Cosmological Hydrodynamical Simulations for galaxy formation and evolution

Cosmological Galaxy Simulations

Two words about myself: Annalisa Pillepich (MPIA)

Postdoc at Harvard University

Research group leader since 2016 Max Planck Institute for Astronomy

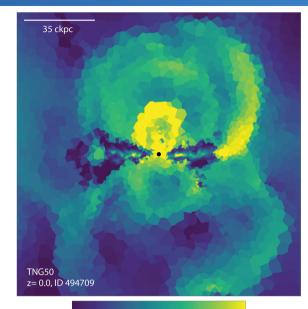
PhD (in Cosmology)

Postdoc

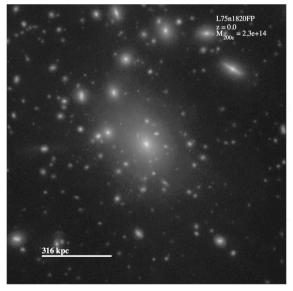
Bachelor and Master in (Theoretical) Physics at the Universita' di Pisa

Two words about myself: Annalisa Pillepich (MPIA)

My role: MPIA group leader (since June 2016) in numerical astrophysics and cosmology


My research:

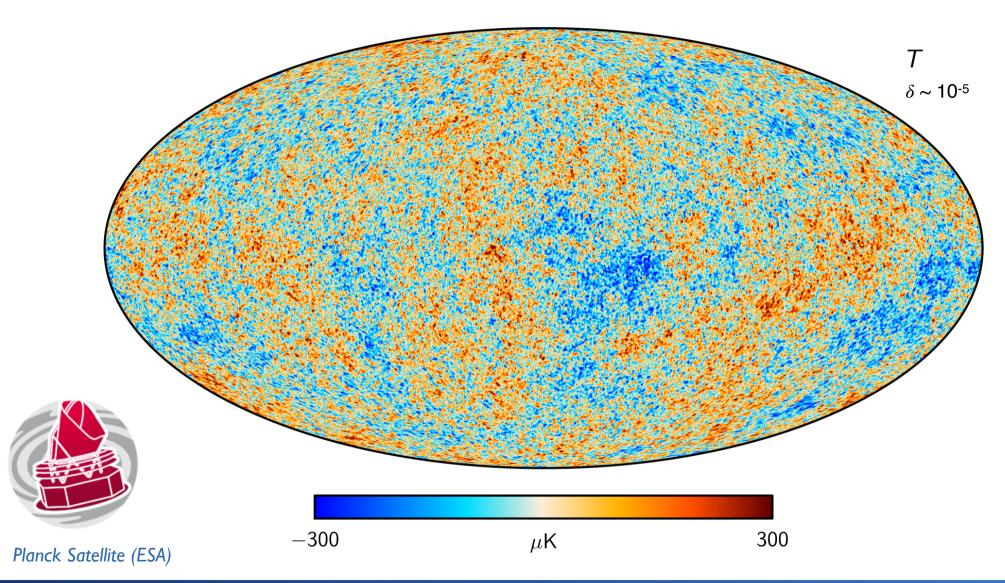
We develop, execute, analyse and contrast to observations numerical models to understand galaxies and the emergence of structures in the Universe.


Our favourite models are: cosmological, large-volume simulations including gravity+magneto-hydrodynamics + galaxy processes + star formation => population of galaxies

We run them on thousands of computing cores at National Supercomputer Facilities. Our current flagship model is: IllustrisTNG

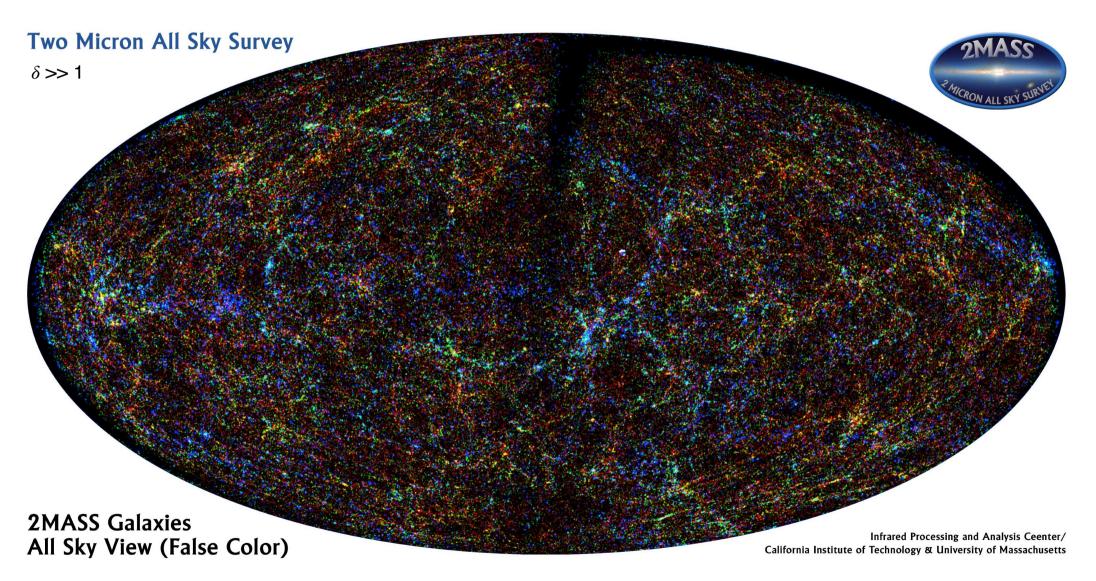
I am also interested on Galaxy Clusters, as astrophysics labs and cosmological tools

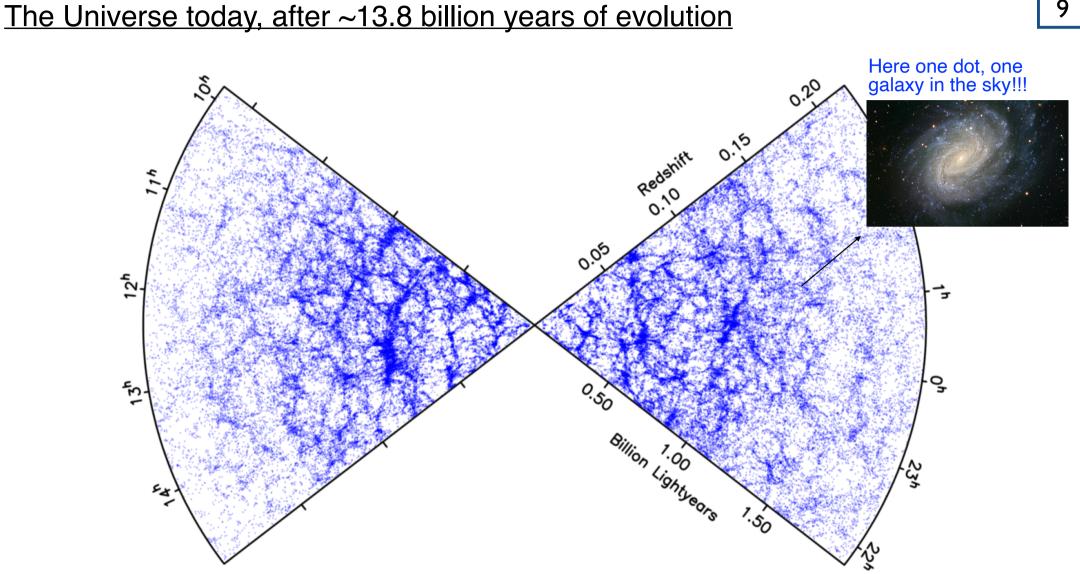
The goals/scope of today's lecture


- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a. Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

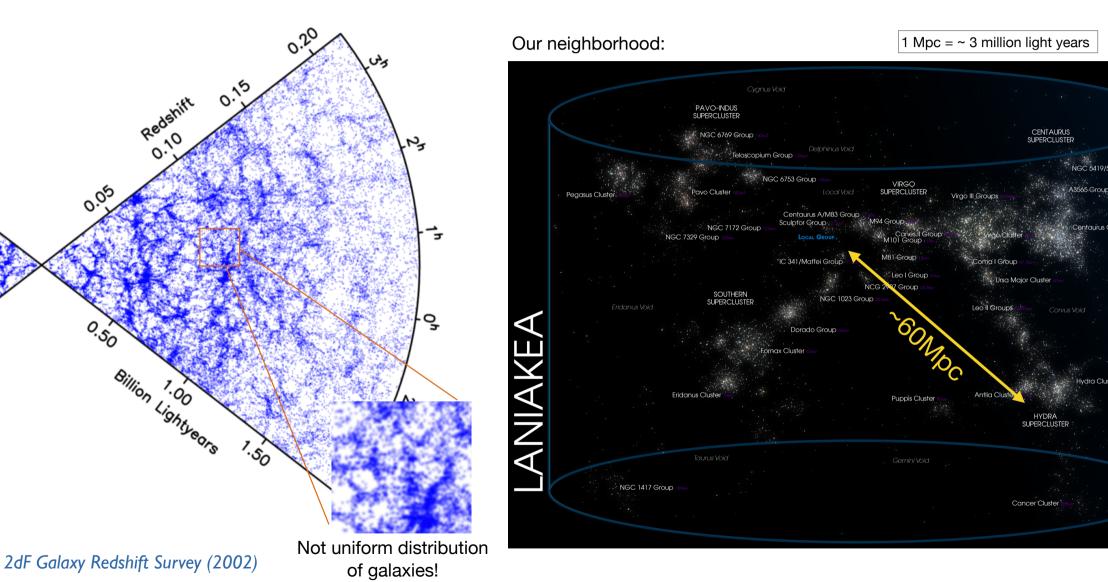
The goals/scope of today's lecture

a. The cosmological context

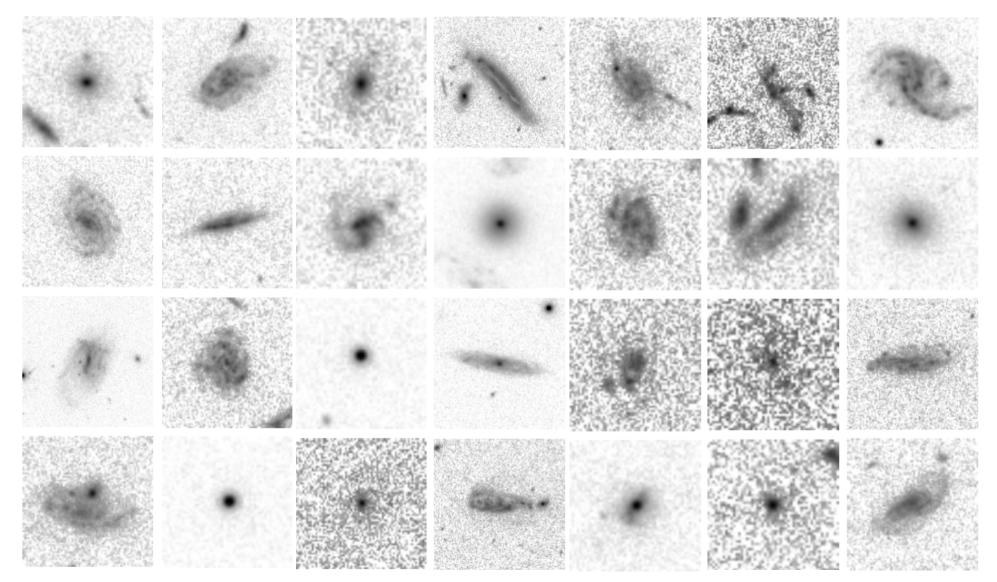

- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a. Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results


The initial conditions of the Universe

Cosmological Galaxy Simulations


The Universe today, after ~13.8 billion years of evolution

2dF Galaxy Redshift Survey (2002)

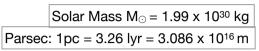

The Universe is *not* homogeneous on scales of 10-100 Mpc and below

Cosmological Galaxy Simulations

The Universe is certainly *not* homogeneous on the scales of galaxies, ~1-100 kpc

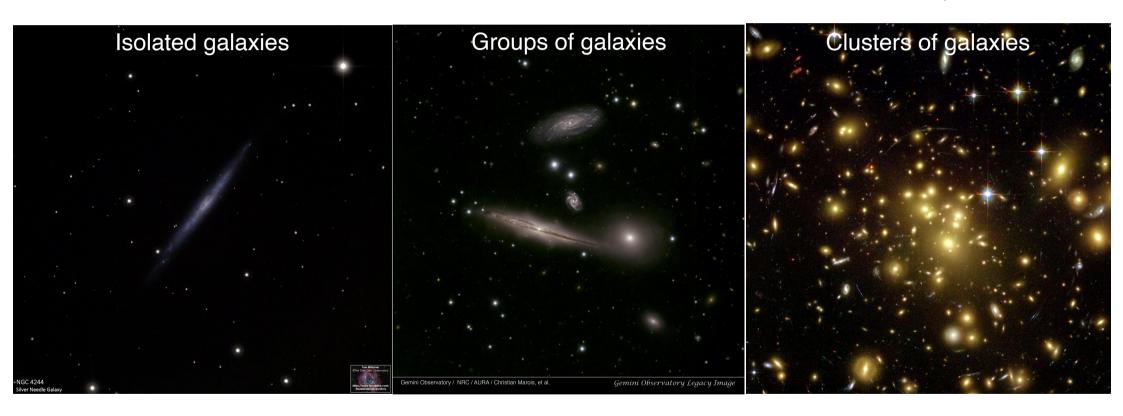
Observed galaxies exhibit diverse morphologies and shapes

