Our Anisotropic Universe

Glenn Starkman Case Western Reserve University IFT Madrid Sept 2022

Image: ESA/AOES Medialab

Our Anisotropic Universe

Yashar Akrami, Craig Copi, Ozenc Gungor, Andrew Jaffe, Arthur Kosowsky, Johannes Oskilt, Lucas Makinen, Pip Petersen, Samanta Saha, Quinn Taylor, Valeri Vardanyan

Dragan Huterer & Dominik Schwarz Francesc Ferrer, Amanda Yoho, Simone Aiola, Lloyd Knox, Marcio O'Dwyer

This is not the universe you think it is

This is not the universe you were told it should be

Penzias & Wilson (1965)

Horn Antenna — Holmdel, New Jersey. Horn Antenna, circa 1960. (Photo Credit: Bell Labs)

COBE - DMR

NASA/COBE-DMR science team

WMAP

NASA/WMAP Science team

Planck

ESA/Planck Science team

Angular Power Spectrum

$\Delta \mathsf{T} = \sum_{\ell m} a_{\ell m} \mathsf{Y}_{\ell m}(\theta, \varphi)$

Angular Power Spectrum

$$\Delta \mathsf{T} = \sum_{\ell \, \mathsf{m}} \mathsf{a}_{\ell \, \mathsf{m}} \, \mathsf{Y}_{\ell \, \mathsf{m}}(\theta, \varphi)$$

Standard model for the fluctuations (inflation):

- Sky is statistically isotropic
- a_{em} -- independent (nearly) Gaussian random

$$< a_{\ell m} a^*_{\ell' m'} > = C_{\ell} \delta_{\ell \ell'} \delta_{mm'}$$

(Almost) ALL interesting information is in:

$$C_{\ell} = (2\ell + 1)^{-1} \sum_{m} |a_{\ell m}|^2$$

Angular Power Spectrum

- Astonishing experimental accomplishment
- Remarkable agreement with theory

especially for statistics the theory prefers

$< a_{\ell m} a^*_{\ell' m'} > = C_{\ell} \delta_{\ell \ell'} \delta_{mm'}$?

Standard model for the fluctuations (inflation):

- Sky is statistically isotropic
- a_{em} are independent (almost?) Gaussian random variables

$$< a_{\ell m} a^*_{\ell' m'} > = C_{\ell} \delta_{\ell \ell'} \delta_{mm'}$$

Shouldn't we check?

If not... then how is the information on PNG to be extracted ?

$$< a_{\ell m} a^*_{\ell' m'} > = ?$$

$$< a_{\ell m} a_{\ell' m'} a_{\ell'' m''} > = ?$$

$$< a_{\ell m} a_{\ell' m'} a_{\ell'' m''} a_{\ell''' m''} > = ?$$

The first hint: "The Low-/ Anomaly"

NASA WMAP Science Team WMAP 1 The uncorrelation ...

"The Low-/ Anomaly"

"The Large-Angle Anomaly"

Angular Correlation Function C(θ)

$C(\theta) = \langle T(\Omega_1)T(\Omega_2) \rangle_{\Omega_1.\Omega_2 = \cos\theta}$

But $C(\theta) = \sum_{i} C_{i} P_{i}(\cos(\theta))$

 \Rightarrow Same information as C_l, just differently organized

TWO-POINT CORRELATIONS IN THE COBE¹ DMR FOUR-YEAR ANISOTROPY MAPS

G. HINSHAW,^{2, 3} A. J. BANDAY,^{2, 4} C. L. BENNETT,⁵ K. M. GÓRSKI,^{2, 6} A. KOGUT,² C. H. LINEWEAVER,⁷ G. F. SMOOT,⁸ AND E. L. WRIGHT⁹ Received 1996 January 9; accepted 1996 March 21

Angular separation (degrees)

An Infrared Cutoff Revealed by the Two Years of COBE Observations of Cosmic Temperature Fluctuations

Yi-Peng Jing and Li-Zhi Fang Phys. Rev. Lett. **73**, 1882 – Published 3 October 1994

ABSTRACT

We show that a good fitting to the first two years of observations by the Cosmic Background Explorer Differential Microwave Radiometers of the two-point angular correlation function of cosmic background radiation (CBR) temperature is given by models with a nonzero infrared cutoff k_{\min} in the spectrum of the primordial density perturbations. If this cutoff comes from the finiteness of the universe, say, a topological T3 model, we find $k_{\min} \sim \left(0.3 - 1.1\right) \pi \frac{H_0}{c}$ with confidence level 95%. Such a nonzero k_{\min} universe would also give a better match to the observations both of the rms quadrupole anisotropy of CBR and of galaxy clustering.

