GW anisotropies as a probe of primordial non-Gaussianity

In collaboration with Ema Dimastrogiovanni, Matteo Fasiello, P. Daniel Meerburg, Giorgio Orlando and Maresuke Shiraishi

Ameek Malhotra PNG 2022, Madrid

Outline

Tensor modes from Inflation

What kind of tensor nG signatures are observable at interferometers?

Detection prospects and forecasts

Inflationary perturbations

Amplitude + spectral tilt

 $\langle h_k h_k^* \rangle$

Polarisation Amplitude + spectral tilt

Tensor nG probes

Can interferometers probe tensor non-Gaussianity?

GWB needs to be observable...

unlikely in SFSR Inflation

Can interferometers probe tensor non-Gaussianity?

GWB needs to be observable...

 $h_{ij}'' + 2\mathcal{H}h_{ij}' + k^2 h_{ij} = \frac{16\pi a^2 \Pi_{ij}^{\rm TT}}{16\pi a^2 \Pi_{ij}^{\rm TT}}$ Sourced by additional fields

Additional fields can source GW and also contribute to tensor nG

Could we then just measure $\langle h^3 \rangle$ and extract information about these fields?

Additional fields can source GW and also contribute to tensor nG

Could we then just measure $\langle h^3 \rangle$ and extract information about these fields?

Unfortunately, things are not so simple...

Can interferometers probe tensor non-Gaussianity?

GW propagate in an inhomogeneous universe

Consequently observed $\langle h^{2n+1} \rangle$ vanishes [Bartolo et al. 18, Margalit et al. 20]

- \rightarrow GW incident from different directions get phase shifted by different amounts

Indirect constraints of tensor nG with interferometers

Testing ultra-squeezed limit nG - our work [2012.03498 and 2109.03077]

 $k_{\rm GW}$

 $k_{\rm GW}$

 $k_L \ll k_{\rm GW}$

CMB scales

Anisotropies from squeezed non-Gaussianity

Similar to 'fossil' effects in LSS [Jeong, Kamionkowski (2012); Dai et al. (2013)]

e.g from $\langle \zeta hh \rangle$ [Adshead, Afshordi, Dimastrogiovanni, Fasiello, Lim, Tasinato (2020)]

$$\mathcal{P}_h^{\text{mod}}(\vec{k}, \vec{x}) = \bar{\mathcal{P}}_h(k) \left[1 + \int_{q \ll k} \frac{d^3 q}{(2\pi)^3} e^{i\vec{q}\cdot\vec{x}} f_{\text{NL}}(\vec{k}, \vec{q}) \zeta(\vec{q}) \right]$$

 $f_{\rm NL} =$

$$\frac{B_{\zeta hh}(q,k)}{P_{\zeta}(q)P_h(k)}$$

Directional intensity flux of GW

$$\Omega_{\rm GW}(k,\hat{n}) = \bar{\Omega}_{\rm G}$$

$$\delta_{\rm GW}(k,\hat{n}) = \int_{q \ll k} \frac{d^3 q}{(2\pi)^3} e^{-\frac{1}{2}} dk = \int_{q \ll k} \frac{d^3 q}{(2\pi)^3} dk$$

Expand in spherical harmonics and get angular power spectra

$$C_{\ell}^{\mathrm{GW}} \sim \frac{f_{\ell}}{\ell(\ell)}$$

$_{\rm GW}(1 + \delta_{\rm GW}(k, \hat{n}))$

 $e^{i\vec{q}\cdot\hat{n}(\eta_0-\eta_i)}f_{\rm NL}(\vec{k},\vec{q})\zeta(\vec{q})$

Derivation via 'In-in' - see Lucas' talk Anisotropies of V modes - see Giorgio's talk

 $\frac{f_{\rm NL}^2 A_{\rm s}}{(\ell+1)}$

Anisotropies from propagation

scale perturbations [Bartolo et al. 2019, Dall'Armi et al. 2020]

$$C_{\ell}^{\mathrm{GW, prop}} \propto \int d\ln k \, \mathcal{P}_{\mathcal{R}}(k) T_{\ell}^{\mathrm{GW}}(k)^{2}$$

For $f_{\rm NL} \gg 1$, the anisotropies from non-Gaussianity dominate

SGWB also has CMB like anisotropies arising from propagation through large

Example: additional Spin-2 field

Can linearly source GW and contribute to NG [Bordin et al. 2018, lacconi et al. 2020a, 2020b]

consequence of spin-2 $\rightarrow \langle \zeta_{k_L} h_k h_k \rangle \propto \mathcal{P}_2(\hat{k}_L \cdot k)$

see Laura's talk for more on the spin-2 model and $\langle \gamma^3 \rangle$

Angular Power Spectrum - Spin 2 Model

On large angular scales cross-correlation scales differently with ℓ - GW quadrupole X CMB monopole

Detection prospects - Noise Angular Power Spectrum

$$N_{\ell}^{-1} \sim T_{\rm obs} \sum_{IJ} \int df \, \underline{\sum}_{m}$$

GW detectors have limited angular resolution $\ell_{\rm max} \sim 15$

Forecasts for $f_{\rm NL}$

Error saturates quickly but $f_{\rm NL} \gg 1$ could still be probed with relative error* ~ $\mathcal{O}(0.1)$

Additional possibility

Can we see effects of scale dependent NG?

Frequency dependence of induced anisotropies

Summary

Models with detectable SGWB can also have significant non-Gaussianity \rightarrow hints to nature of inflationary interactions

Propagation effects in the inhomogeneous universe render $\langle h^3 \rangle$ unobservable at interferometers

However, indirect observations of squeezed limit $\langle \zeta hh \rangle$ and $\langle h^3 \rangle$ are still possible through the anisotropies of the SGWB

Summary

Models with detectable SGWB can also have significant non-Gaussianity \rightarrow hints to nature of inflationary interactions

Propagation effects in the inhomogeneous universe render $\langle h^3\rangle$ unobservable at interferometers

However, indirect observations of squeezed limit $\langle \zeta hh \rangle$ and $\langle h^3 \rangle$ are still possible through the anisotropies of the SGWB

Thank you!