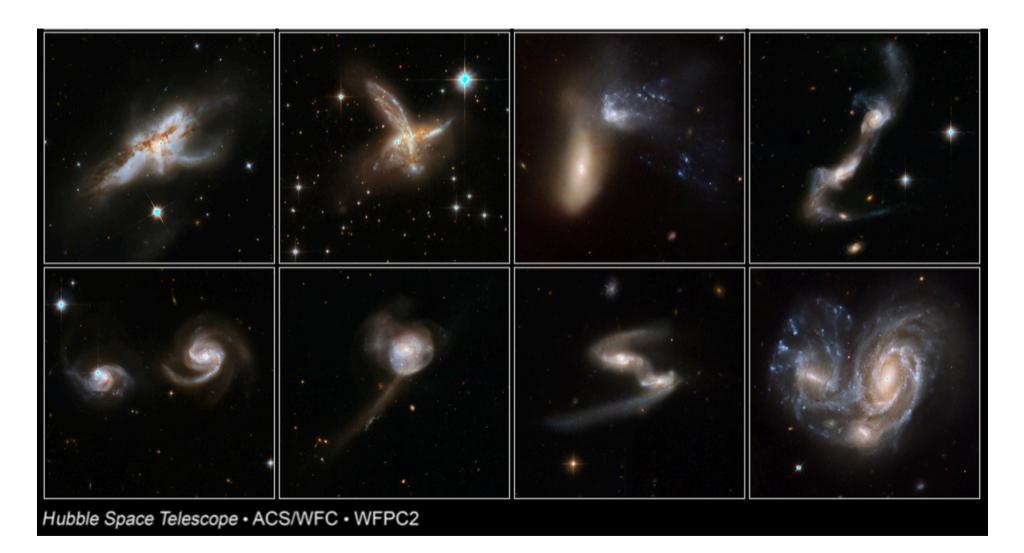
Observed galaxies exhibit diverse masses and spatial sizes


> 6 orders of magnitudes in mass

> 2 orders of magnitudes in size

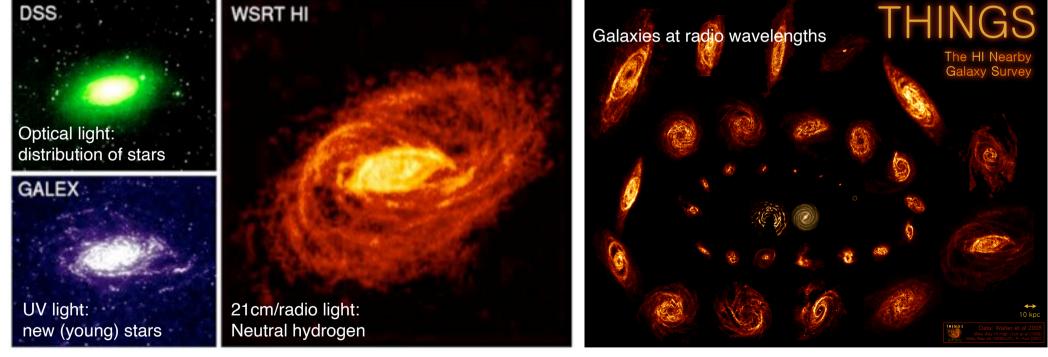
10⁶ solar masses ~100-500 pc


10¹⁰ solar masses A few kpc 10¹² solar masses Tens of kpc


Observed galaxies can live in very different environments

Low densities

High densities



Observed galaxies can merge and interact!

Galaxies are not just collections of stars

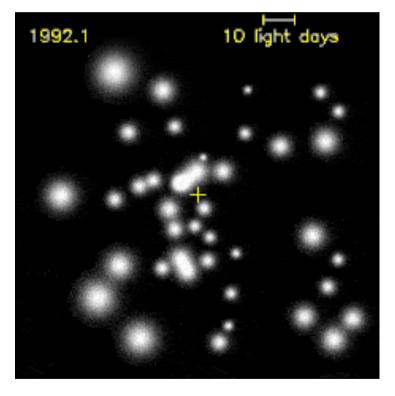
In (disk) galaxies, the stellar light is associated to emissions from "cold" gas, like Hydrogen (ten thousand degrees and below).

NGC 5055

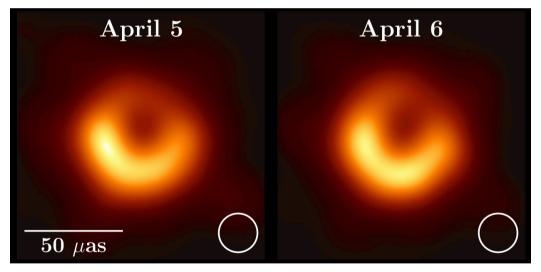
The stellar bodies of galaxies are surrounded by gas!

COLD GAS -200 to10'000 degrees C

M82: stellar light in a disk + molecular gas perpendicular to the disk


HOT GAS ~million degree C

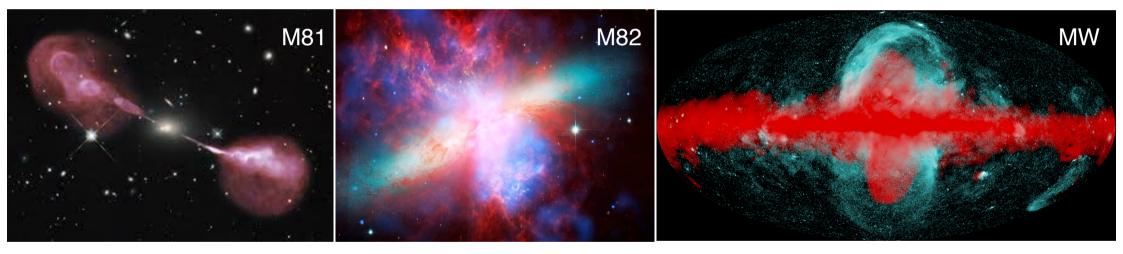
A galaxy cluster: stellar light + X-ray emitting gas (violet)


Most galaxies host even a super massive black hole at their center

The Milky Way has a SMBH at its centre: the motion of the stars is consistent with General Relativity. The mass of the MW's SMBH is relatively small: $\sim 4x10^6 \text{ M}_{\odot}$

This is the first "image" of the event horizon around a black hole in a nearby galaxy.

The mass of this SMBH (>10⁹ M_☉) is more than a thousand times larger than the Milky Way's



The more massive a galaxy is, the more massive its central SMBH is

But why are galaxies relevant for cosmology and gamma-ray physics?

Galaxies are the smallest "cosmological" structures

Galaxies are where things happen!

(AGN i.e. active SMBHs, supernova explosions, gas inflows and outflows, ...)

The goals/scope of today's lecture

a. The cosmological context

b. The goals of cosmological galaxy simulations

- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a. Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

To formulate self-consistent models for the formation+evolution of galaxies that:

- **a.** Function across masses, spatial scales, evolutionary stages and environments
- **b.** Return the observed statistical properties of the *galaxy populations*
- C. Reproduce the *structural, internal properties* of individual galaxies

The goals of cosmological galaxy simulations

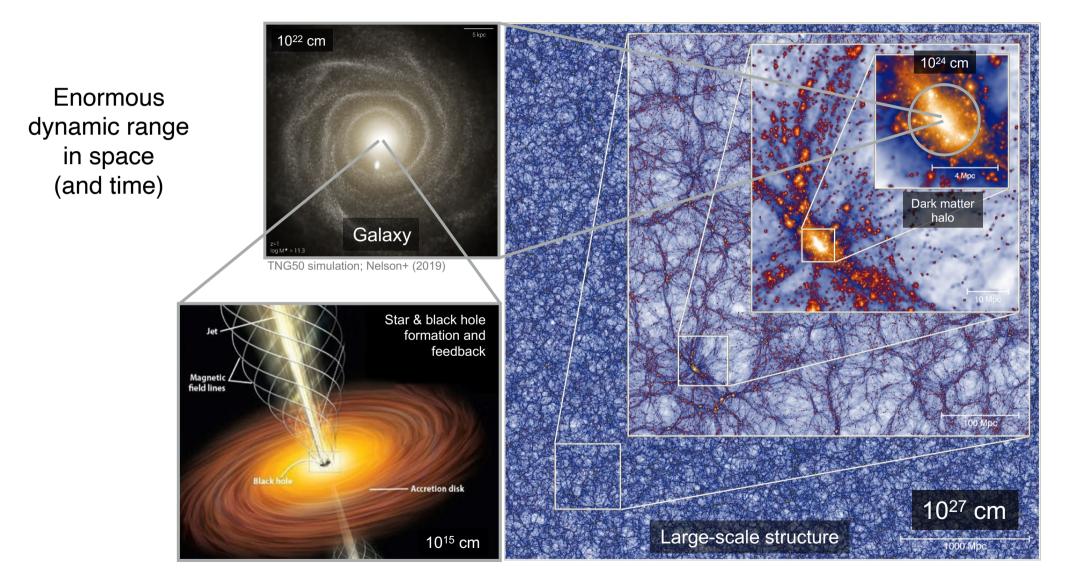
1. To quantify what galaxies' properties tell us about their formation (both individually and as populations)

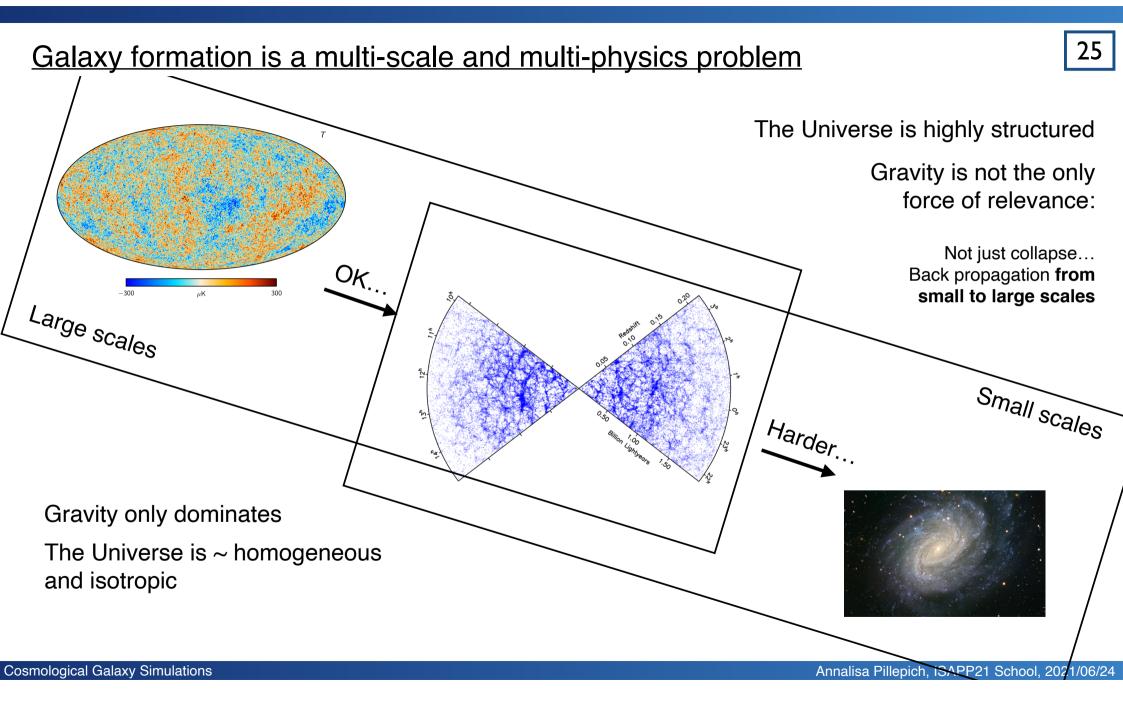
 $\mathbf{2}$. To provide interpretation to observational findings

3. To ultimately infer, via comparison to observations, what galaxies can tell us about the underlying assumptions on gravity, matter and the Universe as a whole

Cosmological Galaxy Simulations

Annalisa Pillepich, ISAPP21 School, 2021/06/24


The desiderata of cosmological galaxy simulations


Include the relevant physics

- **2** Account for the cosmological context
- **3** Simulate large ensembles of galaxies i.e. large mass ranges and diversity at a given mass
 - Match fundamental observations
- **D** Reach crucial physical scales

Galaxy formation is a multi-scale problem

The basic idea of Gravitational Instability and the emergence of structures

Gravity is only attractive. Even if at the initial conditions there are tiny deviations from homogeneity, these will develop further and further as time goes by

