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Qutline

® [wo goals of the talk:

® Show that we can deal with complexities

of galaxies™ rigorously on large scales:
EFT of LSS

® Argue that there is much more (trustable)
information in galaxy clustering than what
we are using so far: field-level
Bayesian inference

* Everything in following will apply to any tracer of LSS: clusters, Ly-a forest, intensity mapping, ...
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Theory of galaxy
clustering

® Perturbations in our universe

are small on large scales A
® Perturbation theory works 107
on quasilinear scales k < kno [
® Goal: describe galaxy S
clustering up to a given scale i o
and accu racy using a finite 10_3_‘ variance ?f m?tte;elf flgucttéjations
number of free (A) bias _4: | per Iogarltfl\mlc k mtgervr?ll |
] Y 1072 107! 10
parameters and (B) stochastic k [hMpe™]

amplitudes
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EFT approach

® |dea: trust our theory for

k<A
10"
® Split initial perturbations
. 100k
into large scale (< A) and |
small scale (>= A): T

o(x,T) = P, 7) 1 =0p+ 0,

P, (7‘) 107 modes that are
integrated out
® Then, we integrate out b (hMpe™

(marginalize over)
perturbations with k > A



Bias and Stochasticity

Incorporate effect of large-scale
perturbations explicitly using

bias expansion, with free 10'
coefficients bo i
™ 107!
5,() = 3 boO()
O < 10—2
® Fields O are constructed " modes that are
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Bias and Stochasticity

® |ncorporate effect of large-scale
perturbations explicitly using

bias expansion, with free 10 g

coefficients b

® Fields O are constructed

from §, 10741

® Small-scale perturbations add
noise €

1005

10_35

modes that are
integrated out
] P T T T T T I |

1072 101 10
k [hMpc ']




(A) Bias

® Which bias terms O(x) we need to include:
® Well understood by now

® |nclude dependence on full history of
structure formation

—
® |ncludes “local bias” (powers of matter

density) as well as tidal fields, time and
space derivatives thereof

® Displacement terms protected by
equivalence principle have fixed coefficients!

Desjacques, Jeong, FS; Phys. Rept. (2018)



(B) Stochasticity

® ¢ arises from local (in real space)
superposition of many small-scale
perturbations

® Central limit theorem: (k) is
approximately Gaussian distributed
(the lower k, the more Gaussian it is)

® | ocal in real space: power spectrum is
white noise at low k, with -
CorreCtlonS* ~k2 * Also density dependence.

(k)" (k') = (2m)%p (ks — K) | Po + K2PS2) 4 -

Desjacques, Jeong, FS; Phys. Rept. (2018)
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A broad view of
cosmology inference

® Given cosmological parameters 0, we can
hope to predict

|. Statistics of initial conditions

2. How a given 6;,(x) evolves into the final
density field
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A broad view of
cosmology inference

® Given cosmological parameters 0, we can
hope to predict
Prior Pprior (gina 9)

|. Statistics of initial conditions
PNG enters here.

2. How a given 6;,(x) evolves into the final

density ﬁeld deterministic evolution
gfwd [(iny (9]



Bayesian cosmology
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® The full posterior of cosmological barameters given
the data is then given by

P(6) = / Dé; P (59
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Bayesian cosmology
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® The full posterior of cosmological barameters given
the data is then given by

StwalGin, 0]) Psior (3in, 0)

\Multivariate Gaussian, diagonal
covariance in Fourier space,

blus nonlinear operation generating
PNG

P(6) = / Db P (59



Bayesian cosmology
inference

® The full posterior of cosmological barameters given
the data is then given by

_ / Din P (3| dtwalGin, 0]) Porior (Jin 0)

— [ afbo}P (5,5.0: (v}

conditional probability of galaxy density given matter density
- contains all physics of galaxy formation




Bayesian cosmology
inference

® The full posterior of cosmological barameters given
the data is then given by

P(6) = / Dé; P (59

StwalGin, 0]) Ppsior (3in, 0)

