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Local Primordial Non-Gaussianity and Scale dependent bias

Local primordial non-gaussianity
makes the galaxy bias scale
dependent out to arbitrarily large
distance scales:
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Effect of free-streaming neutrinos/radiation
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Although a small effect, the scale dependence in the galaxy bias due to
free-streaming neutrinos/radiation becomes more important for
intermediate scales kK > 0.01 h/Mpc and at higher redshifts.
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Figure: Effect of neutrinos and fyy =1  Figure: Relative effect of neutrinos w.r.t
on galaxy power spectrum effect of fyy =1
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Effect of lonising Radiation Fluctuations

Fluctuations in the ionising radiation background affect galaxy number

density fluctuations through their effect on the cooling rate of gas in dark
matter halos

g = bgbm—byd, (1)

P2
Pg = Pmm (bg - bJPmJ> + b_2IPJshot (2)

—b; encodes the response of the cooling rate of gas in dark matter halos
to ambient fluctuations in the ionising radiation background §;. Any
reasonable value for by is < 0.1(Sanderbeck et al. 2019)
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Effect of ionising radiation fluctuation on the galaxy power spectrum

becomes more important at high redshifts and intermediate length scales.
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Figure: Effect of ionising radiation
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Effect of neutrinos/radiation on measurement of fy;,

We construct a SPHEREX likelihood and study how MCMC/Fisher
forecasts for fy; obtained using MontePython(Brinckmann and
Lesgourgues 2019) are affected by the inclusion/exclusion of the
aforementioned large scale effects.

Without neutrino/radiation and ionising radiation effects : o(fy.) = 0.85
around fy; =1 (MCMC constraint) which is consistent with Fisher matrix

analysis in (Doré et al. 2014).

Marginalising over the effect of scale dependent bias caused by three
degenerate neutrinos (M, = 0.06 eV) yields o(fy.) = 0.86
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Not including the effect of neutrinos in modelling the galaxy power spectra
may however bias (fy;) w.r.t fiducial fyy =1

(fnr)(unbiased) = 1.03

(fnL)(biased) = 0.861
Afyp < 0 because the free-streaming of neutrinos suppresses the galaxy

bias on larger scales compared to the bias at smaller scales.

For three degenerate neutrinos with total mass M, = 0.06 eV,
A<fNL> =—-0.17 = —0.20
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Effect of ionising radiation fluctuations on measurement of
fai

We study how ionising radiation fluctuations affect the forecast of fy; for
individual galaxy samples of SPHEREx.
We consider two galaxy samples -

@ sample 1 :o(fy,) = 3.85 (most constraining)

@ sample 2 :0(fy ) = 1.16 (least constraining)
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Marginalising over b, increases o(fy;) of a single galaxy sample by around

40% - result obtained by Fisher analysis in (Sanderbeck et al. 2019).

Imposing a reasonable prior on the intensity bias b, (c(by) < 0.1) however
does not significantly worsen the Fisher forecast
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Ignoring the effect of ionising radiation fluctuations in modelling the
galaxy power spectrum can however lead to a more significant bias in (fy;)
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fixed by = 0.05,0.1 ignoring fixed by = 0.05,0.1

While Afyy ~ —0.20 for sample 1, it can be as large as Afy;, ~ —0.460
for sample 2.
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Conclusion

The scale dependent bias caused by neutrinos does not significantly
weaken constraints on fy; as long as it is accounted for in modelling the
galaxy power spectrum. Otherwise one may obtain a value of fy; biased
by —0.20 (possibly higher for larger M,).

Marginalising over b; may not increase o(fy.) if one imposes reasonable
priors on bj.

Not including the effect of ionising radiation fluctuations in modelling the
galaxy power spectrum can lead to a bias in measurement of fy; as large
as AfNL ~ —0.460.
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