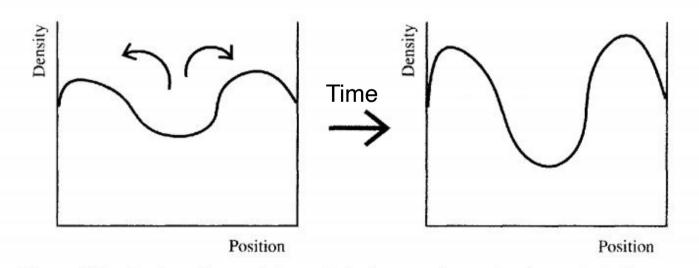
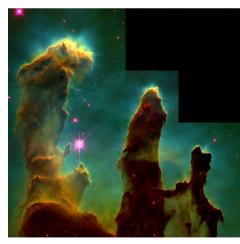


Figure A5.1 Gravity pulls material towards the denser regions, enhancing any initial irregularities. Simulating the gravity-dominated regime

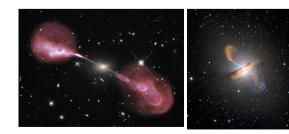

Credits:V. Springel Cosmological Galaxy Simulations

Simulating the small-scale regime of galaxies, from darkness to the light

Stars, also in clusters

Sites of Formation of stars

 Galaxies are made of stars and cosmic gas, i.e. "baryons"



Supernovae explosions

Gas and Dust: Halo, Clouds, Winds

Supermassive Black Holes at the centres

The basic idea of galaxy formation

Galaxies form at the center of gravitationally-bound structures of dark matter: haloes

Dark-matter haloes are permeated of cosmic gas Gas can cool, concentrate at the bottom of the gravitational potential well and transform into stars

The basic idea of galaxy formation in a cosmological context

Time since the Big Bang:1.1 billion years

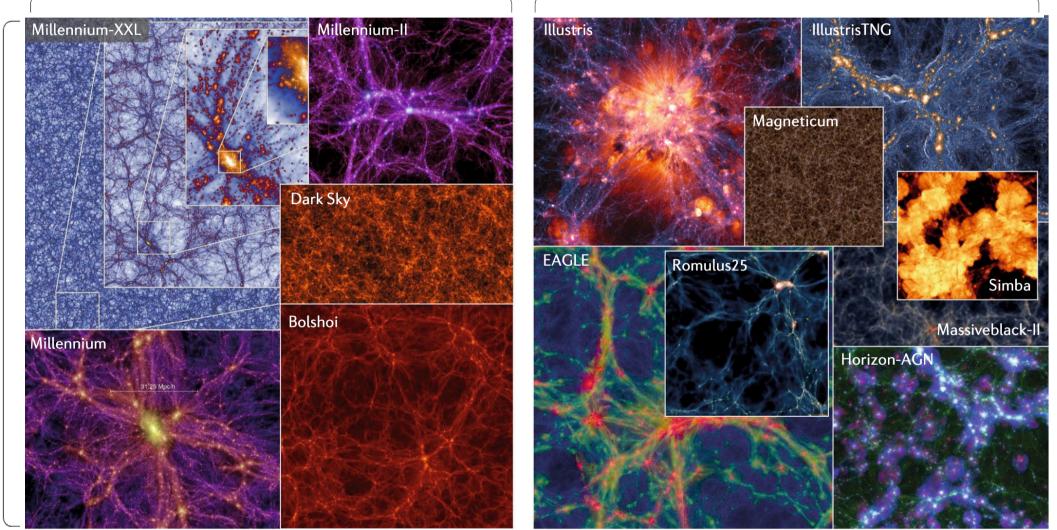
Cosmological Galaxy Simulations

JSTRIS

The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a.Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

The setup and ingredients of large-scale cosmological *galaxy* simulations Cosmological Model (e.g. LCDM)

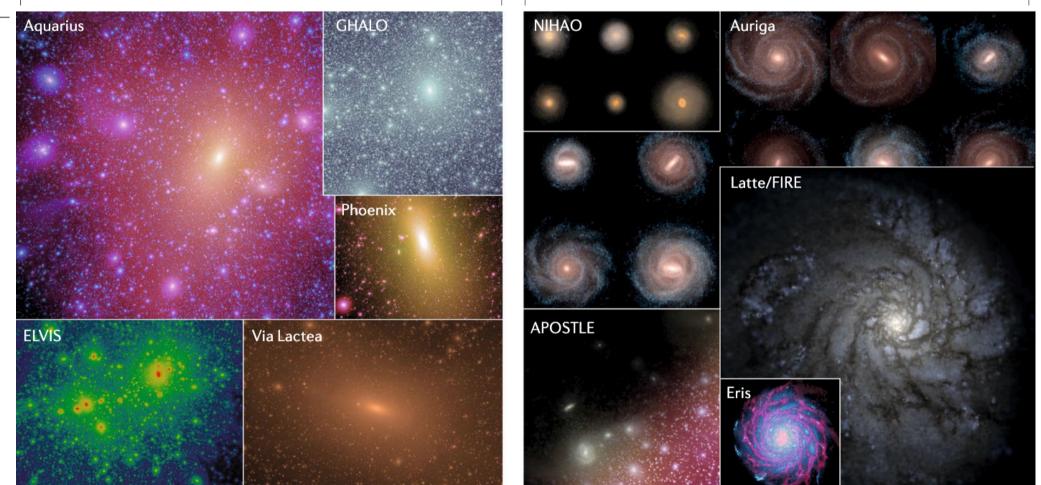

	· · ·	
Matter components	Physical processes	Simulated domain
Dark matter	Gravity	Cubes of representative portions of the
Gas	Fluid dynamics	(periodic boundary conditions) From "cosmological" initial conditions
Stars	Atomic processes	
SMBHs		2D matter distribution
Magnetic fields	Photon propagation	~ 100 Mpc

. . .

The types of large-scale cosmological galaxy simulations on the market

Dark matter only (N-body)

Dark matter + baryons (hydrodynamical)


33

Large volume (statistics)

The types of large-scale cosmological galaxy simulations on the market

Dark matter only (N-body)

Dark matter + baryons (hydrodynamical)

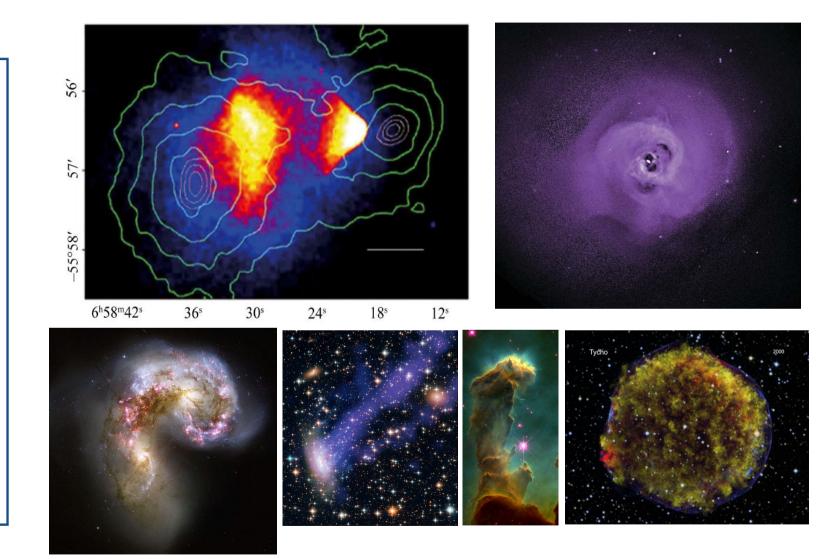
34

Zoom (details)

The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients

d. The baryonic fluid


- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a.Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

Baryons in the Universe, clearly, do not interact only via gravity

On the jargon:

Components of the usual material objects (ions, atoms, and molecules) are called **"Baryonic matter"**

> But e- are leptons! On large scales the Universe is electrically neutral: #p = # e-The mass density of the electrons is negligible compared to those of the baryons like p and n.

Gas dynamics is certainly more complicated than that of collisionless systems

Shocks

Hydrodynamical flows can develop shock waves, where density, velocity, temperature and specific energy jump by finite amounts

e.g. The shock connects two fluid states: 1=pre-shock 2=post-shock

 $\rho_2 > \rho_1$

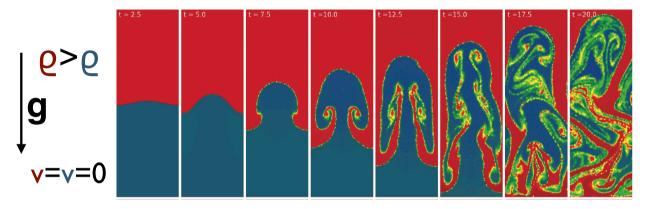
 $v_2 < v_1$

 $T_2 > T_1$

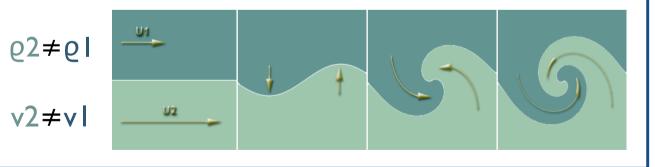
 $\mathcal{M} = rac{v_1}{c_1}$ Sound Speed $c_1^2 = \gamma P_1 / \rho_1$

Mach Number

The shock itself decelerates, compresses, and heats up the fluid

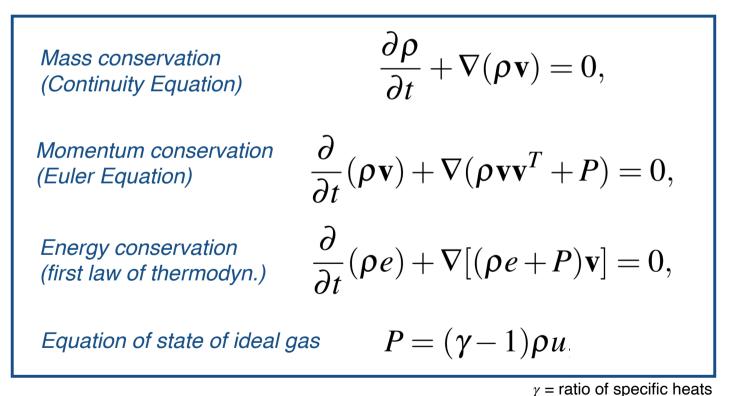


In astrophysics: e.g. shocks that form when flows collide supersonically


Fluid Instabilities

In some situations, in gaseous flows, small perturbations can rapidly grow

e.g. Rayleigh-Taylor Instability (in practice, buoyancy driven)


e.g. Kelvin-Helmholtz Instability

37

Gravity is the dominant regulator of structure formation on the largest scales. On "smaller" e.g. galactic scales, the hydrodynamics of the baryons becomes important.

Gas flows in cosmological settings are usually: "low" density and with negligible "friction". They can be modelled by the **Euler Equations for ideal gas dynamics**:

 $^{(\}rho, \mathbf{v}, \mathsf{P})$ are the **mass** density, **velocity**, and pressure.

$$e = u + \mathbf{v}^2/2$$

Is the total energy per unit mass, u is the internal **energy** per unit mass

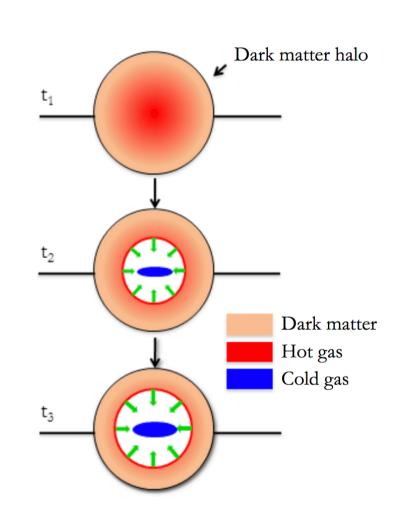
 $\gamma=5/3$ (for monoatomic gas)

III Euler equations are a simplified form of the Navier-Stokes equations for inviscid fluids (viscosity = 0; Reynold number = ∞) and fluids with zero thermal conductivity

The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid

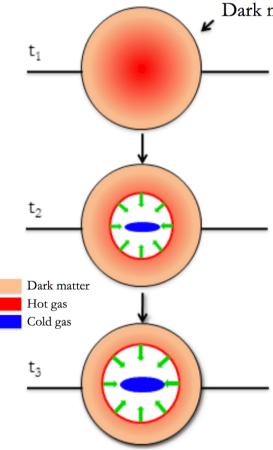
e. Fundamentals of galaxy formation


- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a.Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

Cosmological Galaxy Simulations

- The key ideas of modern galaxy formation rely on the cosmological setting
 - 1. Structure formation is driven by gravitational instability (see above)
 - 3. Stars form out of gas (very dense gas)
 - 4. Dark-matter haloes get a spin due to tidal torques *Hoyle 1949*
 - 5. Galaxies form inside dark-matter haloes, via a two-stage collapse:
 - 1. Dissipationless collapse of the dark-matter haloes themselves
 - 2. Dissipative collapse of gas: baryons collapse in the halo potential well and get shock heated Rees & Ostriker 1977 White & Rees 1978
 - 6. Gas cools mainly by radiative transitions: the typical mass of a galaxy is set by cooling arguments

Hoyle 1953, Silk 1977, Binney 1977, Rees & Ostriker 1977


- 7. The formation of disk galaxies can be understood by the cooling of gas to the DM-halo centres via conservation of the angular momentum of the DM halo
 Fall & Efstathiou 1980
- 8. (Elliptical galaxies form via the merger of disk galaxies)

The formation of galaxies rely on dissipative collapse of gas + cooling

The gas initially has the same spatial distribution as the dark matter (t < t1)

Dark matter halo

As the DM halo collapse, gas is assumed to be heated by shocks as it falls into the gravitational potential well of the dark halo, producing a hot gas halo that is supported against further collapse by the pressure of the gas (t1).

