Cosmic-ray physics and indirect Dark Matter searches

ISAPP school "Gamma rays to shed light on Dark Matter"

Daniele Gaggero

What did we learn so far?

1) Dark matter is out there!

- 2) A good DM candidate is a *massive*, *neutral*, *cold* (or not too warm), *stable* (or very long-lived), *feebly interacting* particle (both with itself and with ordinary matter). No SM particle can fulfill these requirements.
- 3) The **WIMP paradigm** is a widely studied framework. WIMPs are expected to annihilate into standard model particles

• We have a flux of standard model *particles from outer space* carrying very high energies: we call them **cosmic rays** (CRs)

• We also have a significant gamma-ray emission from our Galaxy and other galaxies, mostly originating from CR interactions

How to disentangle this emission from a DM signal?

Let's learn more about CRs! Flash of history

Domenico Pacini

(1910) observed a *decrease* of the ionization level in the water with increasing depth

Victor Hess

(1912) observed an *increase* of the ionization level in the atmosphere with increasing height (similar studies by **Theodor Wulf** in 1910, on the Eiffel tower)

PENETRATING RADIATION AT THE SURFACE OF AND IN WATER

Note by D. PACINI

Translated and commented by Alessandro De Angelis INFN and University of Udine

Observations that were made on the sea during the year 1910^5 led me to conclude that a significant proportion of the pervasive radiation that is found in air had an origin that was independent of direct action of the active substances in the upper layers of the Earth's surface.

Here, I will report on further experiments that support this conclusion.

The results that were previously obtained indicated that a source of ionization existed on the sea surface, where possible effects from the soil are small, that had such an intensity that could not be explained on the basis of the known distribution of radioactive substances in water and in air.

Question 1: how do we distinguish particles from antiparticles? can we do it for all energies?

Low energy (GeV-TeV): Large fluxes 1 particle/m²/s @100 GeV mostly measured by balloon-borne and space-based experiments

High energy (TeV and beyond):

Low fluxes 1 particle/km²/y @10¹⁸ eV Ground-based experiments measure the *air shower* that CRs generate in the atmosphere

Properties of the CR flux at Earth

Cosmic rays: a (almost isotropic) flux of high-energy particles from outer space

Huge energy range, 11 decades in energy!

from ~1 GeV to ~10²⁰ eV

(remember: $1 eV = 1.6 * 10^{-19} J$)

Largest energy ~ 50 J (like a baseball traveling at ~ 100 km/h) Lorentz factor $\gamma \sim 10^{11}$

(*"Oh-my-god particle"* recorded in 1991 at Fly's Eye CR detector)

"Non-thermal" spectrum: a powerlaw in momentum

Properties of the CR flux at Earth

• The all-particle CR Spectrum is roughly consistent with a single power law of slope -2.7 spanning from GeV to a few PeV

Zooming in: new features start to appear

 Possible signature of a single nearby accelerator?

Spectral features: The knee

- The knee is a relevant steepening that corresponds with a progressive change in composition.
- Below the knee: the CR composition is largely dominated by protons
- *Larger energies:* the presence of heavier elements becomes important.
- The spectral steepening observed above the knee corresponds to a reduced efficiency of Galactic CR sources in accelerating particles up to such energies.

Spectral features: The ankle

- The ankle is a hardening in the all-particle spectrum at ≈ 5000 PeV (5 EeV)
- It is believed to result from the emergence of the extra-Galactic component of CRs above the Galactic one

Question 2: how can we estimate the maximum energy associated to Galactic confinement?

Spectral features: The ankle

- The ankle is a hardening in the all-particle spectrum at ≈ 5000 PeV (5 EeV)
- It is believed to result from the emergence of the extra-Galactic component of CRs above the Galactic one

Zooming in on the highest energies

Complicated puzzle in the region from the knee to the ankle. Precise location of Galactic - extra-Galactic transition unclear!

Composition

- 89% are protons
- 10% are He nuclei
- All nuclear species are present
- Over-abundance of Li, Be, B (by 5-7 orders of magnitude at 1 GeV) with respect to Solar System abundances
- 1-2% are electrons

Composition

Grigorov Akeno 10⁰ protons only MSU 0 KASCADE Tibet KASCADE-Grande IceTop73 all-particle HiRes1&2 10⁻² TA2013 (GeV cm⁻²sr⁻¹s⁻¹) electrons Auger2013 Model H4a CREAM all particle positrons Galactic E²dN/dE 10⁻⁶ antiprotons Extra-Galactic 10⁻⁸ Fixed target HERA TEVATRON RHIC LHC 10⁻¹⁰ 10¹² 10² 10¹⁰ 10⁰ 10⁴ 10⁸ 10⁶ Е (GeV / particle)

Energies and rates of the cosmic-ray particles

- A very small fraction of CRs are antiparticles (positrons and antiprotons)
- Production channel: Spallation from heavier nuclei
- Ongoing search for anti-deuteron and antihelium

The "big questions"

- 1) Where do they come from? How do they reach these large energies?
- 2) How do they propagate in the interstellar space before reaching us?
- The answers are still under debate, *after more than 100 years since the discovery*!
- An **interdisciplinary** research field: It requires deep knowledge of particle physics, astrophysics, plasma physics...

