Bispectrum and finite volume effects: window-convolution

with F. Rizzo, M. Biagetti, E. Castorina, E. Sefusatti, P. Monaco

- PNG workshop, Madrid 2022 -

解中

Galaxy clustering

Galaxy distribution as an independent probe for the cosmological parameters

Characterized by its summary statistics

Power Spectrum (P)

$$
\left\langle\delta\left(\mathbf{k}_{1}\right) \delta\left(\mathbf{k}_{2}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) P\left(\mathbf{k}_{1}\right)
$$

Bispectrum captures non-Gaussianity

Power Spectrum (P) + Bispectrum (B) $+\ldots$

... the filamentary structure

$$
Q\left(k_{1}, k_{2}, k_{3}\right) \equiv \frac{B\left(k_{1}, k_{2}, k_{3}\right)}{P\left(k_{1}\right) P\left(k_{2}\right)+P\left(k_{2}\right) P\left(k_{3}\right)+P\left(k_{3}\right) P\left(k_{1}\right)}
$$

Including bispectrum monopole (BOSS DR12)

Constraint on cosmological params:

Philcox\&Ivanov21 (also: D'Amico+19)
also one-loop bispectrum: Philcox+22, D’Amico+22b

Constraint on primordial non-Gaussianity:

Cabass+22b, D'Amico+22a
non-local PNG: Cabass+22a, bispectrum is necessary

The bispectrum multipoles: test on simulations

1. 298 Minerva (N-body) Grieb+16

2. 10000 Pinocchio (3LPT) Monaco+02

credit: A.Veropalumbo

Rizzo, Moretti, Pardede+ (arXiv: 2204.13628)
$@_{Z=1}$
Λ CDM cosmology
$L_{b o x}=1500 \mathrm{Mpc} / \mathrm{h}$
$V_{\text {eff }} \simeq 1000(\mathrm{Gpc} / \mathrm{h})^{3}$
$\simeq 2 \mathrm{x}$ volume in PT-challenge Nishimichi +20

... the numerical covariance

1. 298 Minerva (N-body) Grieb+16
2. 10000 Pinocchio (3LPT) Monaco+02

- approx. based on Lagrangian pert. theory
- relatively fast and accurate

provide a robust estimate of the covariance

credit: A.Veropalumbo

Inclusion of the bispectrum multipoles

Inclusion of the bispectrum multipoles

Measurement vs. theory: large-scale systematics

Scoccimarro estimator* Scoccimarro +15
FFT-based, optimal on small-scale

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B}} \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}_{L}\left(\mathbf{q}_{1}\right) \tilde{\delta}\left(\mathbf{q}_{2}\right) \tilde{\delta}\left(\mathbf{q}_{3}\right)
$$

binning operator
choose one side as the $\operatorname{LOS} \quad \tilde{\delta}_{L}(\mathbf{q}) \equiv \int d^{3} x \tilde{\delta}(\mathbf{x}) \mathcal{L}_{L}(\mathbf{q} \cdot \mathbf{x}) e^{-i \mathbf{q} \cdot \mathbf{x}}$
window function $\tilde{\delta}(\mathbf{x})=W(\mathbf{x}) \delta(\mathbf{x})$

$$
\int_{k_{1}} d^{3} q_{1} \equiv \int_{\left|k_{1}-\Delta k / 2\right| \leq k_{1} \leq k_{1}+\Delta k / 2 \mid} d^{3} q_{1} \quad V_{B} \equiv \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\mathbf{q}_{123}\right)
$$

Measurement vs. theory: large-scale systematics

Scoccimarro estimator* Scoccimarro +15
*window-free estimator Tegmark+97, has been revived recently: Philcox20, Philcox21
*see Oliver's talk yesterday also Mike's talk tomorrow on hybrid basis approach
window function $\tilde{\delta}(\mathbf{x})=W(\mathbf{x}) \delta(\mathbf{x})$

Survey window effects in bispectrum

Estimator is biased by window function

We need to Fourier transform $\delta(\mathbf{x})$

Baumgart, Fry 1991

$$
\Longrightarrow \tilde{\delta}(\mathbf{k})=\int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} W\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \delta\left(\mathbf{k}^{\prime}\right)
$$

In bispectrum ...

