Large Scale Systematics in measurement of Local Primordial Non-Gaussianity using SPHEREx

Charuhas Shiveshwarkar¹

Department of Physics Stony Brook University, New York

September 22, 2022

 1 Work in progress with Marilena Loverde, Matthew McQuinn and Thejs Brinckmann $_{\odot}$

Local Primordial Non-Gaussianity and Scale dependent bias

Local primordial non-gaussianity makes the galaxy bias scale dependent out to arbitrarily large distance scales:

$$\Delta b_g \propto rac{f_{NL}}{k^2}$$

Can only have a primordial origin hence the promise of surveys like SPHEREx ($k_{min} = 0.001 \text{ h/Mpc}$)

Non-primordial, horizon-scale effects can however impact measurement of f_{NL}^{local} !

Figure: Fractional change in galaxy power spectrum due to local $f_{NL} = 1$

(4) (日本)

Effect of free-streaming neutrinos/radiation

Galaxy bias at near-horizon/larger scales is suppressed as compared to galaxy bias at smaller scales (Chiang et al. 2018; Shiveshwarkar, Jamieson, and Loverde 2021)

$$rac{b_L(k)}{b_L(k_{\max})}
ightarrow {
m constant} < 1.; \ k
ightarrow 0$$

Figure: Fractional change in galaxy power spectrum due to three neutrinos each with mass 0.02 eV.

September 22, 2022

Although a small effect, the scale dependence in the galaxy bias due to free-streaming neutrinos/radiation becomes more important for intermediate scales $k \ge 0.01$ h/Mpc and at higher redshifts.

Figure: Effect of neutrinos and $f_{NL} = 1$ on galaxy power spectrum

Figure: Relative effect of neutrinos w.r.t effect of $f_{NL} = 1$

- ∢ /⊐ >

September 22, 2022

Effect of Ionising Radiation Fluctuations

Fluctuations in the ionising radiation background affect galaxy number density fluctuations through their effect on the cooling rate of gas in dark matter halos

$$\delta_g = b_g \delta_m - b_J \delta_J \tag{1}$$

$$P_g = P_{mm} \left(b_g - b_J \frac{P_{mJ}}{P_{mm}} \right)^2 + b_J^2 P_{Jshot}$$
(2)

 $-b_J$ encodes the response of the cooling rate of gas in dark matter halos to ambient fluctuations in the ionising radiation background δ_J . Any reasonable value for b_J is ≤ 0.1 (Sanderbeck et al. 2019)

イロト 不得 トイヨト イヨト 二日

Effect of ionising radiation fluctuation on the galaxy power spectrum becomes more important at high redshifts and intermediate length scales.

Figure: Effect of ionising radiation fluctuations $b_J = 0.05$ and $f_{NL} = 1$ on P_g

Figure: Effect of ionising radiation fluctuations $b_J = 0.05$ and $f_{NL} = 1$ on P_g

September 22, 2022

Effect of neutrinos/radiation on measurement of f_{NL}

We construct a SPHEREx likelihood and study how MCMC/Fisher forecasts for f_{NL} obtained using MontePython(Brinckmann and Lesgourgues 2019) are affected by the inclusion/exclusion of the aforementioned large scale effects.

Without neutrino/radiation and ionising radiation effects : $\sigma(f_{NL}) = 0.85$ around $f_{NL} = 1$ (MCMC constraint) which is consistent with Fisher matrix analysis in (Doré et al. 2014).

Marginalising over the effect of scale dependent bias caused by three degenerate neutrinos ($M_{\nu} = 0.06 \text{ eV}$) yields $\sigma(f_{NL}) = 0.86$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Not including the effect of neutrinos in modelling the galaxy power spectra may however bias $\langle f_{NL} \rangle$ w.r.t fiducial $f_{NL} = 1$

 $\langle f_{NL} \rangle$ (unbiased) = 1.03 $\langle f_{NL} \rangle$ (biased) = 0.861

 $\Delta f_{NL} < 0$ because the free-streaming of neutrinos suppresses the galaxy bias on larger scales compared to the bias at smaller scales.

For three degenerate neutrinos with total mass $M_
u=0.06$ eV, $\Delta\langle f_{NL}
angle=-0.17pprox-0.2\sigma$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Effect of ionising radiation fluctuations on measurement of f_{NL}

We study how ionising radiation fluctuations affect the forecast of f_{NL} for individual galaxy samples of SPHEREx. We consider two galaxy samples -

- sample 1 : $\sigma(f_{NL}) = 3.85$ (most constraining)
- sample 2 : $\sigma(f_{NL}) = 1.16$ (least constraining)

Marginalising over b_J increases $\sigma(f_{NL})$ of a single galaxy sample by around 40% - result obtained by Fisher analysis in (Sanderbeck et al. 2019). Imposing a reasonable prior on the intensity bias b_J ($\sigma(b_J) \lesssim 0.1$) however does not significantly worsen the Fisher forecast

Figure: $\sigma(f_{NL})$ for priors on b_J : $\sigma(b_J) = 0.0, 0.05, 0.1$ Figure: $\sigma(f_{NL})$ for priors on b_J : $\sigma(b_J) = 0.0, 0.05, 0.1$

September 22, 2022

Ignoring the effect of ionising radiation fluctuations in modelling the galaxy power spectrum can however lead to a more significant bias in $\langle f_{NL} \rangle$

Figure: Bias in $\langle f_{NL} \rangle$ due to ignoring fixed $b_J = 0.05, 0.1$

Figure: Relative bias in $\langle f_{NL} \rangle$ due to ignoring fixed $b_J = 0.05, 0.1$

< □ > < □ > < □ > < □ > < □ > < □ >

September 22, 2022

11/12

While $\Delta f_{NL} \sim -0.2\sigma$ for sample 1, it can be as large as $\Delta f_{NL} \sim -0.46\sigma$ for sample 2.

Conclusion

The scale dependent bias caused by neutrinos does not significantly weaken constraints on f_{NI} as long as it is accounted for in modelling the galaxy power spectrum. Otherwise one may obtain a value of f_{NL} biased by -0.2σ (possibly higher for larger M_{ν}).

Marginalising over b_J may not increase $\sigma(f_{NL})$ if one imposes reasonable priors on b_1 .

Not including the effect of ionising radiation fluctuations in modelling the galaxy power spectrum can lead to a bias in measurement of f_{NL} as large as $\Delta f_{NI} \sim -0.46\sigma$.

> ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの September 22, 2022