The gas attains the viral temperature of the halo (which scales as halo mass)

Gas can subsequently cool from the hot halo, through radiative processes (t2).

Virial temperature

Half of the potential energy of the infalling gas is converted into kinetic energy, which in turn is transformed into heat:

$$T_{\rm vir} \equiv T_{200c} \simeq \frac{\mu m_{\rm p} G M_{200c}}{2k_{\rm B} R_{200c}} \simeq \frac{\mu m_{\rm p} G M_{\rm tot}}{2k_{\rm B} R_{200c}}$$

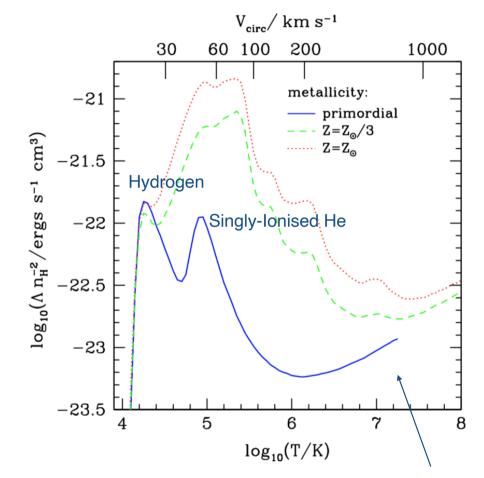
The role of Dissipation

Baryons (gas in particular) can radiate: this is a sign that dissipative processes are at work.

Dissipative processes = processes for which e.g. internal energy is transformed into another form.

Namely, baryons can loose energy by a number of radiative processes => reduce of thermal energy.

As the gas cools, the pressure of the gas drops and the removal of pressure support means that the gas sinks to the centre of the dark halo on the free-fall or dynamical timescale in the halo (step t3).


Baugh 2006

The formation of galaxies rely on dissipative collapse of gas + cooling

Mechanisms for gas cooling

- Bremsstrahlung radiation as electrons are accelerated in an ionized plasma, i.e. scattering between electrons and nuclei (10⁷ K)
- Emission of photons following transitions between energy levels, due to collisional excitation, i.e. collisions between atoms and electrons (10⁴⁻⁶ K)
- inverse Compton scattering of CMB photons by electrons in the hot halo gas (only at high z)
- The excitation of rotational or vibrational energy levels in molecular hydrogen through collisions (100-1000 K)

The relative importance and efficiency of the various cooling processes depend on the **density (^2)** and **temperature** of the gas, as well as on its **chemical composition**

Bremsstrahlung (radiation by electrons experiencing acceleration in the electric field of ions): the cooling rate goes like T ^1/2

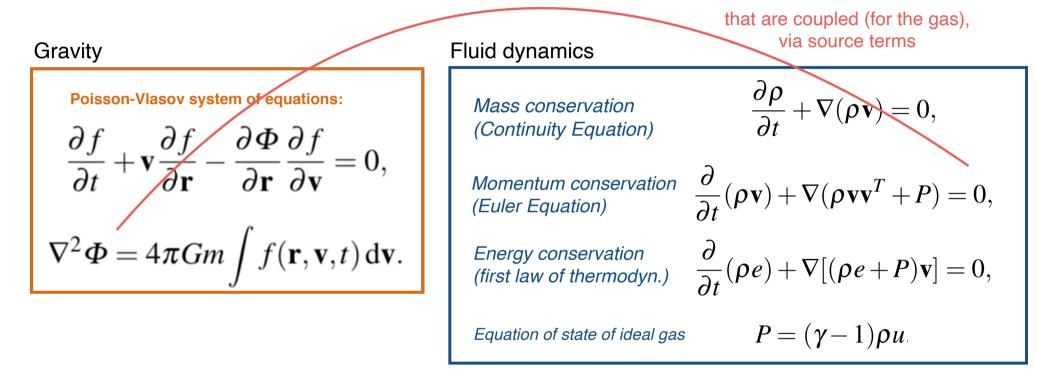
The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation

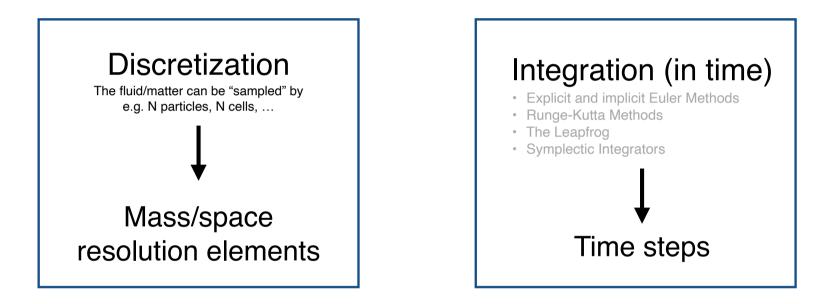
f. Euler equations and their numerical solution

- a. Elements of SPH
- b. Elements of Eulerian hydrodynamics
- c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a.Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

The astrophysics we need to model is largely described by systems of partial differential equations:


Gravity

Poisson-Vlasov system of equations: $\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{r}} - \frac{\partial \Phi}{\partial \mathbf{r}} \frac{\partial f}{\partial \mathbf{v}} = 0,$ $\nabla^2 \Phi = 4\pi Gm \int f(\mathbf{r}, \mathbf{v}, t) \, \mathrm{d}\mathbf{v}.$


Fluid dynamics

Mass conservation
(Continuity Equation) $\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{v}) = 0,$ Momentum conservation
(Euler Equation) $\frac{\partial}{\partial t}(\rho \mathbf{v}) + \nabla(\rho \mathbf{v} \mathbf{v}^T + P) = 0,$ Energy conservation
(first law of thermodyn.) $\frac{\partial}{\partial t}(\rho e) + \nabla[(\rho e + P)\mathbf{v}] = 0,$ Equation of state of ideal gas $P = (\gamma - 1)\rho u_1$

The astrophysics we need to model is largely described by systems of partial differential equations....

But: writing down the equations is not enough. The ability to [numerically] solve them is required.

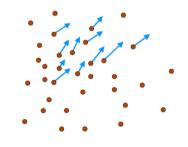
But: writing down the equations is not enough. The ability to [numerically] solve them is required.

We need to solve a system of hyperbolic partial differential equations...

There exists no general solution to PDEs, as different approaches are needed for different problems. Eulerian methods are the traditional schemes to solve the system of equations of ideal hydrodynamics.

For cosmological hydrodynamical simulations, there is a variety of fundamentally different numerical methods, of which the majority can be classified in two types:

Eulerian Hydrodynamics


The **space** is discretised The problem is solved on a mesh The numerical entities are **volume elements**

	_			
	1	7	1	

(e.g. mesh methods, grid methods)

Lagrangian Hydrodynamics

The **mass** is discretised The problem is solved on fluid elements The numerical entities are **particles**

(e.g. smooth-particle-hydrodynamics methods, or SPH)

The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution

a. Elements of SPH

- b. Elements of Eulerian hydrodynamics
- c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a.Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

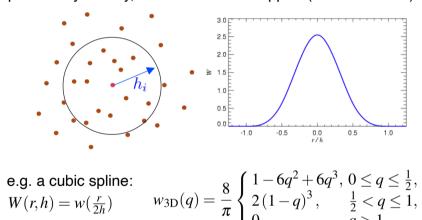
The kernel interpolation is at the basis of SPH

The mass is discretised with particles.

Still, we need continuous fluid quantities to solve the equations from such discretised tracers.

This is done with a kernel summation interpolant, to e.g. estimate the density at all points in space, not just where the particles are

We want the smoothed interpolated version F_s of a field F:

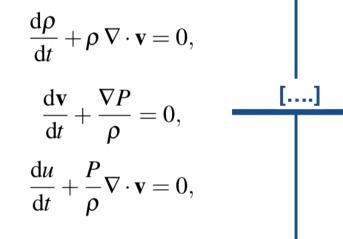

$$F_s(\mathbf{r}) = \int F(\mathbf{r}') W(\mathbf{r} - \mathbf{r}', h) d\mathbf{r}'$$
. Kernel function W(**r**, h)
If we know the field F at a set of points **r_i**, the integral can
be replaced with a summation, with $V_i \sim m_i/\rho_i$
 $F_s(\mathbf{r}) \simeq \sum_j \frac{m_j}{\rho_j} F_j W(\mathbf{r} - \mathbf{r}_j, h).$
SPH density estimate: (Similarly can be done for the velocity field)

$$\rho_s(\mathbf{r})\simeq\sum_j m_j W(\mathbf{r}-\mathbf{r}_j,h),$$

From a set of particle coordinates and their masses.

This is defined everywhere and can be differentiated!

Kernels in SPH: must be normalised to 1, simple, with spherical symmetry, best with a finite support (not Gaussians)



h is the smoothing length, and can be chosen to be adaptive. $h_i = h(r_i, t)$

Practical Idea: summation can be restricted to the **Nnab** neighbors that lie within the spherical region of radius 2h around the target point ri. This corresponds to a computational cost of order O(Nnab N) for the full density estimate. Nngb = 32, 64, ...

The equation of motions can be expressed and solved in Lagrangian form

Euler Equations for inviscid ideal gas in Lagrangian form

Convective derivative $d/dt = \partial/\partial t + \mathbf{v} \cdot \nabla$

They are a system of partial differential equations (conservation of mass, momentum and energy) that follow from the Lagrangian:

$$L = \int \rho \left(\frac{\mathbf{v}^2}{2} - u\right) \,\mathrm{d}V.$$

New discretised dynamical equations of motion that take into account for Euler equation

$$\frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = -\sum_{j=1}^N m_j \left[f_i \frac{P_i}{\rho_i^2} \nabla_i W_{ij}(h_i) + f_j \frac{P_j}{\rho_j^2} \nabla_i W_{ij}(h_j) \right],$$
$$f_i = \left[1 + \frac{h_i}{3\rho_i} \frac{\partial \rho_i}{\partial h_i} \right]^{-1},$$

A complicated system of partial differential equations has been transformed into a much simpler set of ordinary differential equations:

- · Only the momentum equation needs to be solved explicitly
- The mass conservation and the total energy equation are automatically fulfilled, because the particle masses and their specific entropies stay constant

The Euler equations for cosmological applications are slightly different

Euler Equations for inviscid ideal gas in Lagrangian form

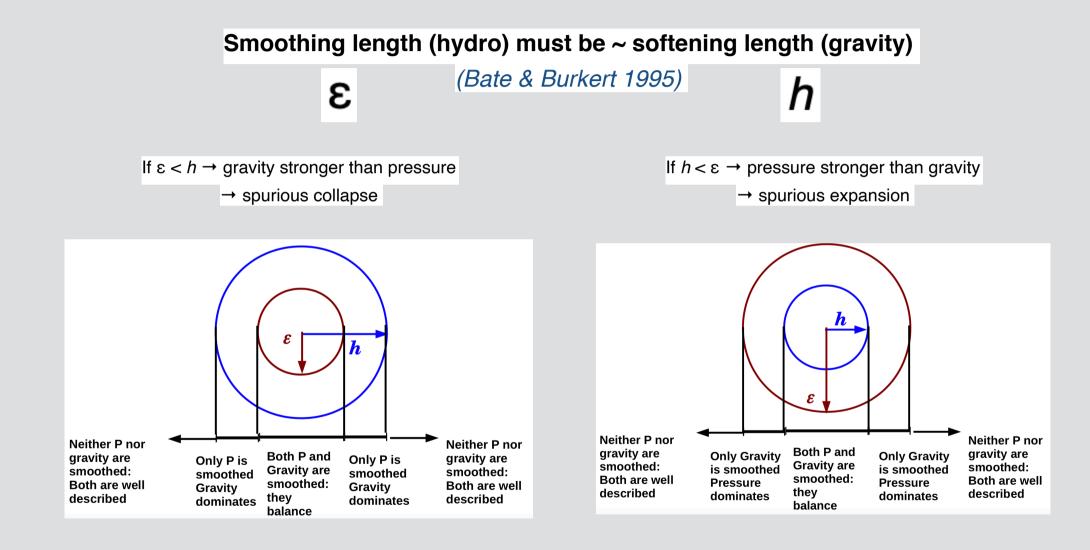
$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \,\nabla \cdot \mathbf{v} &= 0, \\ \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + \frac{\nabla P}{\rho} &= 0, \\ \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{P}{\rho} \nabla \cdot \mathbf{v} &= 0, \end{aligned}$$

Convective derivative $d/dt = \partial/\partial t + \mathbf{v} \cdot \nabla$

They are a system of partial differential equations (conservation of mass, momentum and energy) that follow from the Lagrangian:

$$L = \int \rho \left(\frac{\mathbf{v}^2}{2} - u\right) \,\mathrm{d}V.$$

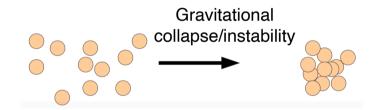
Euler Equations for inviscid ideal gas in Lagrangian form, including self-gravity and gas cooling


$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \mathbf{v} = 0,$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{\nabla P}{\rho} - \nabla \Phi.$$
 Gravitational Potential
$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{P}{\rho} \nabla \cdot \mathbf{v} - \underbrace{\Lambda(u,\rho)}{\rho}.$$
 Cooling Function $\Lambda(u,\rho)$

Convective derivative Equation of state $d/dt = \partial/\partial t + \mathbf{v} \cdot \nabla$ $P = (\gamma - 1)\rho u$,

With, for simple atomic ideal gas, the adiabatic exponent of the equation of state can be taken as 5/3


How should the kernel-smoothing length be chosen?