Functional integral



Bayesian cosmology
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P(9) = [ D3P (5, FowalBin. 6)) Povir (5. 0)

® Standard approach proceeds via data compression: replace
galaxy density field with much smaller data vector (e.g., power
spectrum in bins of k)




Bayesian cosmology
inference

P(9) = [ D3P (5, FowalBin. 6)) Povir (5. 0)

® Standard approach proceeds via data compression: replace
galaxy density field with much smaller data vector (e.g., power
spectrum in bins of k)

® Then, the functional integral over initial conditions (a.k.a
taking ensemble average) is done either

® semi-analytically (loop integrals in PT / EFT approach -
formally, sending A to infinity)

® numerically (emulators based on ensemble of simulations)



Bayesian cosmology

inference
P(g) = / D&, P (59

—

Ofw [Cin, 9]) Pprior (5in, 9)

® Can we make progress without this (lossy) data
compression!?
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P(9) = [ D3P (5, FowalBin. 6)) Povir (5. 0)

® Yes - basically by doing a Markov Chain Monte Carlo:

® Discretize field on grid/lattice (Nyquist frequency = cutoff A)
® Draw initial conditions from prior

® Forward-evolve using gravity

® Compare with data and repeat

® Challenge: even with fairly coarse resolution, have to sample
millions of parameters in 0y

® Key: Hamiltonian Monte Carlo



Inference beyond the
power spectrum

P(9) = [ D3P (5, FowalBin. 6)) Povir (5. 0)

® Yes - basically by doing a Markov Chain Monte Carlo:

® Discretize field on grid/lattice (Nyquist frequency = cutoff A)
® Draw initial conditions from prior
® Forward-evolve using gravity

® Compare with data and repeat

® |ots of interest in this approach recently -> Adam Andrews’ talk

Kitaura & Ensslin, Jasche & Wandelt,Wang, Mo et al, Seljak et al, Jasche & Lavaux (2017), ...



VWhy we should go beyond the
power spectrum

® At second and higher order, galaxy density
contains displacement terms which are
special:

® Equivalence principle ensures that large-
scale displacement is the same for
galaxies and matter

® Displacement term allows for
disentangling bias and amplitude of

fluctuations (.7 or Og) sx V®

® |n the power spectrum, these are mixed in
with other nonlinear bias contributions and
impossible to disentangle



The galaxy likelihood

® Putting numerical challenges aside, we need an
expression for the field-level galaxy likelihood:

® conditional probability of galaxy density given
matter density

P(9) = [ DG (5, FowalBin. 61) Povior (5:0)

_ /d{bO}P (59 5, 97;,{190})




An EFT approach to
the likelihood

® Goal is to derive P (59 5) in EFT
approach on A

® Recall: split perturbations into
large scale (0, ) and small scale,
using sharp-k filter™

modes that we ‘modes that are:
keep explicitly [integrated out
10—4 ...|_2 : P .....|_1 L .=...=..|0 :
10 10 10
k [hMpc ]

Cabass, FS, arXiv:1909.04022 *In the end, we vary A to check convergence.



An EFT approach to
the likelihood

e Goal is to derive P (59 5) in EFT
approach on A
10! e
® Recall: split perturbations into S | S
large scale (§,) and small scale, "
using sharp-k filter* 101

=

N——

® Incorporate effect of large-scale < 12
perturbations explicitly using bias !

. . . 10_35—
expansion, with free coefficients :

modes that we ‘modes that are:

: keep explicitly integrated out
1—4 {10l : R ST R :
! 1072 1071 10°
k [hMpc ]

Cabass, FS, arXiv:1909.04022 *In the end, we vary A to check convergence.



An EFT approach to
the likelihood

e Goal is to derive P (59 5) in EFT
approach on A

1015""| T T T T T T T
r z=10.0

® Recall: split perturbations into
large scale (§,) and small scale, _
using sharp-k filter™® — 10}

10V

=

N——

® Incorporate effect of large-scale < 12
perturbations explicitly using bias !

