

PNG from eBOSS DR16

Eva-Maria Mueller ICG Portsmouth eva-maria.mueller@port.ac.uk

Mueller et al. 2021 arXiv:2106.13725 Rezaie et al. 2021 arXiv:2106.13724 In collaboration with Mehdi Rezaie, Ashley Ross, Hee-Jong Seo, Will Percival

Overview

- eBOSS DR16 QSO data set
- Scale dependent halo bias
- Results
- Methods
- Challenges
- More challenges
- Comments

20 years of SDSS redshift surveys

Anand Raichoor (EPFL), Ashley Ross (Ohio State University) and the SDSS Collaboration.

Sloan Digital Sky Survey Telescope

Apache Point Observatory, New Mexico, USA

(e)BOSS

(extended) Baryon Oscillation Spectroscopic Survey Dawson et al. 2016

eBOSS Footprint

(Figure from C. Zhao et al. 2020)

Window to the early universe

More than BAO and RSD....

Primordial Non-Gaussianity (PNG) can distinguish between physically distinct models of inflation.

Primordial non-Gaussianity

Dalal et al, 2008

Primordial non-Gaussianity:

predicted in multi-field inflationary models (+ ones with interactions)

Planck constrains PNG supremely well ($f_{NL} = -0.9 \pm 5.1$)

Future improvement will come from galaxy LSS

$$\Phi = \phi + f_{\rm NL} \phi^2$$

Scale dependent bias

Primordial non-Gaussianity leads to mode coupling

e.g. Dalal et. al 2008, Slosar et. al 2008

- Very sensitive at large scales
- Constrain Inflation by measuring the galaxy power spectrum at large scales

 $b_{\text{total}} = b + \Delta b$ $\Delta b(k) \propto \frac{f_{NL}}{h^2}$ fNL: Parameter to quantity amplitude of primordial non-Gaussianity SDSS

Why eBOSS QSO?

- Large redshift range 0.8<z<2.2
- Largest volume survey with spectroscopic redshifts
- Best S/N at the larges scales

eBOSS

Tightest constraints from LSS so far

Results I

$f_{\rm NL} = -$	-12 ± 21
$(f_{\rm NL} =$	$-1^{+32}_{-26})$

3.0

Physical theory statistical uncertainty Optimise galaxy clustering analysis Redshift weighting weights • The underlying physical theory is evolving with redshift • Redshift weights optimally balance the statistical uncertainty (n(z)) and redshift evolution of the theory you want to constrain 1.5 0.51.0 2.0 2.50.0 redshift Reduce uncertainty on measured cosmological parameters

'Sweet spot' of theory vs. statistics

 $w_{\rm tot} = w_{\rm FKP} \times w_z$

It works!

Forecasts

Measurement improvements

- ~30% improvement on fNL constraints
- Improvement depends on redshift range and bias model
- Computationally more feasible for large data sets
- Weights are model dependent, i.e. optimal for a certain theory to be measured

Forecasts:

Redshift distribution

Optimal Weights

The optimal weights shift the effective redshift from

z=1.51 to z=1.82 (p=1.6) and z=1.74 (p=1.0)

Challenge I: Systematics

Challenge I: Systematics

BOSS DR12 LRGs see Kalus et al. 2018

BOSS DR9 LRGs see Ross et al. 2012

Imaging systematics
Systematic Treatment

-> better, new catalog for eBOSS DR16 QSO

Rezaie et al. 2021 arXiv:2106.13724

Systematic treatments

- Need to correct for stellar density
 - Neural Network can account for non-linear systematic effects

Rezaie et al. 2021 arXiv:2106.13724

See also Ashley Ross' talk tomorrow for more details on systematic treatment

Results for linear treatment

Does the systematic treatment bias the result?

eBOSS

Mitigation bias. The template-based imaging treatment removes some of the true clustering signal (*Rezaie et al '21*). A more flexible model will remove more of the true clustering. *Conservative Approach:* Reduce the flexibility of the model at the expense of leaving behind some systematics (see, *Rezaie et al '20*).

Challenge III: Model

No survey is perfect....

Need mocks!

Challenge III: Model

$$\Delta b(k) = 2(b-p)f_{\rm NL}\frac{\delta_{\rm crit}}{\alpha(k)}$$

$$f_{\rm NL} = -7 \pm 14$$

Merger rate p=1 : no recent mergers p=1.6 for objects that populate only recently merged halos

See also Alex Barreira's talk yesterday

U.S. Department of Energy Office of Science

Factor ~ 5 gain in precision

Future Present: Dark Energy Spectroscopic Instrument (DESI)

New era of large scale structure has begun

Mayall 4-meter telescope at Kitt Peak National Observatory

U.S. Department of Energy Office of Science

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Largest 3D map of the Universe !

DESI will produce is producing the most detailed 3D map of the universe, ever.

- 5-year survey (2021-2026)
- 5 target classes, ~40M redshifts
- 14,000 deg² footprint (1/3 sky)

0.0 < z < 0.4

DESI Collaboration et al. 2016

Beyond DESI

And beyond that?

- Can we push $\sigma(f_{\rm NL}) < 1$ with LSS?
- What kind of a survey do we need?

Answers:

"I am retired by then..."

"I might not be in academia by then..."

"I do theory..."

1. Options: Join US effort

Schlegel, Ferraro et al 2022 arXiv:2209.03585

Figure 2: "Figure of Merit" FoM $\equiv 10^{-6} N_{\text{modes}}$, representing the effective number of "linear" modes observable as a function of z_{max} for DESI, PUMA (-5K and -32K), and MegaMapper and SpecTel, two examples of Stage-5 spectroscopic surveys. For DESI we include only the

- 1. Option: Join US effort
- 2. Option: Stage 5 European Mission after Euclid?

- 1. Option: Join US effort
- 2. Option: Stage 5 European Mission after Euclid
- 3. Option: Nothing

 LSS can be used to constrain primordial non-Gaussianity through the scale dependent halo bias e.g. Dalal et. al 2008, Slosar et. al 2008

• This measurement needs a large volume survey

-> large redshift range

-> large sky coverage

- Understanding the observational systematics is crucial
- Might need new catalogs for your analysis!

- Don't put too much trust into Fisher forecasts
- Many challenges ahead

- LSS can be used to constrain primordial non-Gaussianity through the scale dependent halo bias
- Understanding the observational systematics is crucial
- Don't put too much trust into Fisher forecasts
- Many challenges ahead

Thank you!

U.S. Department of Energy Office of Science

Thank you!