The "Orthodox picture"

Pillar 1) The **bulk of the energy** of cosmic rays originates from *Supernova Explosions* in the Galactic disk *(other sources may be at work)*

- Measured local energy density of CRs is approximately equal to the other components of the ISM (magnetic field, photon field): $1~eV/~cm^3$
- Energy budget is compatible with energy injected by SNae
- We have a theory that explains CR acceleration at SN shocks: Diffusive Shock Acceleration (DSA) (other mechanisms may be at work as well)

The "Orthodox picture"

Pillar 2) Cosmic rays are diffusively confined within an extended, magnetized Galactic halo

1) A primer on CR acceleration

- E)R	F	RI	ΤZ	ZWI	C	K	١

WALTER BAADE, FIZIKUS

Title:	Cosmic Rays from Super-novae	19
Authors:	Baade, W., ; Zwicky, F.	
Publication:	Contributions from the Mount Wilson Observatory, vol. 3, pp.79-83	
Publication Date:	00/1934	
Origin:	ADS	
Keywords:	Supernovae	
Comment:	Reprinted from Proceedings of the National Academy of Sciences, 20, 259-262, 19	934.
Bibliographic Code:	<u>1934CoMtW379B</u>	

Abstract

The hypothesis that supernova emit cosmic rays is in reasonable agreement with cosmic ray observations.

The energy supplied by all Supernova explosions in the Galaxy is enough to sustain the CR flux in the GeV-PeV range (with efficiency of order 1-10%)!

question 3: how can we prove this with a rough order-of-magnitude estimate?

Useful numbers: CR energy density is $\sim 1 eV/cm^3$ – CR residence time is ~ 10 Myr – SN rate is ~ 3 /century in our Galaxy – Volume of the Galaxy?

A primer on CR acceleration: SNRs

- SNRs are structures resulting from explosions of supernovae
- Energy released in a type II SN ~10⁵³ erg (10⁴⁶ J) (99% in neutrinos!)
- A shock (density and pressure discontinuity) expands in the interstellar medium: v ~ 1000 km/s in the first phase
- Typical SNR lifespan: ~10-100 kyr

A primer on CR acceleration: DSA

- Shock front —> a discontinuity in pressure and temperature travelling in the interstellar medium
- Shocks behave as efficient heating machines —> a large fraction of incoming kinetic energy is converted into internal energy of the gas behind the shock front
- This mechanism was not proposed by Fermi

A primer on CR acceleration: DSA

- Charged particles interact with the shock front propagating in the interstellar medium
- Turbulent magnetic field —> particles are deflected in random way both upstream and downstream the shock

Maximal energy: Hillas criterion

The "lucky" particles that interact with the shock many times can reach very large energies:

$$\frac{D}{u_s} \sim \frac{r_L c}{u_s} \sim \frac{p c B_s}{u_s} \sim R_s \qquad r_L \equiv \frac{p c}{Z e B_0} \simeq \frac{E/Z}{10^{15} \text{ eV}} \left(\frac{B_0}{\mu \text{G}}\right)^{-1} \text{pc}$$

$$E_{max} = \epsilon \left(\frac{R_s}{\text{pc}}\right) \left(\frac{u_s}{1000 \text{ km/s}}\right) \left(\frac{B_s}{\mu \text{G}}\right) \text{ T}$$

In supernova remnants, if the magnetic field is large enough:

-> CR Protons can reach energies as large as \sim PeV = 10¹⁵ eV

-> CR Nuclei can reach energies as large as $Z E_{max}$ (protons)

Evidence for CR confinement:

- 1) **Isotropy** of the arrival direction
- 2) Bright diffuse emission in gamma rays at GeV-TeV energies
- 3) Over-Abundance of light elements such as Lithium, Beryllium, Boron

Resulting picture:

- *CRs are confined* for a long time (> 10 Myr) in the Galaxy
- CRs interact with the intestellar gas
- Heavier species produce lighter ones (secondaries) via *spallation*