The main advantage of SPH is its natural spatial adaptivity

SPH Advantages

The resolution adjusts automatically, as the particle density increases where needed:

Galilean Invariance is automatically fulfilled

Energy, momentum, angular momentum, mass and entropy are all simultaneously conserved (if no additional viscosity)

The self-gravity of the gas naturally treated with the same accuracy as the dark matter. The numerical treatment nicely couples with the N-body treatment of the gravity

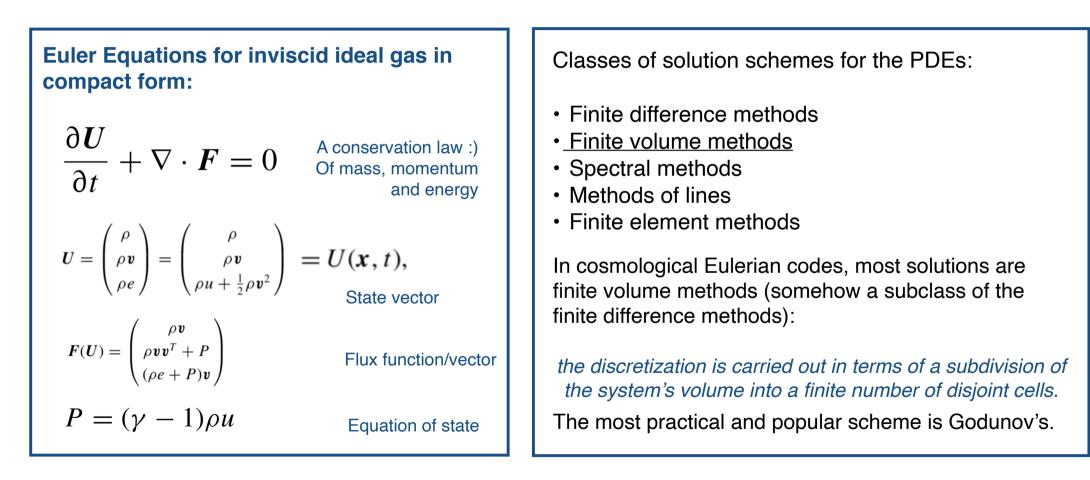
SPH Disadvantages

Mixing is completely suppressed at the particle level (e.g. metal mixing)

Shocks are broaden over a few smoothing lengths

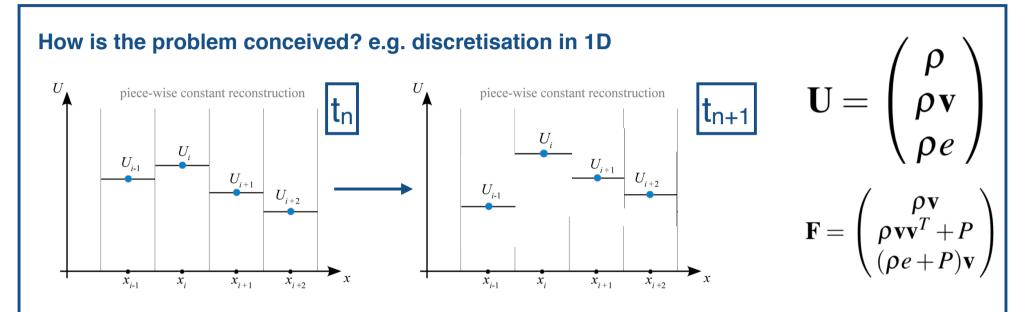
It requires the addition of artificial viscosity to better capture shocks

The goals/scope of today's lecture


- a. The cosmological context
- **b.** The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a Elements of SPH

b. Elements of Eulerian hydrodynamics

- c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k Selected results


We need to solve a system of hyperbolic partial differential equations...

There exists no general solution to PDEs, as different approaches are needed for different problems. Eulerian methods are the traditional schemes to solve the system of equations of ideal hydrodynamics.

The Godunov's method allows us to solve the Euler equations, ...

... with the help of a Riemann Solver!

Each cell is characterised by a cell-averaged of the state vector U at a given time t_n:

$$\mathbf{U}_i = \frac{1}{V_i} \int_{\text{cell } i} \mathbf{U}(\mathbf{x}) \, \mathrm{d}V.$$

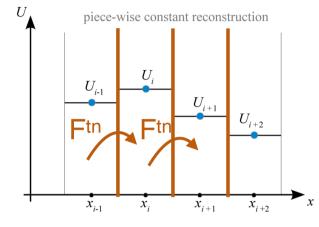
And we want the values for the state vector U at all cells at a subsequent t_n+1.

In practice, we need to know the fluxes F at the interfaces between cells

The Godunov's method allows us to solve the Euler equations, ...

... with the help of a Riemann Solver!

General ideas of the Godunov's method, a **Reconstruct-Evolve-Average (REA) scheme:**


Let us discrete the volume (in 1D for simplification).

Step1. Reconstruct: the cells are characterised by cell-averaged quantities (e.g. the piece-wise constant states in the 1st order Godunov scheme)

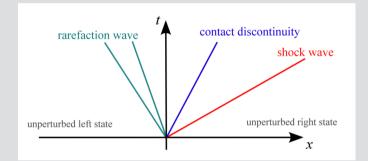
Step2. Evolve: the reconstructed state is evolved forward in time by $\triangle t$. In the Godunov scheme at first order, this is done by treating each cell **interface** as a (piece-wise constant) initial value problem.

Step3. Average: the wave structure that results from the evolution is spatially averaged to compute new states U n+1 for each cell.

Repeat.

Here, in practice, we need to solve a problem for the evolution of a piece-wise linear problem with given left and right states that are brought into contact at time t_n:

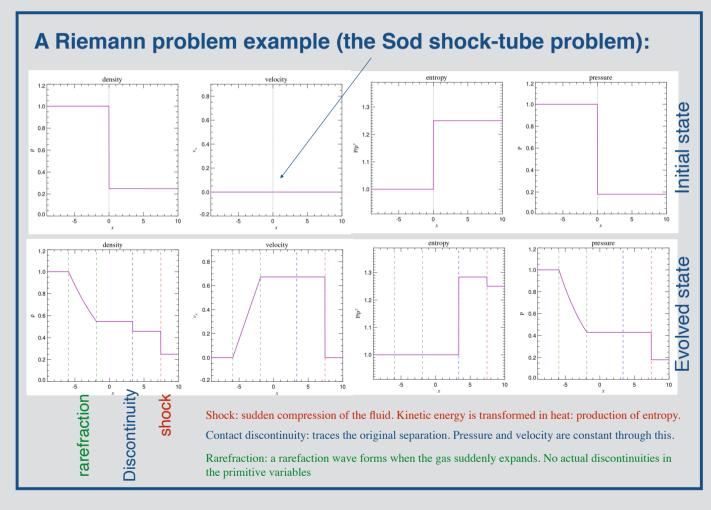
this is what is done by a Riemann solver!


$$\mathbf{F}^{\star} = \mathbf{F}_{\text{Riemann}}(\mathbf{U}_L, \mathbf{U}_R)$$

This is all OK as long as the solution (the waves emanating) from opposite side of a cell to do not interact, so $\triangle t$ needs to be limited

The Riemann problem is an initial-value problem

The Riemann problem is an initial-value problem for hyperbolic systems (i.e. with a conservation law) that consists of two piece-wise constant states that meet at a plane at t=0. The task is to solve for the subsequent evolution at t>0.


The Riemann solution can always be formally described with characteristics for three self-similar waves:

These waves propagate with constant speed.

If the solution is known at some time t > 0, it can also be obtained at any other time.

At x = 0, the fluid quantities (ρ^*, P^*, v^*) are *constant in time* for t > 0.

See e.g. Toro 1998

The Godunov scheme can be written easily for the 1D case

Each cell is characterised by a cell-averaged of the state vector U at a given time t_n:

$$\mathbf{U}_i = \frac{1}{V_i} \int_{\text{cell } i} \mathbf{U}(\mathbf{x}) \, \mathrm{d}V.$$

The conservation law (see a few slides ago) can be integrated over a cell and over a finite interval of time:

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \mathrm{d}x \int_{t_{n}}^{t_{n+1}} \mathrm{d}t \left(\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} \right) = 0.$$

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \mathrm{d}x \left[\mathbf{U}(x, t_{n+1}) - \mathbf{U}(x, t_{n}) \right] + \int_{t_{n}}^{t_{n+1}} \mathrm{d}t \left[\mathbf{F}(x_{i+\frac{1}{2}}, t) - \mathbf{F}(x_{i-\frac{1}{2}}, t) \right] = 0.$$

$$\Delta x \left[\mathbf{U}_{i}^{(n+1)} - \mathbf{U}_{i}^{(n)} \right] + \int_{t_{n}}^{t_{n+1}} \mathrm{d}t \left[\mathbf{F}(x_{i+\frac{1}{2}}, t) - \mathbf{F}(x_{i-\frac{1}{2}}, t) \right] = 0.$$

The fluxes F at the interfaces can be obtained via solution of a Riemann problem:

$$\mathbf{F}(x_{i+\frac{1}{2}},t) = \mathbf{F}_{i+\frac{1}{2}}^{\star}$$
 $\mathbf{F}_{i+\frac{1}{2}}^{\star} = \mathbf{F}_{\text{Riemann}}(\mathbf{U}_{i}^{(n)},\mathbf{U}_{i+1}^{(n)})$

The solution reads:

$$\mathbf{U}_{i}^{(n+1)} = \mathbf{U}_{i}^{(n)} + \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{i-\frac{1}{2}}^{\star} - \mathbf{F}_{i+\frac{1}{2}}^{\star} \right]$$

Flux that flows into the cell from the left

Flux that flows out from the cell from the right

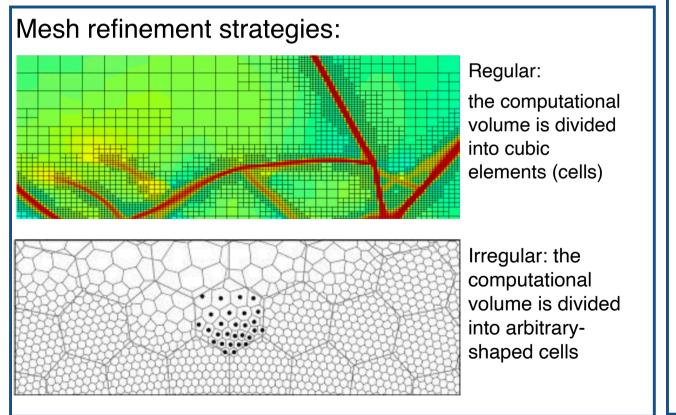
The idea of using the Riemann solution to do the time update of the states is due to Godunov, hence the name.

In general, we do not know the exact form of analytic functions $U(\mathbf{x},t)$ and $F(\mathbf{x},t)$.

The approximation of U and F makes it a numerical scheme. Using piece-wise constant functions makes it accurate at first order

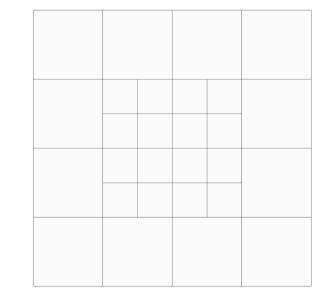
IMPORTANT!!! For the solution to hold, the waves

emanating from one interface cannot interact with the other end of the cell:


Courant-Friedrichs-Levy or CFL condition

Adaptive Mesh Refinement (AMR) is typically used in cosmological simulations

In practical applications:


1. it is prohibitive to sample the entire space with the same (maximum) resolution (too many cells, too much memory)

2. if huge dynamical range is simulated (e.g. regions with density orders of magnitude larger \rightarrow it is a waste of time to use max. resolution on very low-density regions)

Regular AMR has been the common choice of grid/Eulerian codes so far, particularly e.g. Fully Threaded Trees: cartesian grids are split in 8

60

Refinement criteria: mass or spatial based!