. . . 10_35—
expansion, with free coefficients :

modes that we ‘modes that are:

A keep explicitly integrated out
10— ...I_ 1 1 L1 ....I_ I oo el 1
® Then, use knowledge of PDF of 10 & 1A Moo 1o

noise £(x): Gaussian with diagonal

covariance in Fourier space
Cabass, FS, arXiv:1909.04022 *In the end, we vary A to check convergence.



EFT likelihood

® With these results, we can write:
5g(k) = 6y et (k) + e (k)
Sgaer (K) = > boO(K)

O
® All fields cut at cutoff A\

® |n addition, employ sharp-k filter 0i, — &2 on initial conditions: crucial
to regularize loop integrals involving the observed halo/galaxy field

® and insert € = 0, — 04 det into the Gaussian noise PDF:

Pl o |5 [ Goays iy |

Cabass, FS; 1909.04022
FS, Cabass, Jasche, Lavaux; arXiv:2004.06707



Dark matter halos as a
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® | et’s begin with a thought experiment:

® Ve are given a halo catalog and the normalized

amplitudes of the initial conditions for the matter
density in the same volume d;, ()

® Can we infer the cosmological parameters from
this halo catalog!?



Dark matter halos as a
test case

® | et’s begin with a thought experiment:

® Ve are given a halo catalog and the normalized

amplitudes of the initial conditions for the matter
density in the same volume d;, ()

® Can we infer the cosmological parameters from
this halo catalog!?

® Near optimal case: no cosmic variance

® Of course, not a real-world example, but applicable
to halos (or galaxies) in simulations



Dark matter halos as a
test case

e Specifically, can we recover unbiased 4 (0Og) from

a halo catalog (treating bias parameters as
unknown) !

® Perfect degeneracy between b| and Og at linear
order; nonlinear information (due to protected
displacement) essential



Dark matter halos as a test case

Results for all mass bins and redshifts
for A = 0.14h Mpc'!

Relative deviation of maximum-likelihood [ T T T

value of Og from ground truth, 0.02 - t 1

for different perturbative orders ' | * '

AV IR

Lbox — 2000 MPC/h |g DT 00 * ..... H' + t ....... + ........... I + ...................... _
< $ 2LPT.o0=3 t t

002k 4 BLPT,0=3 )

A = 98 t 3LPT,o=4 _

T oy -t 5LPT,0=5 A = 0.14h Mpc ™

T 00T s 10 15 20

<b1 - 1>Dn0rm

Proxy for higher-order bias terms

FS, Cabass, Jasche, Lavaux; arXiv:2004.06707; FS, arXiv:2009.14176



Dark matter halos as a test case

Results for all mass bins and redshifts
for A = 0.14h Mpc'!

® Residual error in Og at k <

0.14h/Mpc is <~ 1-2% 109l y _'
depending on halos mass | ; '
and redshift _ - ¢ ﬂ} 1*# 1 t

| OOO_ ..................... * ..... H» + ﬁt ....... + ........... I ++ .......... _

® Most likely due to higher- < - ¢ 2LPT,0=3 t b
order bias, and numerical _0.02f 4 3LPT,0=3 :
errors of simulations 1 3LPT, 0= Z

. | % SLPT, 0=5 A = 0.14h Mpc
(transients) ol T

05 00 05 1.0 1.5 2.0

<b1 - 1>Dnorm

Proxy for higher-order bias terms

FS, Cabass, Jasche, Lavaux; arXiv:2004.06707; FS, arXiv:2009.14176



Dark matter halos as a test case

Results for all mass bins and redshifts
for A = 0.14h Mpc'!