Equilateral configurations

window convolution will mix modes

10000 Pinocchio sphere catalogue

Note: this is a huge volume $\approx 3500[\mathrm{Gpc} / h]^{3}$
... main effect is on large scale

To include window effect in bispectrum

Schematically (monopole with no binning operator)

$$
\tilde{B}\left(\vec{k}_{1}, \vec{k}_{2}\right)=\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3}} B_{W}\left(\vec{k}_{1}-\vec{p}_{1}, \vec{k}_{2}-\vec{p}_{2}\right) B\left(\vec{p}_{1}, \vec{p}_{2}\right)
$$

- 6D integral
- Time ~hours/evaluation
- Not feasible for likelihood analysis

An approximation

$$
\tilde{B}\left[P_{L}\right] \simeq B\left[\tilde{P}_{L}\right]
$$

1DFFTLog-approx

$$
\tilde{B}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \simeq Z\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \tilde{P}_{L}\left(k_{1}\right) \tilde{P}_{L}\left(k_{2}\right)+\text { cyc }
$$

- Reduced to power spectrum-window convolution see e.g. Wilson+15, Castorina+17, d'Amico+19
- BOSS DR 11/12 Gil-Marin+14a, b and +16a, b (1D) FFTLog
- Recently used in d'Amico +19,+22
- Doesn't work for squeezed triangles

Exact bispectrum window convolution

Taking $\left\langle\hat{B}_{L}\right\rangle=\tilde{B}_{L}$

$$
\begin{aligned}
\tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right) & =\frac{2 L+1}{V_{B}} \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\vec{q}_{123}\right) \\
& \times \int d^{3} x_{3} \int d^{3} x_{13} \int d^{3} x_{23} e^{-i \vec{q}_{1} \cdot \vec{x}_{13}} e^{-i \vec{q}_{2} \cdot \vec{x}_{23}} \zeta\left(\vec{x}_{13}, \vec{x}_{23}, \hat{x}_{3}\right) \\
& \times W\left(\vec{x}_{1}\right) W\left(\vec{x}_{2}\right) W\left(\vec{x}_{3}\right) \mathcal{L}_{L}\left(\hat{q}_{1} \cdot \hat{x}_{3}\right)
\end{aligned}
$$

Strategy: separate out the angular part

As a matrix multiplication

We showed that bispectrum-window convolution can be casted into a 1D integral

2DFFTLog

$$
\tilde{B}_{e}\left[T_{i}\right]=\sum_{j, e^{\prime}} \mathcal{M}_{l e l}\left[T_{i,}, T_{j}^{\prime} \mid B_{e}\left[T_{j}^{\prime}\right]\right.
$$

Mixing matrix
Computable via (2D) FFTLog

Bispectrum
Function of three sides $\left(k_{1}, k_{2}, k_{3}\right)$ e.g. 2D-FFTLog (Fang+20)
of the window 3PCF multipoles

Spherical window convolution in real-space

Sphere catalogue:

Minerva/Pinocchio carved on a sphere of $R \sim 434 \mathrm{Mpc} / \mathrm{h}$

Total vol $\left.=700^{3}(\mathrm{Mpc} / h)\right]^{3}$

Full-set triangles

Fit on Pinocchio mocks
volume $\approx 3500[\mathrm{Gpc} / h]^{3}$

Recovering bias parameters

Analysis on Minerva data

$\approx 1 / 4$ times volume in Nishimichi+20
≈ 10 times $Z \in[1.5,1.8]$
Euclid volume

Window convolution computation time

Takes ~2 seconds
\Rightarrow comparable to a typical Boltzmann solver call

Finally: wide-angle effect in bispectrum

$$
\begin{aligned}
& \hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B}} \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}_{L}\left(\mathbf{q}_{1}\right) \tilde{\delta}\left(\mathbf{q}_{2}\right) \tilde{\delta}\left(\mathbf{q}_{3}\right) \\
& \text { choice of Los } \quad \tilde{\delta}_{L}(\mathbf{q}) \equiv \int d^{3} x \tilde{\delta}(\mathbf{x}) \mathcal{L}_{L}(\mathbf{q} \cdot \mathbf{x}) e^{-i \mathbf{q} \cdot \mathbf{x}}
\end{aligned}
$$