Resulting picture:

- *CRs are confined* for a long time (> 10 Myr) in the Galaxy
- CRs interact with the intestellar gas
- Heavier species produce lighter ones (secondaries) via *spallation*

Resulting picture:

- *CRs are confined* for a long time (> 10 Myr) in the Galaxy
- CRs interact with the intestellar gas
- Heavier species produce lighter ones (secondaries) via *spallation*

Resulting picture:

- *CRs are confined* for a long time (> 10 Myr) in the Galaxy
- CRs interact with the intestellar gas
- Heavier species produce lighter ones (secondaries) via *spallation*

Given the cross section and the relative abundance of secondaries and primaries, *we can estimate that CRs cross a column density ~3 g/cm²*

The basic picture: Quasi line scatte

Prologue: Regular and turbuler

Regular field:

- Galactic Plane component
- (follows spiral arms)
- Vertical X-shaped component

The basic picture: Quasi linear theory of pitch angle scattering

Prologue: Regular and turbulent magnetic field in the Galaxy

The basic picture: The Quasi-Linear Theory (QLT) of pitch-angle scattering

Assumptions:

- CRs scatter off magnetic inhomogeneities. The inhomogeneities are *Alfvénic*. They are *isotropic* and their **energy density is characterized** by a power-law spectrum as a function of the wavenumber k
- 2) The inhomogeneities are small, at the scale of interest, with respect to the coherent large-scale magnetic field B_0

The basic picture: The Quasi-Linear Theory (QLT) of pitch-angle scattering

Key results:

1) CRs diffuse mainly along the regular field

3) The parallel diffusion coefficient as a function of the particle rigidity can be written in terms of the turbulent power at the resonant scale as:

$$D(p) = \frac{v^2}{3\Omega_g} \frac{B_0^2/(8\pi)}{k_{\rm res}P(k_{\rm res})}.$$

It is convenient to recast the expression in this way, in terms of the turbulence strength at the resonant scale:

$$D(p) = \frac{1}{3} \frac{r_L v}{\mathcal{F}(k_{\rm res})}$$

$$\mathcal{F}(k) \equiv \frac{kP(k)}{B_0^2/(8\pi)}.$$

 $<\Delta x>=\sqrt{D\Delta t}$

Limitations of QLT

- 1) Possible important role of **non-linear effects** at low energy: CR selfconfinement due to Alfvén waves generated by the CRs themselves!
- 2) Anisotropy of the Alfvénic cascade. Most of the power is transferred to perpendicular scales —> the Alfvénic waves may actually be highly inefficient in confining CRs —> pitch-angle scattering onto magnetosonic modes may play the dominant role

$$D_{\mu\mu}$$

μμ

"Global" Phenomenological models

Phenomenological models

$$\left(\nabla \cdot (\vec{J}_i - \vec{v}_w N_i) + \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{N_i}{p^2} \right) \right] - \frac{\partial}{\partial p} \left[\dot{p} N_i - \frac{p}{3} \left(\vec{\nabla} \cdot \vec{v}_w \right) N_i \right] = \left(Q + \sum_{i < j} \left(c\beta n_{\text{gas}} \sigma_{j \to i} + \frac{1}{\gamma \tau_{j \to i}} \right) N_j - \left(c\beta n_{\text{gas}} \sigma_i + \frac{1}{\gamma \tau_i} \right) N_i \right)$$

The main ingredient is spatial diffusion

$$J_i = -D_{ij}\nabla_j N$$

Source terms:

- supernova remnants
- pulsars?
- dark matter?

Phenometrelifetoge and the second stand and the second stand and the second stand and the second stand and the second sec

$$\nabla \cdot (\vec{J_i} - \vec{v_w} N_i) + \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{N_i}{p^2} \right) \right] - \frac{\partial}{\partial p} \left[\dot{p} N_i - \frac{p}{3} \left(\vec{\nabla} \cdot \vec{v_w} \right) N_i \right] = Q + \sum_{i < j} \left(c \beta n_{\text{gas}} \sigma_{j \to i} + \frac{1}{\gamma \tau_{j \to i}} \right) N_j - \left(c \beta n_{\text{gas}} \sigma_i + \frac{1}{\gamma \tau_i} \right) N_i$$

$$J_i = -D_{ij}\nabla_j N \qquad D_{ij} = (D_{\parallel} - D_{\perp}) b_i b_j + D_{\perp} \delta_{ij} + \epsilon_{ijk} D_A b_k,$$

How diffusion shapes the spectrum

A commonly adopted approach (inspired by QLT) is to consider a power-law in momentum for the diffusion coefficient $D\propto p^{\delta}$

