21th Sep, 2022

El Gordo Galaxy Cluster taken by the DECam

PNG with <mark>Dark Energy Survey</mark>

PNG & Beyond workshop

Walter Riquelme (he/him) PhD Candidate at IFT, Madrid.

IE DARK ENERGY SURVEY

PNG workshop - Walter Riquelme

Dark Energy Survey (DES)

- ★ Area of ~5000 deg2 and Photometric in ~4 color bands. (similar to VR's LSST) (I. Sevilla-Noarbe et al. 2020)
- ★ Combination of colors are used to estimate the redshift of galaxies. (for example, De Vicente et al. 2016)
- ★ Colors selections can be used to define different galaxy samples:
 - **BAO:** Optimized for BAO... (A. Carnero Rosell et al. 2021)
 - MagLim: Optimized for weak lensing (A. Porredon et al. 2021)
 - <u>redMagic</u>: Luminous red galaxies (E. Rozo et al. 2016)

Primordial non-Gaussianity in DES

Ongoing projects:

★ Angular Power Spectrum.
 H. Camacho et al. Ongoing research

★ Angular Correlation Function methodology (this presentation). W. Riquelme, S. Avila, J. Garcia-Bellido, et al.

Other active members: A. Porredon, K. Chan, I. Ferrero, N.Weaverdyck...

Starting projects :

- Systematics for PNG: N. Weaverdyck, M. R. Monroy
- Sample optimisation: W. Riquelme, Anna Porredon

Primordial non-Gaussianity with Angular correlation function: Integral constraint and validation for DES

Walter Riquelme,^{1,2}* Santiago Avila,^{1,2}† Juan García-Bellido,^{1,2}‡ Anna Porredon,³ Ismael Ferrero,⁴ Kwan Chuen Chan, ⁵ Rogerio Rosenfeld, ⁶ Hugo Camacho,⁷ Adrian G. Adame, ^{1,2} [-and more-]

The work has three main parts:

- 1. Angular correlation function with PNG
- 2. Integral constraint impact
- 3. Robustness test for DES

https://arxiv.org/abs/2209.07187

Scale dependent bias

 $b(k) = b_g +$

$P(k,f_{NL})=b^2(k,f_{NL})P_{DM}(k)$

[Dalal et al. (2008)] [Slosar et al. (2008)]

 $f_{
m NL}(b_g\!-\!p)M(k,\!z)$

 k^2

Angular correlation function (ACF)

Summary statistic of clustering of galaxies, or other biased tracers.

$$w(heta, f_{
m NL}) = \int dz_1 \int dz_2 \; n(z_1) n(z_2) \xi(r(z_1, z_2, heta), f_{
m NL})$$

- The ACF is a 2D projection of 2PCF using **n(z) distributions**.
- The ACF is *also affected by fNL* via scale-dependent bias.

At large scales

 $w(heta, f_{
m NL}) \propto f_{
m NL}^2 \cdot \infty$

Integral constraint

For limited windowed surveys, the number of galaxies in the universe is estimated from the mean density of the survey, implying:

$$egin{aligned} N_g &= ar{n} \int dV_s + ar{n} \int \xi(r) dV_s \ & ar{ar{1}} & \int w_{ ext{obs}}(heta) d\Omega = 0 \ & ar{ar{1}} & ar{1} & ar{ar{1}} & ar{ar{1}} & ar{1} &$$

Imposing integral constraint to theory:

$$w_{th}^*(heta,f_{
m NL})=w_{th}(heta,f_{
m NL})-I(f_{
m NL}) \Longrightarrow$$
 .

$$I(f_{ ext{NL}}) = rac{\sum RR(heta) w_{th}(heta, f_{ ext{NL}})}{\sum RR(heta)}$$

Simulations

In order to tests our methods we used two sets of simulations, with and without PNG. From each of these, we compute the ACF.

ICE-COLA mocks

[I. Ferrero et al. 2021]

- 1952 Quasi-NBODY sims.
- <u>fNL = 0 (p=1)</u>
- Redshift 0.6 < z < 1.1 divided in 5 redshift bins
- Follows **Y3 BAO** redshift error and angular distribution.

GOLIAT-PNG mocks

[S. Ávila & A. Adame 2022]

- 246 NBODY sims.
- <u>fNL = [-100, 100] (p~0.9)</u>
- Semi-aperture of 11.2 deg.
- Survey like redshift dist. 0.6 < z < 1.1 in 5 bins

GOLIAT-PNG and integral constraint

From all simulations, we perform a joint likelihood measurement of **fNL**

PNG workshop - Walter Riquelme

Sample optimization for fNL

with Anna Porredon (work in progress...)

• Forecast with a theory-data vector

Modifying color cuts in i-band. Looking for an optimal sample for fNL.

 $i < a z_{
m phot} + b$

Optimize *a* and *b* to lower fNL errors

Similar method used for the MagLim sample (WL, 3x2pt)

- Largest difference between samples? Number density at high redshift...
 - BAO Y3 sample ~ 900k (z~1)
 - > MagLim sample ~ 1.4M(z~1)
 - ➢ fNL optimi1 ~ 1.6M (z~1.2)

Conclusions and prospects

- We presented the methods to use the Angular correlation function with scale-dep. bias to measure fNL
- We need to include the <u>integral constraint</u> to avoid biased fNL values.
- Using ICE-COLA simulations, we have validated the methods to measure fNL with DES.
- Some future prospects will include:
 - Systematics impact and mitigation (this is one of the main challenges for fNL)
 - Sample optimization and application to data

Looking for jobs for next year

fNL=-100 GOLIAT png

ICE-COLA 5bins

Impact of p

