information about the Lagrangian
- what is the effect of $c_2(k) = c_{2in} \left(\frac{k}{a_0} H_0 \right)^{s_2}$?

 $\langle \gamma_{\mathbf{k}_1}^{\lambda_1} \gamma_{\mathbf{k}_2}^{\lambda_2} \gamma_{\mathbf{k}_3}^{\lambda_3} \rangle = (2\pi)^3 \,\delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \,\mathscr{A}^{\lambda_1 \lambda_2 \lambda_3} B_{\gamma}(k_1, k_2, k_3)$

constant $c_2 \leq 1$: {Dimastrogiovanni *et al* (2019) 1810.08866}

Equilateral configuration

 $k_1 \sim k_2 \sim k_3 \sim k$

depending on spin-2 mass

the lighter the spin-2, the greater the signal

decreasing C_2 -> sizeable amplitude on small scales

Squeezed configuration

 $k_3 \sim k_I \ll k_1 \sim k_2 \sim k_S$

- We find that:
- shape interpolates between local and equilateral configs

Testing the tensor bispectrum

- not directly detectable by interferometers on small scales {Bartolo *et al* (2019) 1810.2218}
- $P_{\gamma}(k_{S})$

 $P_{\gamma}(\mathbf{k}_{S}) = P_{\gamma}(k_{S}) \left(1 + \mathcal{Q}_{lm}(\mathbf{k}_{S}) \hat{k}_{Sl} \hat{k}_{Sm} \right)$ $\mathcal{Q}_{lm}(\mathbf{k}_{\mathbf{S}}) \propto \int_{NL}(k_L, k_S)$

If there is a non-trivial squeezed bispectrum, the long wavelength mode k_I induces a quadrupolar anisotropy in the short modes

{Dimastrogiovanni *et al* (2020) 1906.07204}

Testing the (squeezed) tensor bispectrum

S₂

Conclusions

- Primordial GWs can be an excellent probe of primordial physics + carry info on extra particle content during inflation
- Non-minimal couplings enhance the effects of massive spinning fields at small scales
- Time-dependent c_2 can deliver detectable signal at small scales
- Squeezed Bispectrum mediated by spin-2 fields testable at small scales (multi-proble analysis including SKA)

LI et al (2020) 1910.12921 LI et al (2020) 2008.00452

Obrigada!