The main advantage of grid/Eulerian methods is its accuracy

Grid Advantages

The scheme is a priory highly accurate

It captures shocks and contact discontinuity naturally well

It entails low numerical viscosity

Mixing occurs implicitly at the cell level

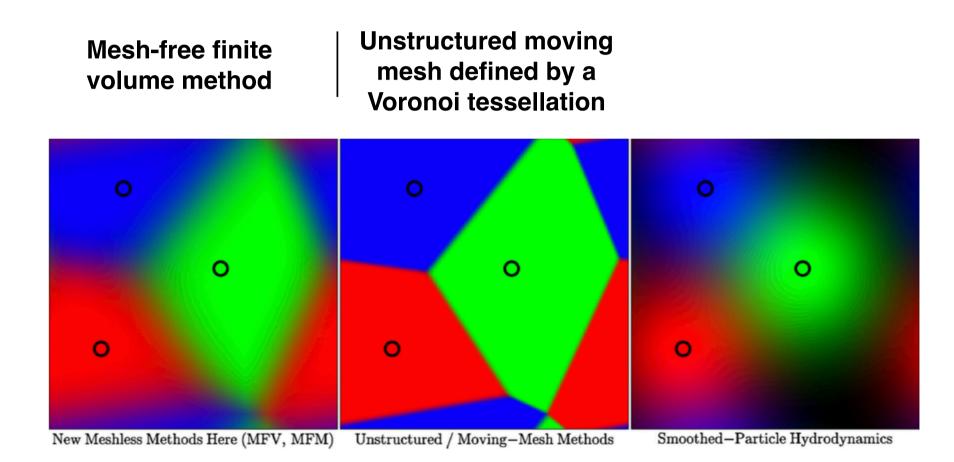
Grid Disadvantages

Galilean invariance is not necessarily fulfilled

Self-gravity on the gas needs to be done on a mesh

For AMR: refinement algorithms are really complicated For AMR: refinement algorithms can generate spurious effects, especially at higher frequency and at boundaries

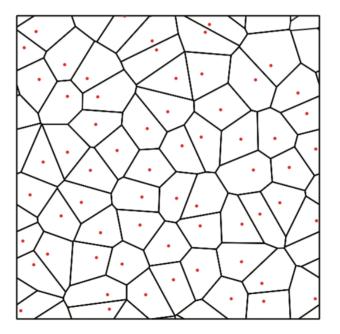
The goals/scope of today's lecture

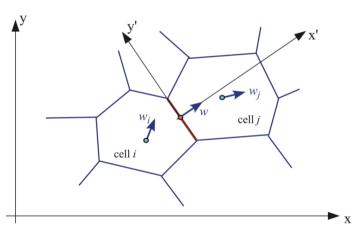

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics

c. Moving-mesh and mesh-less techniques

- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a.Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

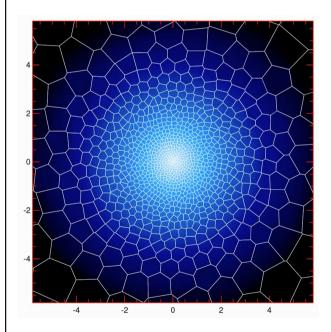
62


There are two main examples and types of such numerical schemes used in Computational Cosmology:


In e.g. AREPO, the Riemann problem is solved at the Voronoi-cell interfaces

Springel 2010

The space is discretised with a Voronoi tessellation



The Euler equations are solved with a finite-volume scheme where the Riemann solver is used at the interfaces of the Voronoi cells

Figure 10. Geometry of the flux calculation. We use an unsplit scheme where the flux across each face is estimated based on a 1D Riemann problem. To this end, the fluid state is expressed in a frame which moves with the normal velocity \boldsymbol{w} of the face, and is aligned with it. Note that the motion of the face is fully specified by the velocities of the mesh-generating points of the cells left and right of the face.

The so-called meshgenerating points move in space according to the fluid bulk velocity

Rotating Gaseous Disk + Gas Mesh

64

A moving-mesh code is naturally adaptive: more resolution where more mass

The Voronoi cells are deformable and move with the bulk motion of the gas

120

100

80

60

40

20

120

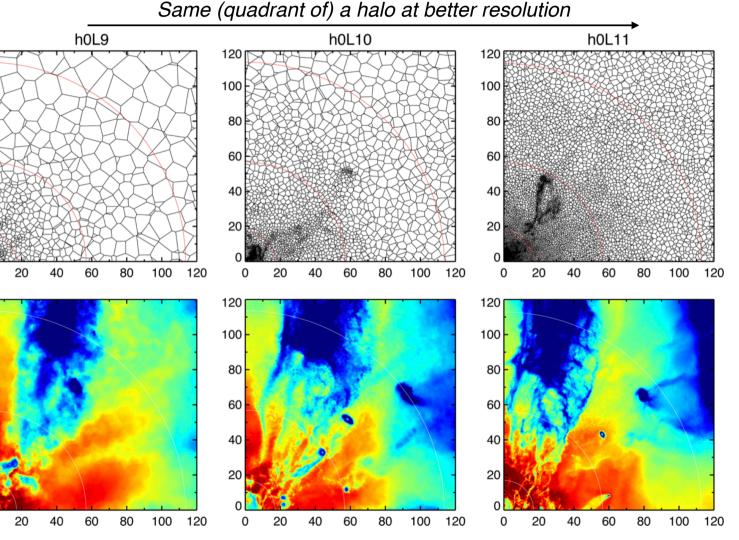
100

80

60

40

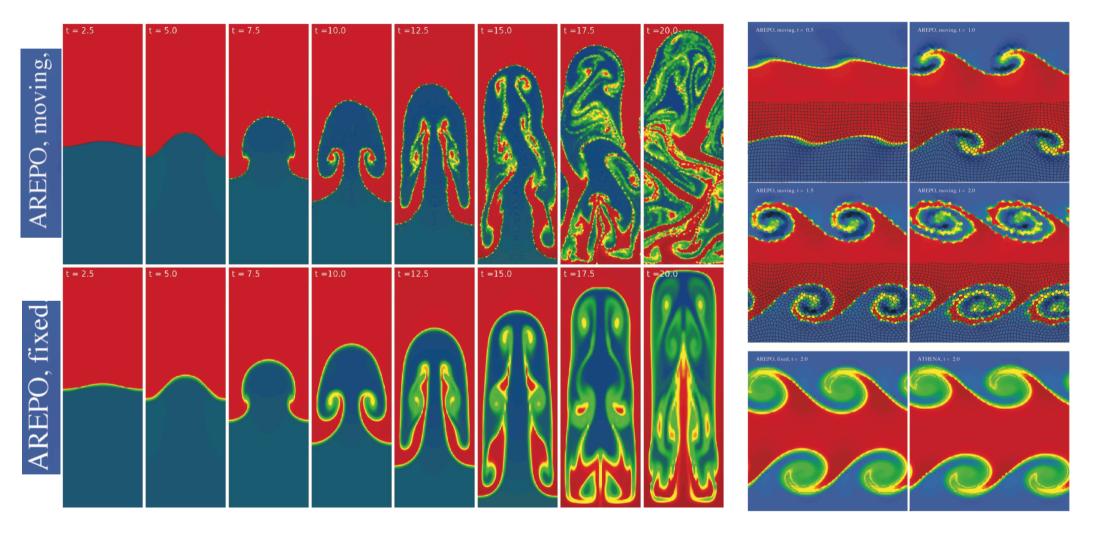
20

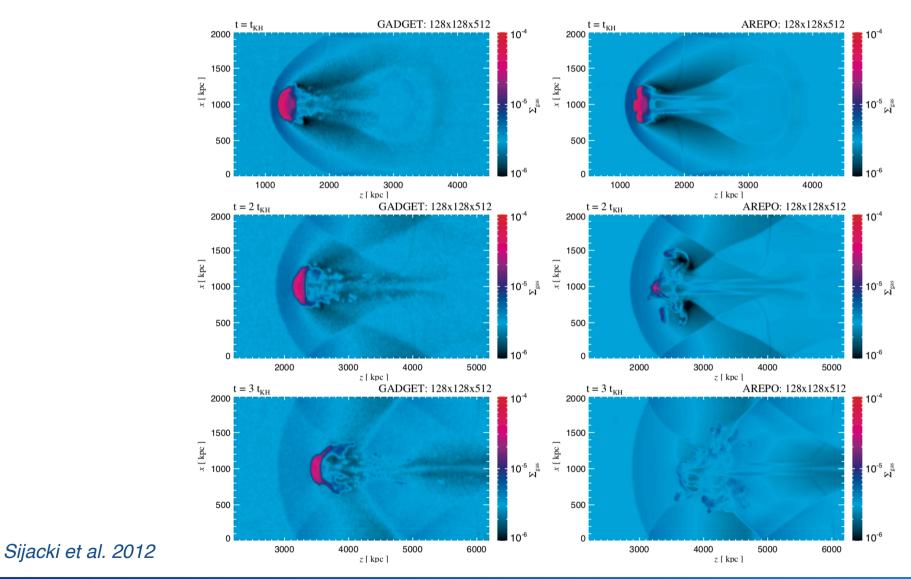

n

n

Refinement/derefinement of the mesh is also usually in place

(in AREPO, the mass in a cell is kept fixed, within a factor of 2: this is called **cell target mass**)


Higher densities = better resolution


Nelson et al. 2015

Moving-mesh codes do better jobs than fixed grids....

Moving-mesh codes do better jobs than traditional SPH...

67

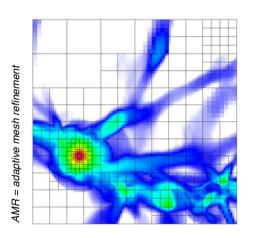
The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques

g. The available cosmological codes

- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a.Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

For codes to be *cosmological*: The Universe expansion needs to be accounted for!!! (Variable written in comoving coordinates)


Time integration i.e. time steps of the resolution elements cannot be all the same: Individual i.e. hierarchical time stepping

The code must be parallel, e.g. distributed-memory parallel (via MPI) The current codes of Cosmological (Magneto)Hydrodynamical Simulations

GRID/AMR Codes

AMR: Enzo Ramses

(Flash) Static grids: ATHENA PLUTO

(not for cosmological sims)

AREPO 120 100 100 80 80 60 60 40 20 20 40 60 80 100 120 0 0 20 40 60 80 100 120

Moving-mesh Codes

Mesh-less Codes

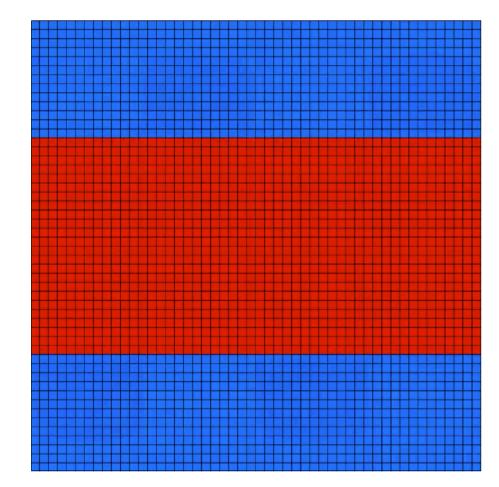
GIZMO

(Tess) (not for cosmological sims)

SPH Codes

Traditional SPH: GADGET TSPH

Modern or Corrected SPH: P-SPH SSPH GASOLINE GADGET-n ChaNGa 70


E.g. Cosmological galaxy simulations with AREPO: Illustris and IllustrisTNG

• = particles

resolution
elementsDARK MATTER
GAS - cellsSTARSSTARSBLACK HOLESgravityTreePM Solver(Magneto-)
hydrodynamicsRiemann Solver
on Voronoi Mesh

The Voronoi cells are deformable and move with the bulk motion of the gas

AREPO is massively parallel (scales well up to ~30k cores, depending on the problem at hand)

Credits: V. Springel

The types of data products/outputs of typical cosmological galaxy simulations

SNAPSHOTS i.e. "particle" data \forall resolution elements, N entries

щ	BirthPos BirthVel Coordinates GFM_InitialMass GFM_Metallicity	Dataset	{339778 ,	3}
ป	BirthVel	Dataset	{339778 ,	3}
Ē	Coordinates	Dataset	{339778 ,	3}
	GFM_InitialMass	Dataset	{339778}	
9	GFM_Metallicity	Dataset	{339778}	
ELLAR	GFM_Metals	Dataset	{339778 ,	10}
	GFM_MetalsTagged	Dataset	{339778 ,	6}
	GFM_StellarFormationTime	Dataset	{339778}	
	GFM_StellarPhotometrics	Dataset	{339778 ,	8}
	Masses	Dataset	{339778}	
	ParticleIDs	Dataset	{339778}	
>	Potential	Dataset	{339778}	
Dtr	SubfindDMDensity	Dataset	{339778}	
Ū	Potential SubfindDMDensity SubfindDensity	Dataset	{339778}	
		Dataset	{339778}	
0	SubfindVelDisp	Dataset	{339778}	
	Velocities	Dataset	{339778 ,	3}