Received 25 March 1994

Two-point angular correlation function

Is the Large-Angle Anomaly Significant?

One measure (WMAP1): $S_{1/2} = \int_{-1}^{1/2} [C(\theta)]^2 d \cos \theta$

Statistics of $C(\theta)$

Table 1. The C_{ℓ} calculated from $C(\theta)$ for the various data maps. The WMAP (pseudo and reported MLE) and best-fit theory C_{ℓ} are included for reference in the bottom five rows.

$_{(\mu {\rm K})^4}^{S_{1/2}}$	$\begin{array}{c} P(S_{1/2}) \\ (\text{per cent}) \end{array}$	${6 C_2/2\pi \over (\mu{ m K})^2}$	${{12 {\cal C}_3/2\pi}\over (\mu{\rm K})^2}$	$^{20\mathcal{C}_4/2\pi}_{(\mu\mathrm{K})^2}$	${30 {\cal C}_5/2\pi \over (\mu{ m K})^2}$
$1288 \\ 1322$	$0.04 \\ 0.04$	77 68	$410 \\ 450$	762 771	$1254 \\ 1302$
1026	0.017	128 84	442 394	762 875	1180 1135
8413	4.9	239	1051	756	1588
1346	0.042	60	339	745	1248
1330	0.038	47	379	752	1287
1304	0.037	77	340	746	1249
1284	0.034	59	379	753	1289
1146	0.025	81	320	769	1156
1152	0.025	95	320	768	1158
8583	5.1	253	1052	730	1590
2093	0.18	120	602	701	1346
8334	4.2	211	1041	731	1521
52857	43	1250	1143	1051	981
8833	4.6	213	1039	674	1527
49096	41	1207	1114	1031	968
	$S_{1/2} \ (\mu K)^4$ 1288 1322 1026 0 8413 1346 1330 1304 1284 1146 1152 8583 2093 8334 52857 8833 49096	$\begin{array}{c} S_{1/2} \\ (\mu {\rm K})^4 \\ \end{array} \begin{array}{c} P(S_{1/2}) \\ ({\rm per \ cent}) \\ \end{array} \\ 1288 \\ 0.04 \\ 1322 \\ 0.04 \\ 1026 \\ 0.017 \\ 0 \\ \\ 8413 \\ 4.9 \\ \end{array} \\ \begin{array}{c} 8413 \\ 4.9 \\ \end{array} \\ \begin{array}{c} 1346 \\ 0.042 \\ 1330 \\ 0.038 \\ 1304 \\ 0.037 \\ 1284 \\ 0.037 \\ 1284 \\ 0.034 \\ 1146 \\ 0.025 \\ 1152 \\ 0.025 \\ 8583 \\ 5.1 \\ \end{array} \\ \begin{array}{c} 2093 \\ 8583 \\ 5.1 \\ \end{array} \\ \begin{array}{c} 2093 \\ 8583 \\ 334 \\ 4.2 \\ 52857 \\ 43 \\ 8833 \\ 4.6 \\ 49096 \\ 41 \\ \end{array} \\ \begin{array}{c} P(S_{1/2}) \\ 0.04 \\ 0.017 \\ 0.025 \\ 0.$	$\begin{array}{c} S_{1/2} \\ (\mu {\rm K})^4 \\ P(S_{1/2}) \\ (\rm per \ cent) \\ \end{array} \begin{array}{c} 6 \mathcal{C}_2/2\pi \\ (\mu {\rm K})^2 \\ \end{array} \end{array}$	$\begin{array}{c} S_{1/2} \\ (\mu {\rm K})^4 \\ P(S_{1/2}) \\ (\rm per \ cent) \\ P(S_{1/2}) \\ (\mu {\rm K})^2 \\ 1288 \\ 0.04 \\ 68 \\ 450 \\ 1026 \\ 0.04 \\ 68 \\ 450 \\ 1026 \\ 0.017 \\ 128 \\ 442 \\ 0 \\ 0 \\ \\ 84 \\ 394 \\ 3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Origin of $C(\theta)$

Did this change in Planck?

