Exploring the effects of primordial non-Gaussianity at galactic scales

Clément Stahl

Observatoire Astronomique de Strasbourg, Université de Strasbourg

21 September 2022

Collaborators: T. Montandon, B. Famaey, O. Hahn, R. Ibata.

PNG on small scales: current status Theoretical proposals of scale dependant PNG Example of small scale problem: hot orbit problem

PNG on small scales: current status

propage $\mathsf{PNG} \to \mathsf{test}$ inflationary physics

Image credit: Sabti 2009.01245

Motivation

Our setups and results Conclusions and Perspectives PNG on small scales: current status Theoretical proposals of scale dependant PNG Example of small scale problem: hot orbit problem

PNG on small scales

Sabti 2009.01245

- Study UV galaxy luminosity function of Hubble telescope
- A detection at 1.7 $\sigma.$ Most likely a bump in the data, but who knows... \rightarrow JWST, NGRST
- Using another model of dust extinction, no more detection

PNG on small scales: current status Theoretical proposals of scale dependant PNG Example of small scale problem: hot orbit problem

Scale dependant PNG

Several models of strongly scale dependant PNG

Beyond slow roll

- Khoury 0811.3633: time-dependant sound speed
- Riotto 1009.3020: scalar field with abrupt change of mass
- Byrnes 1108.2708: curvaton-self interactions
- Can parametrize with $n_{f_{NL}} \equiv \frac{d \ln f_{NL}}{d \ln k}$
- Planck 1905.05697: constraints on running NG \rightarrow compatible with 0.

Large PNG on scales smaller than $k_{CMB/LSS} \equiv k_{cut} = \mathcal{O}(0.1) \text{ Mpc}^{-1}$

$$B_{\Phi} = f_{NL} P_{\Phi}(k_1) P_{\Phi}(k_2) \Theta(k_i - k_{\mathsf{cut}}) + 5 \text{ perm.}$$

$$\tag{1}$$

PNG on small scales: current status Theoretical proposals of scale dependant PNG Example of small scale problem: hot orbit problem

Peebles 2005.07588: study bulge to total luminosity of galaxies

- "Hot orbit problem" naturally solved if galaxies have a calmer environment, and form through a calmer history.
- Baryon feedback play a crucial role here
- Initial condition modification has also been tested: genetic modification (Stopyra 2006.01841), splicing (Cadiou 2107.03407), modify initial angular momentum (Cadiou 2206.11913).

Numerical setup Visualisation Density profile Merging history Satellites of MW-like galaxy

1 Motivation

- PNG on small scales: current status
- Theoretical proposals of scale dependant PNG
- Example of small scale problem: hot orbit problem

Our setups and results

- Numerical setup
- Visualisation
- Density profile
- Merging history
- Satellites of MW-like galaxy

Numerical setup

Visualisation Density profile Merging history Satellites of MW-like galaxy

Numerical setup

- Toy models: NG of $\pm \mathcal{O}(1000)$ for f_{NL} or g_{NL} at $\mathcal{O}(20)$ Mpc.
- Dark Matter Only simulations^a
- Grid : 512³, BoxSize : 30 Mpc/h, Effective resolution 100 kpc/h.
- Total mass in the box: $2.3 imes 10^{15} M_{\odot}$, mass of DM particle $1.7 imes 10^7 M_{\odot}$

^aWork with Gadget4 (https://wwwmpa.mpa-garching.mpg.de/gadget4/) and Monofonic (https://bitbucket.org/ohahn/monofonic/src).

Numerical setup Visualisation Density profile Merging history Satellites of MW-like galaxy

Halos in quieter environments

8/15

Numerical setup Visualisation Density profile Merging history Satellites of MW-like galaxy

Halos in quieter environments

9/15

Numerical setup Visualisation Density profile Merging history Satellites of MW-like galaxy

Density profiles

- Stacked result on our sample of the 100 more massive halo found in each simulation. $M_h \in \left[1.6 \times 10^{14}; 1.1 \times 10^{12}\right] M_{\odot}$.
- Similar study to Smith 1009.5085, though our box is much smaller.

Numerical setup Visualisation Density profile **Merging history** Satellites of MW-like galaxy

Merging history

NG1-

Simulation	G	NG1+	NG1-	NG2+	NG2-
z_{50}	0.64	0.59	0.67	0.64	0.62
mF [%]	78	52	71	61	108

Numerical setup Visualisation Density profile Merging history Satellites of MW-like galaxy

Correlated subhalos?

A classical test of the litterature (Ibata 1407.8178): dwarf satellite galaxies are aligned in thin and kinematically coherent planar structures

Numerical setup Visualisation Density profile Merging history Satellites of MW-like galaxy

Correlated subhalos?

Simulation	G	NG1+	NG1-	NG2+	NG2-
ac/c, 12 degrees	1.1	1.2	1.7	1.4	1.1

Conclusions

- Explored the effect of large PNG on small scales.
- Possible to have a quieter merging history leading to more planar and coherent structures (model NG1-)
- I will revisit several small scales (galactic) problems with NG1-
- Need to back up these explorations with more simulations: zoom on one galaxy in a cosmological background.
- Easy to extend to WDM or Effective Theory of DM (ETHOS, α,β,γ parametrization)

Thank you for your attention

Power spectra

Halo Mass Function

Some technical details

- Work with Gadget4 () and Monofonic ().
- Measure power spectra with Pylians ()
- Detect halos with SUBFIND ()
- Construct merger trees with ytree

Monofonic is nice

Handling of the numerical errors due to aliasing: multiplication in Fourier space leads to noise close to the Box Size. Neat implementation of Orszag's 3/2 rule () allow to dealiase any field.

Get the correct σ_8

The toy model of Eq. 1 for $f_{\rm NL} \gg 1$ leads to a wrong measure of σ_8 . We corrected for that by changing the overall amplitude of our primoridal fluctuations.

Correlated subhalos?

Simulation	G	NG1+	NG1-	NG2+	NG2-
ac/c, $\alpha = 12 \deg$	1.1	1.2	1.7	1.4	1.1
ac/c, $\alpha=25~{ m deg}$	0.95	1.2	1.6	1.2	1.1

 $\alpha = 25^{\circ}$