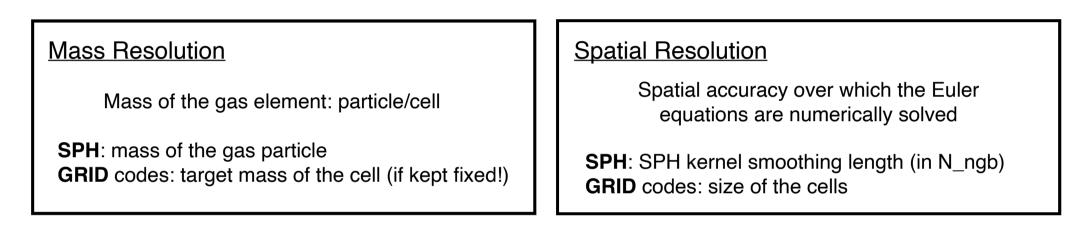
entry one GAS	CenterOfMass Coordinates Density ElectronAbundance EnergyDissipation GFM_AGNRadiation GFM_CoolingRate GFM_Metallicity GFM_Metallicity GFM_MetalsTagged GFM_WindDMVelDisp GFM_WindHostHaloMass InternalEnergy Machnumber MagneticField MagneticField MagneticFieldDivergence Masses NeutralHydrogenAbundance ParticleIDs	Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085, 3} Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085}	BH_CumMassGr BH_CumMassGr BH_Density BH_HostHaloM BH_Hsml
ne entry one DM PARTICL	Potential StarFormationRate SubfindDMDensity SubfindDensity SubfindVelDisp Velocities Coordinates ParticleIDs Potential SubfindDMDensity SubfindDensity SubfindHsml SubfindVelDisp Velocities	Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085} Dataset {12723085, 3} Dataset {13481846, 3} Dataset {13481846} Dataset {13481846, 3}	Masses ParticleIDs Potential SubfindDMDen SubfindDensi SubfindHsml SubfindVelDi Velocities

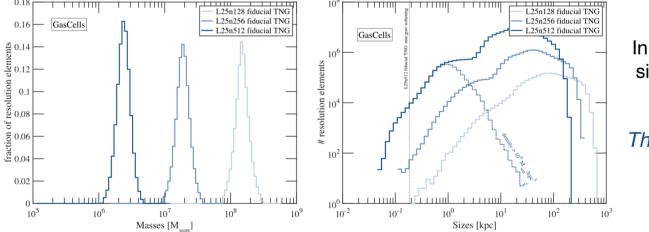
72

L_CumEgyInjection_QM _CumEgyInjection_RM | CumMassGrowth QM L_CumMassGrowth_RM L_Density | HostHaloMass L_Hsml Mass | Mdot MdotBondi I_MdotEddington L_Pressure I_Progs _U ordinates sses rticleIDs tential bfindDMDensity bfindDensitv lbfindHsml bfindVelDisp locities

The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes


h. On numerical resolution


- i. Modelling the physics of galaxies
 - a. Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

Quantifying numerical resolution for the hydrodynamical schemes is complex!

74

Also for the gas dynamics, a scheme is characterised by mass and spatial resolution, but the meaning of those is different for different techniques: SPH vs. Grid codes, fixed cartesian grids vs. AMR grids, etc etc....

In both cases, for adaptive meshes, the physical sizes of the smoothing lengths and cells can be different across the simulated volume!

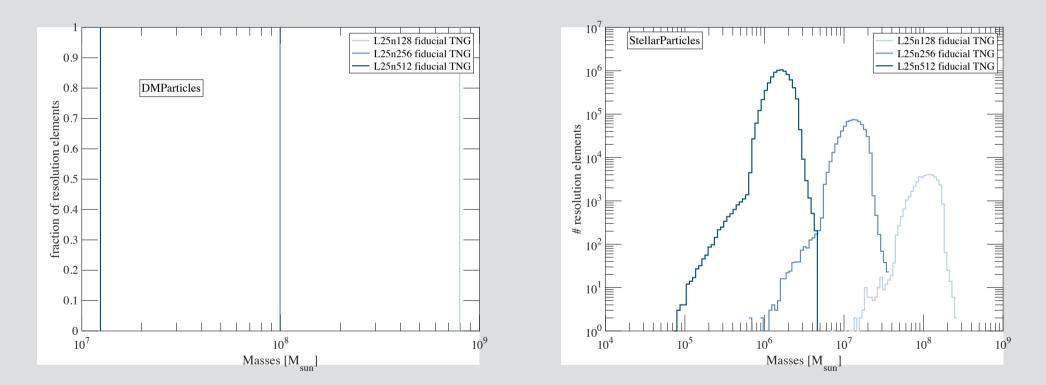
The value of the "smallest" cell is not meaningful! The whole distribution should be provided

Many numbers would be needed to quantify resolution.

Basically:

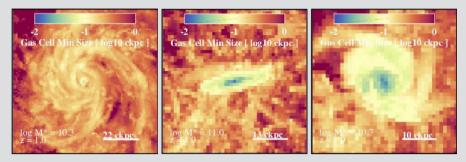
- **mass** resolution => particle/cell mass (DM, gas, stars)
- spatial resolution
 - gravity (softening DM, gas, stars, BHs)
 - hydrodynamics ("smoothing" length or cell size)

e.g. for a DM+GAS sim: **Size** of the cubic box (L [Mpc]) + # DM+GAS particles at the ICs + Assumption on OmegaM, Omegab => DM particle mass, initial gas mass

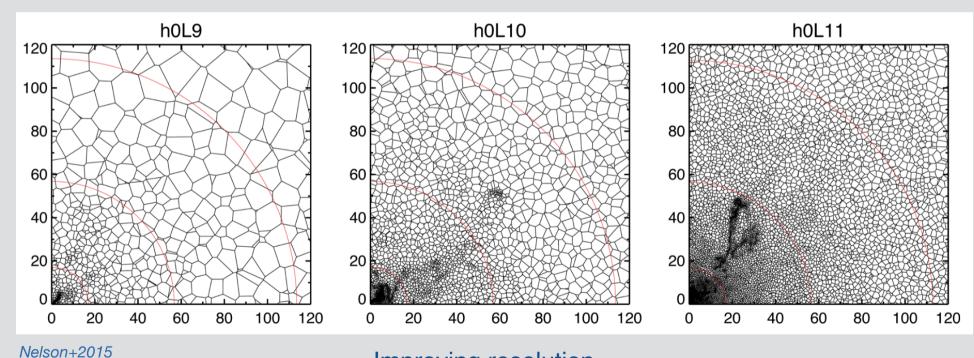

Hence e.g. L75n1820, L25n512

Run name	<i>L</i> _{box} (com Mpc)	N _{GAS}	N _{DM}	$m_{ m baryon}$ (${ m M}_{\odot}$)	$m_{ m DM}$ ($ m M_{\odot}$)	$\epsilon_{\mathrm{DM,stars}}^{z=0}$ (pc)	$\epsilon_{\rm gas,min}$ (phys pc)	$\bar{r}_{\text{cell,SF}}$ (com pc)	CPU time (Mh)	N _{cores}
TNG50(-1)	51.7	2160 ³	2160 ³	8.5×10^{4}	4.5×10^{5}	288	72	140	~130	16 320
TNG100(-1)	110.7	1820^{3}	1820^{3}	1.4×10^{6}	7.5×10^{6}	738	190	355	18.0	10752
TNG300(-1)	302.6	2500 ³	2500 ³	1.1×10^{7}	5.9×10^7	1477	370	715	34.9	24 000

Pillepich+2019

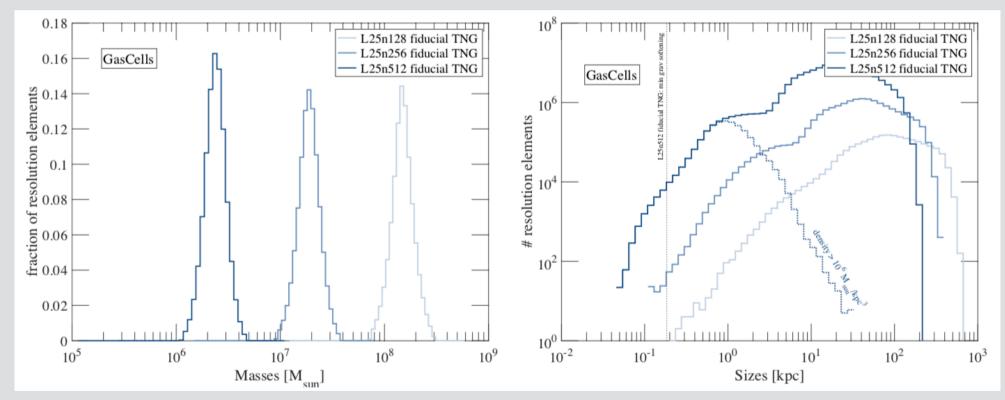

The case of DM particles, at different resolutions:

The case of star particles, at different resolutions:



The case of gas cells in AREPO:

- Full-adaptivity of the code
- Gas cell target mass
- Refinement/de-refinement


TNG50: Pillepich, Nelson, Springel + 2019

Improving resolution

Annalisa Pillepich, ISAPP21 School, 2021/06/24

The case of gas cells, at different resolutions

Pillepich+2018a

The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a. Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

The setup and ingredients of large-scale cosmological galaxy simulations

Matter components

Dark matter

Gas

Stars

SMBHs

Magnetic fields

. . .

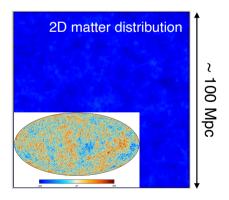
Physical processes

Gravity

Fluid dynamics

Atomic processes

Photon propagation


. . .

Simulated domain

Cubes of representative portions of the Universe

(periodic boundary conditions)

From "cosmological" initial conditions

The setup and ingredients of large-scale cosmological galaxy simulations

Physical processes

Gravity

Fluid dynamics

Atomic processes

Photon propagation

. . .

Annalisa Pillepich, ISAPP21 School, 2021/06/24

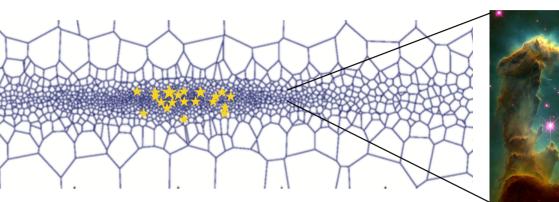
The setup and ingredients of large-scale cosmological galaxy simulations

- Gravity & hydrodynamics
- Atomic processes (radiative cooling of the gas):
 - •Heavy elements (metals = beyond He)
 - Molecules (H₂, CO, ...)
- Star formation
 - Stellar evolution
 - Metal production and enrichment
 - •Feedback: from supernovae, stellar winds, ...
- •(SuperMassive) Black Holes:
 - Formation
 - Growth: merging and gas accretion
 - •Feedback: radiative, thermal, momentum
- Radiation (RHD):
 - From stars, BHs, diffuse gas, reionization
- Magnetic Fields (MHD)
- Relativistic particle populations (cosmic rays)
- Dust (i.e. very large molecules)
- Plasma Physics (thermal conduction, ...)

Essentially, all astrophysical phenomena are unresolved

(occur below the physical resolution of the sims)

They require some level of "subgrid" modelling:

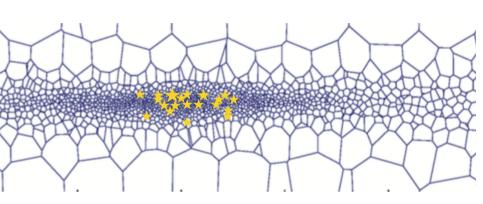

$$\frac{\partial U}{\partial t} + \nabla \cdot F = \mathbf{X} = \mathbf{S}$$

Messy astrophysics adds complex, poorly understood source terms

"Laws" suggested by observations and tailored theoretical models are invoked and implemented

Star formation: will always be sub grid :)

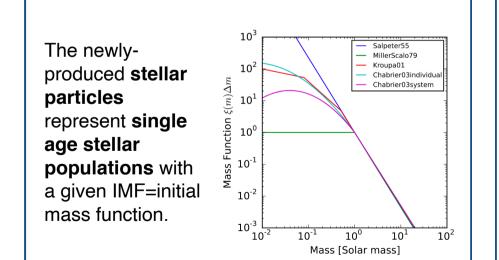
Gas Elements i.e. Mesh in a disk (V. Springel)


In large-volume cosmological galaxy simulations, the average gas resolution element in star-forming region is ~50-1000 pc.