Planck 2018 (A&A 641, A7 (2020)) Comm. NILC SEVEM SMICA $S_{1/2}(\mu K^4)$ 1209.2 1156.6 1146.2 1142.4

Statistics of $C(\theta)$

 0.03-0.1% of realizations of the concordance model of inflationary ACDM have so little <u>cut sky</u> large-angle correlation !

and most of those have all low-I C_I small

Violation of (GR)SI

Even if we replaced all the theoretical C₁ by their measured values up to *I*=20, cosmic variance would give only a 3% chance of recovering so little correlation in a particular realization and most of those are much poorer fits to that theory than is the current data

Explaining $S_{1/2}$

- 1. "Didn't that go away?"
- 2. "I never believe a posteori statistics."
- 3. Cosmic variance -- "I never believe anything less than a (choose one:) $5\sigma 10\sigma 20\sigma$ result."
- 4. "Inflation can do that"

5. New physics that correlates C_l's

Explanations

- This is a statistical fluke in standard LCDM
- Not a fluke:
- **Probable Implication:**

 $R(r)Y_{Im}(\Omega)$ are wrong basis to preserve Gaussianity Example:

cosmic topology (=> scalar eigenmode basis)

Beyond C_e: Searching for Departures from Gaussianity/Statistical Isotropy

- angular momentum dispersion axes (da Oliveira-Costa, et al.)
- genus curves (Park)
- spherical Mexican-hat wavelets (Vielva et al.)
- bispectrum (Souradeep et al.)
- north-south asymmetries (Eriksen et al., Hansen et al.)
- dipolar modulations
- cold hot spots, hot cold spots (Larson and Wandelt)
- Land & Magueijo scalars/vectors
- even/odd C_e anomaly
- your favourite technique/anomaly that I missed
- multipole vectors (Copi, Huterer, Schwarz, GDS; Weeks; Seljak and Slosar; Dennis)

Alignments ...

Multipole Vectors

Q: What directions are associated w the ℓ th multipole: $\Delta T_{\ell}(\theta, \phi) \equiv \sum_{m} a_{\ell m} Y_{\ell m}(\theta, \phi)$? Dipole (l = 1): $\sum_{m} a_{1m} Y_{1m}(\theta, \phi) = A^{(1)} \hat{u}_{x}^{(1,1)} .(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$

Advantages:

1) û ^(1,1) is a vector, A⁽¹⁾ is a scalar
 2) Only A⁽¹⁾ depends on C₁

Multipole Vectors

General *l*, write:

 $\sum_{m} a_{lm} Y_{lm}(\theta, \phi) \approx A^{(\ell)} [(\hat{u}^{(l,\ell)} \cdot \hat{e}) \dots (\hat{u}^{(l,\ell)} \cdot \hat{e}) - \text{all traces}]$

 $\{\{a_{| m, m} = -1, \dots, | \}, | = (0, 1,)2, \dots\} \Rightarrow \\ \{A^{(l)}, \{\hat{u}^{(l,i)}, \epsilon = 1, \dots, | \}, | = (0, 1,)2, \dots\}$

Advantages: 1) $\hat{\mathbf{u}}^{(l,i)}$ are vectors, $\mathbf{A}^{(l)}$ is a scalar 2) Only $\mathbf{A}^{(l)}$ depends on C_l

Maxwell Multipole Vectors

$$\sum_{m} a_{lm} Y_{lm} (\theta, \phi)$$

$$= \left[(\mathbf{u}^{(l,l)} \cdot \nabla) \dots (\mathbf{u}^{(l,l)} \cdot \nabla) \mathbf{r}^{-1} \right]_{r=1}$$

J.C. Maxwell, *A Treatise on Electricity and Magnetism*, v.1, 1873 (1st ed.)