- correction beyond plane-parallel approximation (scale as k^{-2} for monopole)
- coupled to the window function
- interesting (and simpler) target would be the squeezed configurations

Summary

1. Including bispectrum multipoles analysis is important but come with extra modelling complexity, ex: survey window effects
2. We gave an efficient formulation for bispectrum window convolution
3. We tested the formulation in ideal case of spherical window convolution in real space
4. Useful in future surveys when you want to extract signal, free from large scale systematic effects

Thank you!
-Extras-

The bispectrum multipoles

$$
B_{L}\left(k_{1}, k_{2}, k_{3}\right)
$$

$$
=\frac{2 L+1}{4 \pi} \int d \cos \theta \int d \phi B\left(k_{1}, k_{2}, k_{3}, \theta, \phi\right) \mathcal{L}_{L}(\cos \theta) .
$$

PT (perturbation theory) model
angles w.r.t line of sight

- galaxies are not in their rest frame
- $m \neq 0$ contains negligible information Gagrani+16
- tree-level: only even multipoles exist $\boldsymbol{B}_{0}, B_{2}, B_{4}, \ldots$

Tree-level bispectrum

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=B^{(\mathrm{det})}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)+B^{(\text {stoch })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)
$$

$$
\begin{gathered}
B^{(\mathrm{det})}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=2 Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right) Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right) Z_{1}\left(\mathbf{k}_{2}, \hat{\mathbf{x}}\right) P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right) \\
+ \text { cyc. }
\end{gathered}
$$

$$
\begin{gathered}
B^{(\text {stoch })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=\frac{1}{\bar{n}}\left[\left(1+\alpha_{1}\right) b_{1}+\left(1+\alpha_{3}\right) f\left(\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}\right)^{2}\right] Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right) P_{L}\left(k_{1}\right) \\
+ \text { cyc. }+\frac{1+\alpha_{2}}{\bar{n}^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& Z_{1}(\mathbf{k}, \hat{\mathbf{x}})=b_{1}+f\left(\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}\right)^{2} \\
& Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=\frac{b_{2}}{2}+b_{1} F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+b_{g_{2}} S\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \\
& \quad f\left(\hat{\mathbf{k}}_{12} \cdot \hat{\mathbf{x}}\right)^{2} G\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+\frac{f\left(\mathbf{k}_{12} \cdot \hat{\mathbf{x}}\right)}{2}\left[\frac{\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}}{k_{1}} Z_{1}\left(\mathbf{k}_{2}, \hat{\mathbf{x}}\right)+\frac{\hat{\mathbf{k}}_{2} \cdot \hat{\mathbf{x}}}{k_{2}} Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right)\right] \quad \mathbf{k}_{12} \equiv \mathbf{k}_{1}+\mathbf{k}_{2}
\end{aligned}
$$

First few triangles

Fit on Pinocchio mocks
volume $\approx 3500[\mathrm{Gpc} / h]^{3}$

Minerva volume:
consistent within 1-sigma

Triangle Index

Exact bispectrum window convolution

Taking $\left\langle\hat{B}_{L}\right\rangle=\tilde{B}_{L}$

$$
\begin{aligned}
\tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right) & =\frac{2 L+1}{V_{B}} \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\vec{q}_{123}\right) \\
& \times \int d^{3} x_{3} \int d^{3} x_{13} \int d^{3} x_{23} e^{-i \vec{q}_{1} \cdot \vec{x}_{13}} e^{-i \vec{q}_{2} \cdot \vec{x}_{23}} \zeta\left(\vec{x}_{13}, \vec{x}_{23}, \hat{x}_{3}\right) \\
& \times W\left(\vec{x}_{1}\right) W\left(\vec{x}_{2}\right) W\left(\vec{x}_{3}\right) \mathcal{L}_{L}\left(\hat{q}_{1} \cdot \hat{x}_{3}\right)
\end{aligned}
$$

Need to: systematically reduce the angular integration

... the final expression

Some form of integral between
the unconvolved bisp. and the mixing matrix

$$
\begin{aligned}
& \tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)= \int \frac{d p_{1}}{2 \pi^{2}} p_{1}^{2} \int \frac{d p_{2}}{2 \pi^{2}} p_{2}^{2} \int \frac{d p_{3}}{2 \pi^{2}} p_{3}^{2} \sum_{L^{\prime} M^{\prime}} B_{L^{\prime} M^{\prime}}\left(p_{1}, p_{2}, p_{3}\right) \\
& \times \sum_{\ell} I_{\ell \ell 0}\left(p_{1}, p_{2}, p_{3}\right) \mathcal{Q}_{L^{\prime},-M^{\prime}, \ell}^{L}\left(k_{1}, k_{2}, k_{3} ; p_{1}, p_{2}\right) \\
& \text { the mixing matrix }
\end{aligned}
$$

Window convolution \sim matrix mult.

