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Stochastic Inflation - A Quick Reminder |
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Stochastic Inflation - A Quick Reminder I

The dynamics of stochastic slow-roll inflation are given by

90 _ 1 dv(9)  H(@),
ON — 3H2(¢) d¢ ~ 2m
d?&t diffusion

This leads generically to an exponential tail for the probability density of
curvature perturbation ¢ (through ¢ = N — (N)) for finite UV-cutoff ¢y’

Po(N) = an(g)e V.

The values of the poles A, depend on the potential V(¢) and ¢uyv.

'Pattison et al. (1707.00537), Ezquiaga et al. (1912.05399)
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General Potentials, e.g. Starobinsky

V(o)

: — V — A4<1 _ 6—\/2/3¢/MPL>2
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¢end
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Uv

— Very difficult to solve analytically! Only a few cases are known.
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Numerical Approach |
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Numerical Approach I
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End surface
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Schematic - Direct Simulation |
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Schematic - Direct Simulation 11
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Introducing Importance Sampling

The numerical step has a bias B added?

1 dV (o)
3H(¢m) do =Pm

¢m+1=¢m+[— AN+ (¢m)§m¢— +B(gbm)AN]

increasing the probability of large ( events being simulated.

’Mazonka et al. (nucl-th/9809075)
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The unbiased target distribution (T) is recovered using the weight of the
Sampled (S) path X = (qua ¢17 ) §b/\/l)
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Introducing Importance Sampling

The numerical step has a bias B added?

Pmt1 = ¢m+[ 3H(1¢m)d\c/j§§¢) :¢mAN+ (qu)ﬁm\/—%—b’(qu)AN]

increasing the probability of large ( events being simulated.

The unbiased target distribution (T) is recovered using the weight of the
Sampled (S) path X = (qua ¢17 ) ¢M)

_ Pr(X)
~ Ps(X)

Often we use H(bm)
B(¢m) =A 27Tm

’Mazonka et al. (nucl-th/9809075)
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Schematic - Importance Sampling
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Schematic - Importance Sampling
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Benchmark Tests - Quadratic Inflation

I ¢
¢cnd ¢in Quv

By varying m we can investigate the importance sampling method in both
drift and diffusion dominated regimes.
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The Exponential Talil

Quadratic Inflation m = Mp,
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Reconstructing the Full PDF

Quadratic Inflation m = 0.001Mp,
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Non-perturbative Deviations From Gaussianity

Quadratic Inflation m = 0.1 Mp;
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PyFPT

Available at https://github.com/JacksOnJ/PyFPT

Conclusions

@ Numerically expensive to simulate the very large and rare ¢
perturbations needed for primordial black holes.

@ PYFPT makes these simulations possible with just a laptop!

@ We then investigated non-perturbative deviations from Gaussianity.

arXiv: 2206.11234

Future work
@ Expand the code to the full non-slow-roll phase space.
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https://github.com/Jacks0nJ/PyFPT

Appendix: Weight Calculation

A bias B is added to the numerical step

1 dv(9) i)
it = |~ 0 ey BN 2 VBN B(OAN].

This has a weight

el g o o S

The weight of the whole sampled path X = (¢g, ¢1, ..., ¢p) is then

M
w(X) = H Wm
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Appendix: Weight Visualized
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Appendix: m = 0.1M,,; Weight Contours
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Appendix: m = 0.001M,,; Weight Scatter
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Appendix: m = M, and ¢yy Weight Scatter
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Appendix: m = 0.001M,; Lognormal Estimator
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Appendix: Bias Optimization
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Appendix: More Future Work

@ Look at ultra-slow-roll inflation.

@ Vary ¢i, such that the perturbations on a particular scale can be
accurately simulated (stochastic inflation breaks the one-to-one
relation between k and ¢).

@ This would allow the compaction C to be found using the
coarse-shelled method3.

— An accurate estimation for primordial black hole abundance!

3Tada and Vennin (2111.15280)
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