35

A simple way to capture the effect of diffusion: Leaky-box model

$$\frac{\partial N}{\partial t} = \frac{N}{\tau_{esc}(p)} + Q(p) \qquad \tau_{esc} \propto p^{-\delta}$$

Primary species (steepening of the spectrum):

$$Q_{pri}(p) \propto p^{-\alpha} \Rightarrow N_{pri}(p) \propto p^{-\alpha-\delta}$$

Secondary species (further steepening):

$$Q_{sec}(p) \propto p^{-\alpha-\delta} \Rightarrow N_{sec}(p) \propto p^{-\alpha-\delta-\delta}$$

Ratios:

Radiation from CRs

р

р

n

 π^0

 γ

 e^+

 \overline{v}_{μ}

 v_{μ}

 v_e

GeV sky

Now let's go back to Dark Matter searches...

We can look at the *"anomalies"* in charged particles, in order to search a **potential DM signal.**

Anomalies with respect to what? Which ones?

We can look at the "anomalies" in charged particles. Which ones?

arXiv:1610.03071

10

e[±] energy [GeV]

10²

• AMS-02

PAMELA

▲ Fermi

ANTIPROTONS

Positron fraction

10-1

1

We can look at the "anomalies" in charged particles. Which ones?

Hint: Compare the power injected by DM

$$L \sim M_{\rm DM} \cdot < \sigma v > \cdot \frac{1}{M_{\rm DM}^2} \cdot \int^{R_{max}} d^3 x \ \rho_{NFW}^2(r)$$

With the power injected by SNae into CRs (see previous exercises)

 $L_{DM} \sim 10^{37} \text{ erg/s}$ $L_{CR} \sim 10^{41} \text{ erg/s}$

...antiparticles seem a very interesting channel for DM-related anomalies!

Exotic signals

What kind of signal do we expect from DM annihilation into charged particles? It depends on the final state!

Exotic signals

What kind of signal do we expect from DM annihilation into charged particles? It depends on the final state!

Exotic signals

What kind of signal do we expect from DM annihilation into gamma rays?

1. "Prompt" emission

2. "Secondary" emission: SM particles in the final state diffuse in the Galaxy and emit gamma rays (mainly due to IC and bremsstrahlung)

Case study: The antiproton anomaly. Role of CR physics

An indication for a **DM signal in the antiproton flux**, compatible with the DM interpretation of another claim (the Galactic center gamma-ray GeV excess)?

Case study: The antiproton anomaly. Role of CR physics

Under debate! Crucial role of **uncertainties** associated to:

- Cross sections
- CR propagation parameters (within global phenomenological models)
- Solar modulation

)% -

- Rise at high energy in the **positron fraction** originally discovered by PAMELA in 2009, ^{10%} and subsequently confirmed by Fermi LAT and AMS-02 collaborations, is a **substantial deviation** from the standard prediction
- Many DM scenarios were invoked: The tough challenges for model building are:
 - The large annihilation cross section required to sustain the measured positron flux
 - The strong constraints or ginating from other channels (gamma rays, CMB, and antiprotons) ositron energy in GeV Energy in GeV \overline{p} kinetic energy in GeV

Case study: The positron anomaly

- However: Natural explanation in terms of nearby astrophysical accelerators of primary electron+positron pairs, e.g. pulsar wind nebulae
- Important: Gamma-ray observatories may now allow to identify the emission from the leptons leaving nearby known pulsars. A detection of a TeV halo around Geminga has recently been reported.

Thank you for your attention!

A primer on CR accelerated for Forming States and the second seco

Eventually, we get a power law spectrum:

Define $\mathcal{E}=\beta \mathcal{E}_0$ as the average energy of the particle after a collision

Define P as the probability that the particle remains in the acceleration region after a collision

After k collisions there are $N = N_0 P^k$ particles with energies $\mathcal{E} = \mathcal{E}_0 \beta^k$

Eliminating k yields

$$\frac{n(N/N_0)}{\ln(\mathcal{E}/\mathcal{E}_0)} = \frac{\ln P}{\ln \beta}$$
$$\Rightarrow \frac{N}{N_0} = \left(\frac{\mathcal{E}}{\mathcal{E}_0}\right)^{\ln P/\ln \beta}$$

The power spectrum is then

$$N(\mathcal{E}) d\mathcal{E} \propto \mathcal{E}^{-1 + (\ln P / \ln \beta)} d\mathcal{E}$$

A primer on CR acceleration: SNRs

- Two types of SNae
- SN type II are mostly distributed in the Galactic disk (scale height ~ 100 pc) where star formation is going on.