One part of the mixing matrix is a known function

$$
\begin{aligned}
\tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)= & \int \frac{d p_{1}}{2 \pi^{2}} p_{1}^{2} \int \frac{d p_{2}}{2 \pi^{2}} p_{2}^{2} \int \frac{d p_{3}}{2 \pi^{2}} p_{3}^{2} \sum_{L^{\prime} M^{\prime}} B_{L^{\prime} M^{\prime}}\left(p_{1}, p_{2}, p_{3}\right) \\
& \times \sum_{\ell} I_{\ell \ell 0}\left(p_{1}, p_{2}, p_{3}\right) \mathcal{Q}_{L^{\prime},-M^{\prime}, \ell}^{L}\left(k_{1}, k_{2}, k_{3} ; p_{1}, p_{2}\right) \\
& \text { enforce the triangle condition }
\end{aligned}
$$

$$
\longrightarrow \tilde{B}_{\ell}\left[T_{i}\right]=\sum_{j, \ell^{\prime}} \mathcal{M}_{\ell \ell^{\prime}}\left[T_{i}, T_{j}^{\prime}\right] B_{\ell^{\prime}}\left[T_{j}^{\prime}\right]
$$

$$
I_{\ell \ell 0}(x, y, z)=(-1)^{\ell} \frac{\pi^{2}}{x y z} \theta(1-\hat{x} \cdot \hat{y}) \theta(1+\hat{x} \cdot \hat{y}) \mathcal{L}_{\ell}(\hat{x} \cdot \hat{y})
$$

Contribution from the the window 3PCF

The other contribution is coming from the random catalogue

$$
\begin{aligned}
\tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)= & \int \frac{d p_{1}}{2 \pi^{2}} p_{1}^{2} \int \frac{d p_{2}}{2 \pi^{2}} p_{2}^{2} \int \frac{d p_{3}}{2 \pi^{2}} p_{3}^{2} \sum_{L^{\prime} M^{\prime}} B_{L^{\prime} M^{\prime}}\left(p_{1}, p_{2}, p_{3}\right) \\
& \times \sum_{\ell} I_{\ell \ell 0}\left(p_{1}, p_{2}, p_{3}\right) \sqrt[\mathcal{Q}_{L^{\prime},-M^{\prime}, \ell}^{L}\left(k_{1}, k_{2}, k_{3} ; p_{1}, p_{2}\right)]{\text { require several steps of computations }}
\end{aligned}
$$

How to compute the 3PCF contribution?

The window 3PCF - measurement

$$
\begin{aligned}
Q_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell \ell_{2}}^{L}\left(x_{13}, x_{23}\right) \equiv & (-1)^{M^{\prime}} \sum_{\tilde{\ell}_{1}, \tilde{\ell}_{2}} \sum_{\substack{M, m_{1}, m_{2} \\
m_{2}, m^{\prime}, \tilde{m}_{1}, \tilde{m}_{2}}} 4 \pi i^{\ell^{\prime}-\ell+\ell_{2}-\ell_{1}} \mathcal{G}_{L \ell_{1} \ell_{2}}^{M m_{1} m_{2}} \mathcal{G}_{L^{\prime} \ell \ell^{\prime}}^{M^{\prime} m m^{\prime}} \mathcal{G}_{\ell_{1} \ell^{\prime} \tilde{\ell}_{1}}^{m_{1} m^{\prime} \tilde{m}_{1}} \mathcal{G}_{\ell_{2} \ell \tilde{\ell}_{2}}^{m_{2} m \tilde{m}_{2}} \\
& \times \int d^{3} x_{3} \int \frac{d^{2} \hat{x}_{13}}{4 \pi} \int \frac{d^{2} \hat{x}_{23}}{4 \pi} Y_{L M}^{*}\left(\hat{x}_{3}\right) Y_{\tilde{\ell}_{1} \tilde{m}_{1}}\left(\hat{x}_{13}\right) Y_{\tilde{\ell}_{2} \tilde{m}_{2}}\left(\hat{x}_{23}\right) \\
& \times W\left(\vec{x}_{3}+\vec{x}_{13}\right) W\left(\vec{x}_{3}+\vec{x}_{23}\right) W\left(\vec{x}_{3}\right)
\end{aligned}
$$

Computed via e.g. direct counting, FFT-based, etc.