Area Vectors

Notice:

 Quadrupole has 2 vectors, *i.e.* quadrupole is a plane
 Octopole has 3 vectors, *i.e.* octopole is 3 planes

Suggests defining:

 $\mathbf{w}^{(l,i,j)} \equiv (\hat{\mathbf{u}}^{(l,i)} \times \hat{\mathbf{u}}^{(l,j)})$ "area vectors"

Carry some, but not all, of the information

I=2&3 Area Vectors

Quadrupole-octupole alignment:

p-value: (0.1-0.6)%

Quadrupole+Octopole Correlations

- Cosmology ("Physical Model")
 - but how to get dipole correlation?
 - how to get $C_2 < C_3$?
- Systematics
 - how do you get the systematics in both WMAP and Planck?
- The Galaxy: (Systematics/Physical Model)
 - has the wrong multipole structure (shape)
 - is likely to lead to GALACTIC not ECLIPTIC/DIPOLE/EQUINOX correlations
- Other Foregrounds -- difficult:
 - •Changing a patch of the sky typically gives you: Y_{I0}
 - •Sky has 5x more octopole than quadrupole
 - •How to get a physical ring (perpendicular to the ecliptic!)?
 - How to hide the foreground from detection? T≈T_{CMB}

Conclusions?

Alignments are:

- Persistent
- Individually interesting, collectively significant
- but hard to explain, or establish "priority"

How to make progress?

Power asymmetry Dipole modulation

Low Northern Variance

Marcio O'Dwyer (with GDS, Copi, Knox)

Bennett et al 2003 Eriksen et al 2004, and many others

SMICA N vs S variance

SI violation ("dipole modulation") extends to high *l*

 ℓ ig. 35. Dipole directions for independent 100-multipole bins of the local power spectrum distribution from $\ell = 2$ to 1500 in the SMICA map

p < 1%

Fig. 36. Derived *p*-values for the angular clustering of the power distribution as a function of ℓ_{max} , determined for Commander (red), NILC (orange), SEVEM (green), and SMICA (blue), based on 500 simulations For SMICA, the *p*-values based on 2500 simulations are also shown

Planck 2015

A couple of more that I find intriguing: Mirror parity, (N) ecliptic polar excursions

The Universe is either:

a) a likely realization of a statistically anisotropic cosmological model

b) a very unlikely realization of a SI cosmological model

With so many anomalies, what do we do?

Making Progress

- 1. Find a fundamental physics model, make testable predictions.
- 2. Make reasonable phenomenological extrapolations and test them.
- 3. Test the "fluke hypothesis." i.e. test LCDM!

Another talk ...

Violation of SI does not imply (or preclude) NG;

but it may make it much harder to measure

All (?) NG statistical results assume SI

Violation of SI affects the bispectrum/f_{NL}, and σ_{fNL}

$$< a_{\ell m}^{X} a_{\ell' m'}^{Y} a_{\ell' m''}^{Z} > \neq \boldsymbol{\mathcal{G}}_{m m' m''}^{\ell \ell' \ell''} b_{\ell \ell' \ell''}^{X Y Z}$$

$$\hat{f}_{\rm NL} = \frac{1}{N} \sum_{X_i, X'_i} \sum_{\ell_i, m_i} \sum_{\ell'_i, m'_i} \mathcal{G}_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} b_{\ell_1 \ell_2 \ell_3}^{X_1 X_2 X_3, \rm th} \left\{ \left[\left(\mathsf{C}_{\ell_1 m_1, \ell'_1 m'_1}^{-1} \right)^{X_1 X'_1} a_{\ell'_1 m'_1}^{X'_1} \quad \hat{f}_{\rm NL} = \frac{1}{N} \sum_{X_i, X'_i} \sum_{\ell_i, m_i} \mathcal{G}_{m_1 m_2 m_3}^{\ell_1 \ell_2 \ell_3} \left(\mathsf{C}^{-1} \right)_{\ell_1}^{X_1 X'_1} \left(\mathsf{C}^{-1} \right)_{\ell_2}^{X_2 X'_2} \left(\mathsf{C}^{-1} \right)_{\ell_3}^{X_3 X'_3} b_{\ell_1 \ell_2 \ell_3}^{X_1 X_2 X_3, \rm th} \\ \times \left(\mathsf{C}_{\ell_2 m_2, \ell'_2 m'_2}^{-1} \right)^{X_2 X'_2} a_{\ell'_2 m'_2}^{X'_2} \left(\mathsf{C}_{\ell_3 m_3, \ell'_3 m'_3}^{-1} \right)^{X_3 X'_3} a_{\ell'_3 m'_3}^{X'_3} \right] \qquad \times \left[a_{\ell_1 m_1}^{X'_1} a_{\ell_2 m_2}^{X'_2} a_{\ell_3 m_3}^{X'_3} - \mathsf{C}_{\ell_1 m_1, \ell_2 m_2}^{X'_1 X'_2} a_{\ell_3 m_3}^{X'_3} - \mathsf{C}_{\ell_1 m_1, \ell_3 m_3}^{X'_1 X'_3} a_{\ell'_2 m_2}^{X'_2} \right] \\ - \left[\left(\mathsf{C}_{\ell_1 m_1, \ell_2 m_2}^{-1} \right)^{X_1 X'_2} \left(\mathsf{C}_{\ell_3 m_3, \ell'_3 m'_3}^{-1} \right)^{X_3 X'_3} a_{\ell'_3 m'_3}^{X'_3} + \operatorname{cyclic} \right] \right], \quad (25)$$