(remember 1 pc = 3.26 light years)

Backup slides: the diffusion equation in detail

The velocity of the particle in the three spatial dimensions can therefore be written as:

$$v_x(t) = v_\perp \cos\left(\Omega t + \phi\right) \tag{22}$$

$$v_y(t) = -v_\perp \sin\left(\Omega t + \phi\right) \tag{23}$$

$$v_z(t) = v_{\parallel} = v\mu = constant, \tag{24}$$

where ϕ is an arbitrary phase and v_{\parallel} and v_{\perp} are the parallel and perpendicular components of the particle velocity.

Let us assume now that on top of the background magnetic field \mathbf{B}_0 there is an oscillating magnetic field consisting of the superposition of Alfvén waves polarized linearly along the x-axis. In the reference frame of the waves ($v_A \ll c$) the electric field vanishes and one can write the individual Fourier modes as

$$\delta \mathbf{B} = \delta B \hat{x} \sin(kz - \omega t) \approx \delta B \hat{x} \sin(kz), \qquad (25)$$

where the z coordinate of the particle is $z = v\mu t$. The Lorentz force on the particle in the z- direction is

$$mv\gamma\frac{d\mu}{dt} = -\frac{q}{c}\delta Bv_y \to \frac{d\mu}{dt} = \Omega\frac{\delta B}{B_0}(1-\mu^2)^{1/2}\sin\left(\Omega t + \phi\right)\sin(kv\mu t), \quad (26)$$

which can also be rewritten as

$$\frac{d\mu}{dt} = \frac{1}{2} \Omega \frac{\delta B}{B_0} (1 - \mu^2)^{1/2} \left\{ \cos\left[(\Omega - kv\mu)t + \phi \right] - \cos\left[(\Omega + kv\mu)t + \phi \right] \right\}.$$
(27)

courtesy of Pasquale Blasi

Backup slides: the diffusion equation in detail

$$\langle \frac{\Delta \mu \Delta \mu}{\Delta t} \rangle_{\phi} = \pi \Omega^2 \left(\frac{\delta B}{B_0} \right)^2 \frac{(1 - \mu^2)}{\mu} \delta \left(k - \frac{\Omega}{v\mu} \right).$$
(28)

The linear scaling of the square of the pitch angle cosine with time is indicative of the diffusive motion of the particles. The rate of scattering in pitch angle is usually written in terms of pitch angle diffusion coefficient:

$$\nu = \left\langle \frac{\Delta \theta \Delta \theta}{\Delta t} \right\rangle_{\phi} = \pi \Omega^2 \left(\frac{\delta B}{B_0} \right)^2 \frac{1}{\mu} \delta \left(k - \frac{\Omega}{v\mu} \right).$$
(29)

If P(k)dk is the wave energy density in the wave number range dk at the resonant wave number $k = \Omega/v\mu$, the total scattering rate can be written as:

$$\nu = \frac{\pi}{4} \left(\frac{kP(k)}{B_0^2/8\pi} \right) \Omega. \tag{30}$$

The time required for the particle direction to change by $\delta\theta \sim 1$ is

$$\tau \sim 1/\nu \sim \Omega^{-1} \left(\frac{kP(k)}{B_0^2/8\pi}\right)^{-1}$$
 (31)

courtesy of Pasquale Blasi

Backup slides: the diffusion equation in detail

so that the spatial diffusion coefficient can be estimated as

$$D(p) = \frac{1}{3}v(v\tau) \simeq \frac{1}{3}v^2 \Omega^{-1} \left(\frac{kP(k)}{B_0^2/8\pi}\right)^{-1} = \frac{1}{3}\frac{r_L v}{\mathcal{F}},$$
(32)

where $r_L = v/\Omega$ is the Larmor radius of the particles and $\mathcal{F} = \left(\frac{kP(k)}{B_0^2/8\pi}\right)$.

It is interesting to notice that the escape time of CRs as measured from the B/C ratio and/or from unstable elements, namely a time of order 10^7 years in the energy range ~ 1 GeV, corresponds to require $H^2/D(p) \sim 10^7$ years, where $H \sim 3$ kpc is the estimated size of the galactic halo. This implies $D \approx 10^{29} cm^2 s^{-1}$, which corresponds to require $\delta B/B \sim 6 \times 10^{-4}$ at the resonant wave number. A very small power in the form of Alfvén waves can easily account for the level of diffusion necessary to confine CRs in the Galaxy. The requirements become even less demanding when higher energy CRs are considered.

A glimpse on very high energy CRs

A glimpse on very high energy CRs

A glimpse on very high energy CRs