® Residual error in Og at k <

0.14h/Mpc is <~ 1-2% 109l y _'

depending on halos mass | } :
and redshift _ - ¢ ﬂ} A 1 t

| 0.00_— ..................... * ..... H» +i¢t ....... + ........... I + ...................... _

® Most likely due to higher- < - ¢ 2LPT,0=3 t b
order bias, and numerical _0.02F * 3LPT,0=3 i
errors of simulations b SLPT 0=4 Z

. | % SLPT, 0=5 A = 0.14h Mpc
(transients) ol T

05 00 05 10 15 20

<b1 - 1>Dnorm
Proxy for higher-order bias terms

Note: this combination typically grows toward higher z; bias loops will limit
useable range of scales of upcoming galaxy surveys, not matter nonlinearities!



Also works for
(simulated) galaxies

® Apply the same analysis to stellar-mass-
selected galaxies in lllustrisTNG

Lbox = 300 Mpc/h

No chance to do this using power
spectrum+bispectrum due to

cosmic variance...

Barreira, Lazeyras, FS; arXiv:2105.02876

p—
—

—
-

Fiducial
08 / 03

=
Ne

M, >

10° My /h

- TNG300-1
Galaxies, Hydro

I
—&— All galaxies
—&— Red galaxies
——— Blue galaxies |

<, % 7.

e

_ A =0.2 h/Mpc ¢
0 0.5 1
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PNG (review)

® PNG has two effects on the clustering of galaxies
(see previous talks...)

|. Adds bispectrum in the initial conditions for

gravitational evolution
BV (ky, kg, ks) = T(ky)T (ko)T (k3)Bg (K1, ko, k3)
= T(k1)T (k2)T (k3)233€ [Py (k1) Py(k2) + perm.] (local shape)
® Coupled to higher n-point functions by nonlinear evolution

2. Mode coupling effect on small-scale modes that are
integrated out leads to new bias term

0g(x,7) D by(T)9(q(z], T)

\

Primordial gravitational potential at Lagrangian position



Field-level gains for
PNG

® For local fai, field-level inference will not improve upon the
scale-dependent bias constraint in the power spectrum.
However, still expect improvement:



Field-level gains for
PNG

For local fnL, field-level inference will not improve upon the
scale-dependent bias constraint in the power spectrum.
However, still expect improvement:

Displacement term s - V@, constrained in similar way as Og
shown above

We reconstruct 0(!) and hence @§: improved constraint on
direct contribution of primordial bispectrum (cf. Adam

Andrews talk)

® |Independent of by (crucial; cf. Alex Barreira’s talk)

® | eading constraint for nonlocal fnL (e.g. equilateral,
orthogonal)



Conclusions

® [Two main messages:

® We can deal with complexities of galaxies
rigorously on large scales -> EFT

® There is much more (trustable) information
in galaxy clustering than what we are using
so far -> full inference



Conclusions

. We can deal with complexities of galaxies rigorously
on large scales:

® The EFT provides a complete framework for
galaxy biasing

® Many free parameters, however there are
important terms that are protected by
equivalence principle

® (aussian stochasticity on large scales



Conclusions

2. There is much more (trustable) information in galaxy
clustering than what we are using so far:

® There is a lot of additional information in the phases
over summary statistics like Pk+Bk

® The EFT likelihood, coupled with full Bayesian inference,
allows us to extract this information with the same
rigor as that in the power spectrum

® Only at the beginning of this program, but first results
on fnL look promising (-> Adam Andrews’ talk)

® Reconstruction of initial density (potential) should

yield even more interesting improvement for non-local
PNG!






EFT likelihood

® Ve obtain the desired conditional
probability for §,in Fourier space:

—1/2 - -
A
= | T ]. ]. 2
P (5,[5) (H UZ(k)) exp |~ % a7 190(8) = Foen (k)
k#£0 T k#0 ]
with T
Finite volume in actual data
59,det(k) — Z bOO(k) -> discrete Fourier representation
O

FS, Elsner, et al; 1808:02002
Cabass, FS; 1909.04022