Optimal estimator given SI diagonal covariance approximation, given SI

From Planck 2018 IX Constraints on PNG

Q: how would we even estimate f_{NL}?!

 $< a_{\ell m} a_{\ell' m'} a_{\ell' m''} > \neq 0$ implies NG distribution for $a_{\ell m}$ but how do you construct a summary statistic
and an estimator if $< a_{\ell m} a_{\ell' m'}^* > \neq C_{\ell} \delta_{\ell \ell'} \delta_{m m'} ?$ And if $< a a a a a a a a > \neq < a a a a a a a > _{SI} ?$

What if $\langle a_{\ell m} a_{\ell' m'}^* \rangle = C_{\ell} \delta_{\ell \ell'} \delta_{m m'}$ but summary statistics for $\ell \neq \ell'$ or m $\neq m'$ are inconsistent with 0?

All (?) NG statistical results assume SI

NG is not just about the bispectrum — e.g. features in the tail of the distribution of ... $a_{\ell m}$?

But the tails of what distribution if not SI?

What if $a_{\ell m} = 0$ for certain m? and $a_{\ell m} = a_{\ell m'}$ for other m?

Making Progress

- 1. Find a fundamental physics model, make testable predictions.
- 2. Make reasonable phenomenological extrapolations and test them.
- 3. Test the "fluke hypothesis." i.e. test LCDM!

Another talk ...

New Models

List of new fundamental physics models <u>known</u> to explain all/most/several anomalies:

Requirements:

- Affect scales that were causally disconnected until recently
- Break statistical isotropy

Topology — a (only??) stage for explaining multiple anomalies

Breaks SI – $R_{n\ell}(r)Y_{\ell m}(\theta, \phi)$ no longer the scalar eigenmodes

The 6 compact orientable E³ manifolds

Topology — a (only??) stage for explaining anomalies

- Breaks SI R_{n/}(r) Y_{/m} no R_{n/}(r)Y_{/m} longer scalar eigenmodes
- <u>At all /</u> effects of topology extends to high /

$$< a_{\ell m} a_{\ell' m'}^* > \neq C_{\ell} \delta_{\ell \ell'} \delta_{m m'}$$

$$|\langle \delta_{\vec{k}}\delta_{\vec{k}}\rangle| = |\langle \delta_{\vec{k}}\delta_{\vec{k}}\rangle|$$
 for certain $\vec{k'} = R \vec{k}$

Topology — a (only??) stage for explaining anomalies

- Breaks SI R_{n/}(r) Y_{/m} no R_{n/}(r)Y_{/m} longer scalar eigenmodes
- At all / effects of topology extends to high /

- In E³ eigenmodes are (finite Ic of) Fourier modes but discrete and w correlated amplitudes
- But **must** allow for $\Omega_K \neq 0$! (2207.06547) <u>There is no such thing as "flat Λ CDM". (Except topologically!</u>)
- Eigenmodes are generically (in)finite Ic of covering space eigenmodes

S³ Manifold H³ Manifold

Topology breaks statistical homogeneity

All (?) of the NG statistical results assume statistical homogeneity

How does that affect calculation/estimation of (P)NG?

Our universe makes a very poor case for statistical isotropy

Assume it at your peril