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Motivation

Future and on-going surveys will provide huge photometric datasets.
Harmonic power spectrum is already used to constraints cosmological parameters.

The harmonic bispectrum is the natural next step after the 2-point statistics,
improving the constraining power of angular statistics.



A bit of math...

Once we define the density contrast and its Fourier counterpart, we can
define the matter Power Spectrum and Bispectrum
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A bit of math... on the sphere

Let’s integrate the density contrast along the line of sight (i.e., z in redshift
space):

5(R) = / dz B(2)5, (B, 2)

Radial selection function:

dN,
P(z) = rA W(z)



A bit of math... on the sphere

Every spherical function can be decomposed by means of the Spherical
Harmonics, i.e., the orthonormal basis on the sphere.

+o0o0 m=~¢

f(n) = Z Z armYem(m),

(=0 m=—¢

Aftm = /S , dQ) f (ﬁ)Y;;n(ﬁ)

Harmonic coefficients contain all the information of the original distribution.



Spherical statistics

We can than define, as in Fourier space, power spectrum and bispectrum:
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The Gaunt integral ensures that the three ell’s form a closed triangle.



Matter spherical distribution statistics

Putting all together and take advantage of the plane-wave expansion:

aj,, = 4ni /dzcb(z)/( )3
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Limber approximation

Allows to get rid of integrals of Bessel functions exploiting their properties
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Limber approximation

Allows to get rid of integrals of Bessel functions exploiting their properties
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Dataset

Photometric mocks extracted from N-body simulations produced by MICE
collaboration (Crocce et al. 2011).

LambdaCDM, z_center=0.5, 125 mocks covering 1/8%" of the sky:.

Case Az/(1+2) o

0.03 0.03
0.05 0.03
0.03 0.06
0.05 0.06




Results

Tree-level bispectrum model
was used. Corrections from
Scoccimarro, Couchman
(2001) and Gil-Marin (2011)

where also used.

|_max]

L= [l_min,

Features are lost when z-bin
size or photo-z error
Increase.

GM correction consistent
with the measurements.
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Results

Non-Triangular bins effect

When the three L does not
form a closed triangle, BUT
at least one triplet
contained in them does.

Usually, these triplets form a
flat triangle.

Homogenizing the sample
destroys the flat
configurations (i.e., the
filaments).
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Next step: Beyond Limber

Limber approximation performs better at high ell’s (1>80).

Being able to compute the bispectrum integral fast comes at the price of
information loss at the large scales.

We need a fast way to compute exact bispectrum at the largest scales...



PSICo: Power Spectrum Integration Code

PSICo performs FFTlog of the bispectrum in harmonic space.
The Bessel functions integral are evaluated exactly using Hankel transform.

Hybrid Python-C++ code make the computation fast (less than 0.01 sec per bisp
configuration)

Currently under validation (Paperin prep.)



Conclusion and future perspectives

We recover bispectrum measurements using Limber integrated tree-level
bispectrum.

Non-Limber code (PSICo) is ready to be used to get fast and exact bispectra.

Next step:
- Evaluation of forecast for future surveys
- Parameter estimation on real data

- Improve the B(k1,k2,k3) model (for example, by adding 1-loop correction)