The window 3PCF - Hankel transf.

Combination of two dimensional Hankel transforms

$$
\begin{gathered}
\mathcal{W}_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(q_{1}, q_{2} ; p_{1}, p_{2}\right) \equiv(4 \pi)^{2} \int d x_{13} x_{13}^{2} \int d x_{23} x_{23}^{2} j_{\ell^{\prime}}\left(p_{1} x_{13}\right) j_{\ell}\left(p_{2} x_{23}\right) \\
\\
\quad \times\left[j_{\ell_{1}}\left(q_{1} x_{13}\right) j_{\ell_{2}}\left(q_{2} x_{23}\right) Q_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(x_{13}, x_{23}\right)\right]
\end{gathered}
$$

The window 3PCF - binning

How to handle the binning operator?
$\mathcal{Q}_{L^{\prime} M^{\prime} \ell}^{L}\left(k_{1}, k_{2}, k_{3} ; p_{1}, p_{2}\right) \simeq \sum_{\ell_{1}, \ell_{2}, \ell^{\prime}} 16 \pi^{2} \frac{I_{\ell_{2} \ell_{2} 0}\left(k_{1}, k_{2}, k_{3}\right)}{I_{000}\left(k_{1}, k_{2}, k_{3}\right)} \mathcal{W}_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(k_{1}, k_{2} ; p_{1}, p_{2}\right)$.

$\begin{array}{ll}\bullet & \text { Evaluated at the center of the bin } \\ \bullet & \text { Bin numerically later }\end{array}$

The window 3PCF - FFT-based

$$
\begin{aligned}
& Q_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(x_{13}, x_{23}\right)=(-1)^{M^{\prime}} \sum_{M, m_{1}, m_{2}} \sum_{\substack{\tilde{\ell}_{1}, \tilde{\ell}_{2} \\
m, m^{\prime}}} 4 \pi i^{\ell^{\prime}-\ell+\ell_{2}-\ell_{1}} \mathcal{G}_{L \ell_{1} \ell_{2}}^{M m_{1} m_{2}} \mathcal{G}_{L^{\prime} \ell \ell^{\prime}}^{M^{\prime} m m^{\prime}} \mathcal{G}_{\tilde{\ell}_{1} \ell \ell_{1} \ell^{\prime}}^{\tilde{m}_{1} m_{1} m^{\prime}} \mathcal{G}_{\tilde{\ell}_{2} \ell_{2} \ell}^{\tilde{m}_{2} m_{2} m} \\
& \times \int d^{3} x_{3} W_{\tilde{\ell}_{1} \tilde{m}_{1}}\left(\vec{x}_{3} ; x_{13}\right) W_{\tilde{\ell}_{2} \tilde{m}_{2}}\left(\vec{x}_{3} ; x_{23}\right) W_{L M}\left(\vec{x}_{3}\right) \\
& W_{\ell m}\left(\vec{x}_{3} ; x_{i j}\right) \equiv i^{\ell} \int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{x}_{3}} j_{\ell}\left(q x_{i j}\right) Y_{\ell m}(\hat{q}) W(\vec{q}) \\
& W_{L M}\left(\vec{x}_{3}\right) \equiv W\left(\overrightarrow{x_{3}}\right) Y_{L M}^{*}\left(\vec{x}_{3}\right)
\end{aligned}
$$

Default parameters

N_{p}	$\ell_{\max }$	$\ell_{\max }^{\prime}$	$P_{\min }\left[h \mathrm{Mpc}^{-1}\right]$	$p_{\max }\left[h \mathrm{Mpc}^{-1}\right]$
512	30	2	10^{-5}	0.5