We do *not* resolve (yet!) star forming regions, giant molecular clouds, supernovae explosions, HII regions, small-scales turbulence, etc etc

In galaxy simulations, star formation = conversion of gas elements into stellar particles

Fractions of the mass of the gas elements (particles or cells) are stochastically transformed into a different type of resolution elements, usually particles, that are collision less (stellar particles interact via gravity, not hydrodynamically)

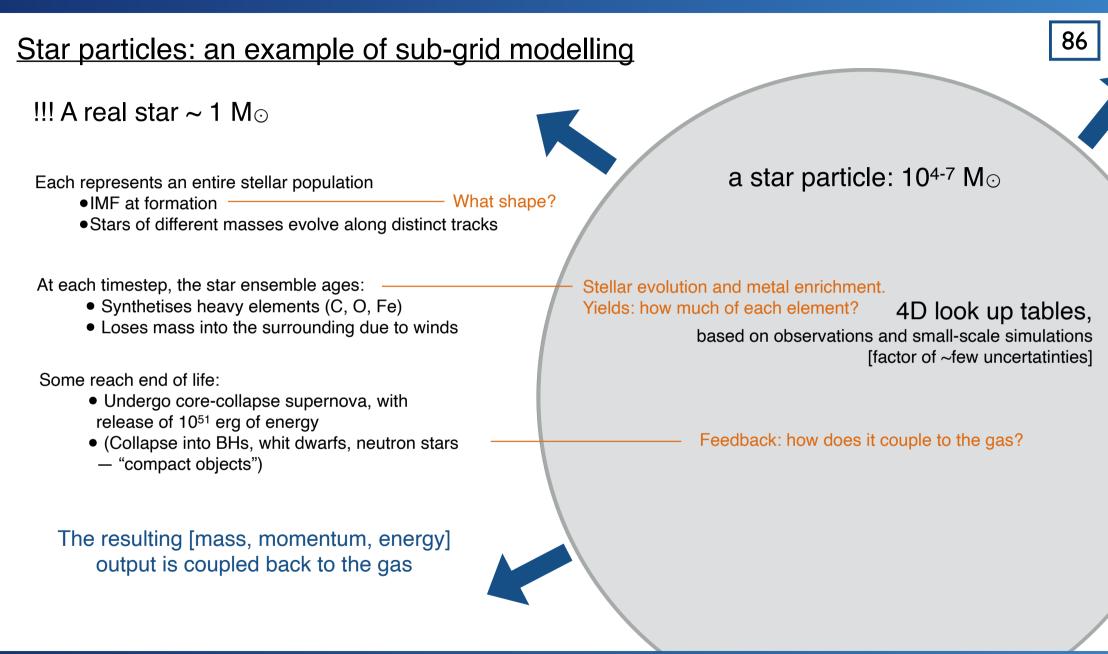

Star formation: the basic idea is to convert only dense gas

Gas Elements i.e. Mesh in a disk (V. Springel)

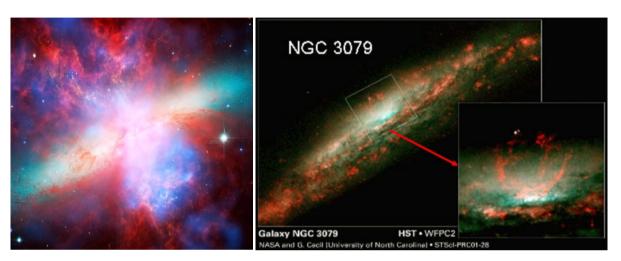
In the majority of the current models, gas above a certain density is converted into stars.

- Different models assume different values for such density threshold (e.g. in Eris, n = 5 cm⁻³, Illustris, n = 0.1 cm⁻³)
- Such threshold may depend of gas properties, e.g. metallicity (EAGLE), self-gravity (FIRE), ...
- In some models, the star formation depends on the density of specific gas species, e.g. molecular gas (FIRE)

The conversion of gas mass into stellar mass is done stochastically, assuming observationally-allowed star formation time scales


SF time-scales

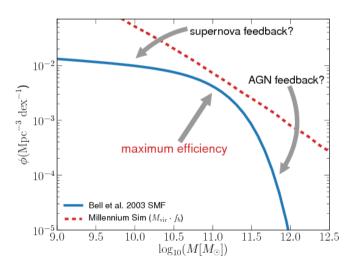
 $\frac{\mathrm{d}\rho_{\star}}{\mathrm{d}t} = (1-\beta)\frac{\rho_{\mathrm{c}}}{t_{\star}}$ SF efficiency


Parameters are de facto chosen to obtain something like a Kennicutt-Schmidt relation between Sigma_SFR and Sigma_GAS, when averaged across whole disks

Star formation: different simulations, different recipes in the detail

EagleIndependently of resolution, the same locally-averaged KS
law is recoveredEoS from a multiphase model of the ISMMagneticum
$$\dot{\rho}_* = A (1 \ M_{\odot} \ pc^{-2})^{-n} \times \left(\frac{\gamma}{G} J_g P_c\right)^{(n-1)/2} \rho_{g,c} \left(\frac{\rho_g}{\rho_{g,c}}\right)^{\frac{(n-1)/2}{2}tt+1}$$
EoS from a multiphase model of the ISM $\frac{d\rho_*}{dt} = \frac{\rho_c}{t_*} - \beta \frac{\rho_c}{t_*} = (1-\beta) \frac{\rho_c}{t_*}$ Schaye & Dalla Vecchia (2008)In cosmological galaxy simulations, we do not resolve (yet!?!) star
forming regions, giant molecular clouds, supernovae explosions, HII
regions, small-scales turbulence, etc etc $\rho_* = 0.13 \ cm^{-3}$
 $t_* = 2.2 \ Gyr$ Illustris
 $\rho_* = 0.13 \ cm^{-3}$
 $t_* = 2.2 \ Gyr$ Stellar particles represent single age stellar populations
with a given IMF, which can evolveIllustrisTNG
 $\rho_* = 0.13 \ cm^{-3}$
 $t_* = 2.2 \ Gyr$ $\frac{d\rho_*}{dt} = \frac{\rho_c}{t_*} - \beta \frac{\rho_c}{t_*} = (1-\beta) \frac{\rho_c}{t_*}$ $\frac{d\rho_*}{dt} = \frac{\rho_c}{t_*} - \beta \frac{\rho_c}{t_*} = (1-\beta) \frac{\rho_c}{t_*}$ Springel & Hemquist (2003)Springel & Hemquist (2003)

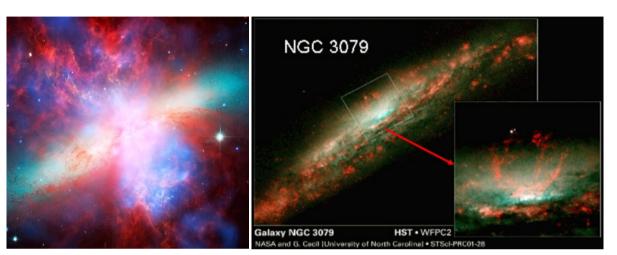
Stellar feedback: the basic idea is to reduce the amount of star-forming gas


Motions of gas from the star-forming regions of galaxies are observed.

Powerful energy injections are known to be triggered by SN explosions

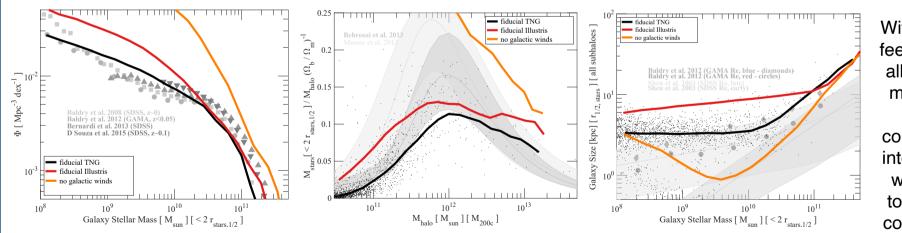
Feedback is needed to reproduce the amount of stellar mass of observed galaxies

Take a cosmological simulations of dark matter and gas and add recipes for star formation and gas cooling: well, all the gas would be converted quickly into stars, producing too much stellar mass.

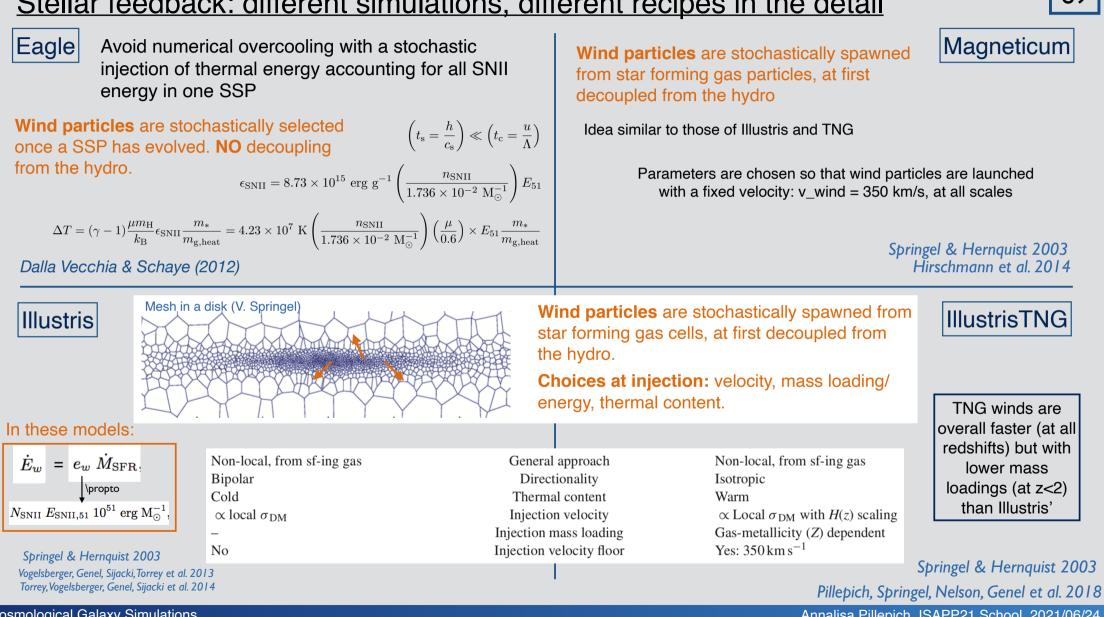

This is know as e.g. the overcooling problem

Observed galaxy stellar mass function vs. Predicted dark-matter halo mass function x baryonic fraction

Additional mechanisms that regulate a galaxy's star formation activity are invoked to fix the mismatch (since early 2000')


Stellar feedback: the basic idea is to reduce the amount of star-forming gas

Motions of gas from the star-forming regions of galaxies are observed.


Powerful energy injections are known to be triggered by SN explosions

Feedback is needed to reproduce the amount of stellar mass of observed galaxies

Without 'a' form of feedback acting at all masses, i.e. a mechanism that regulates conversion of gas into stars, haloes would host way too massive and compact galaxies

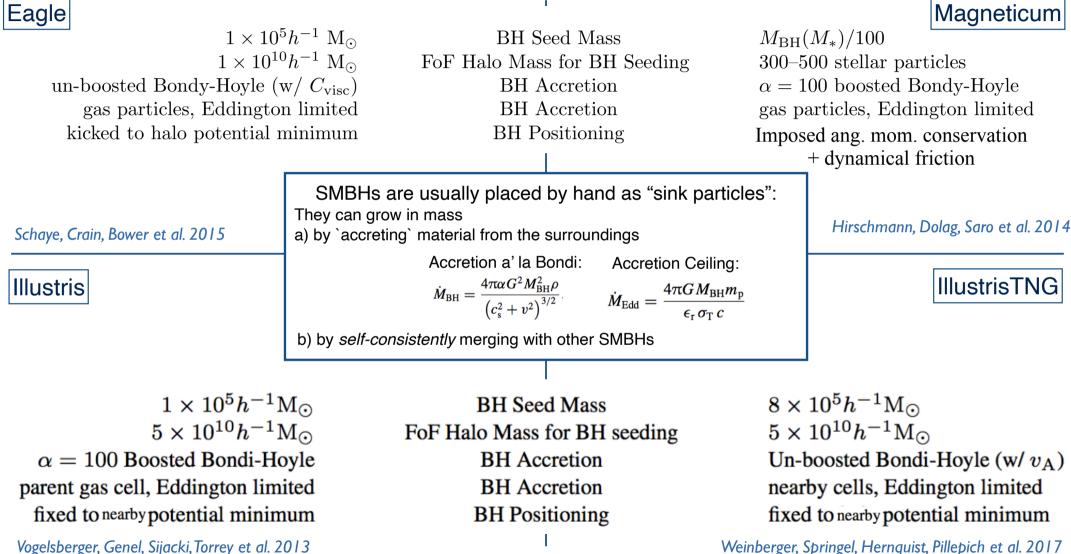
Pillepich, Springel, Nelson, et al. 2018a

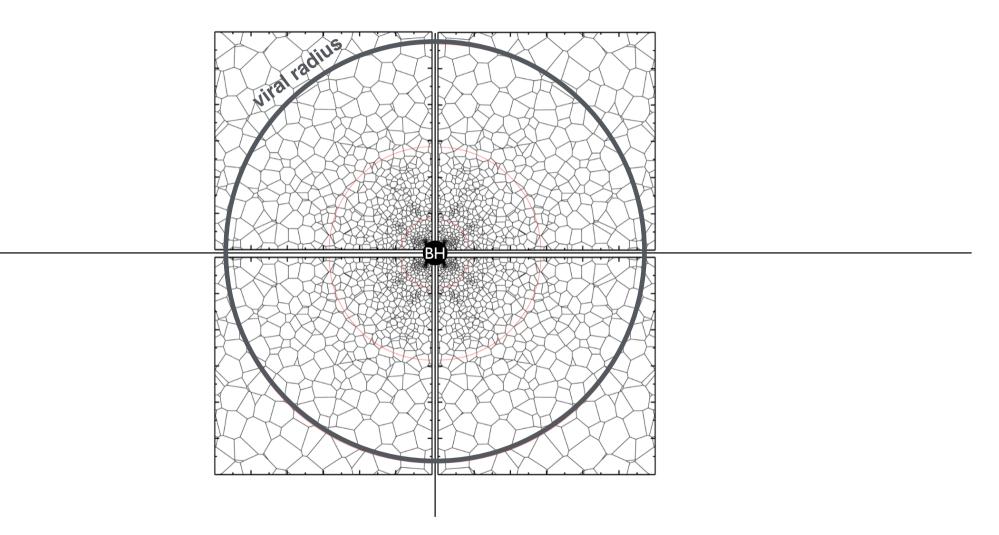
Stellar feedback: different simulations, different recipes in the detail

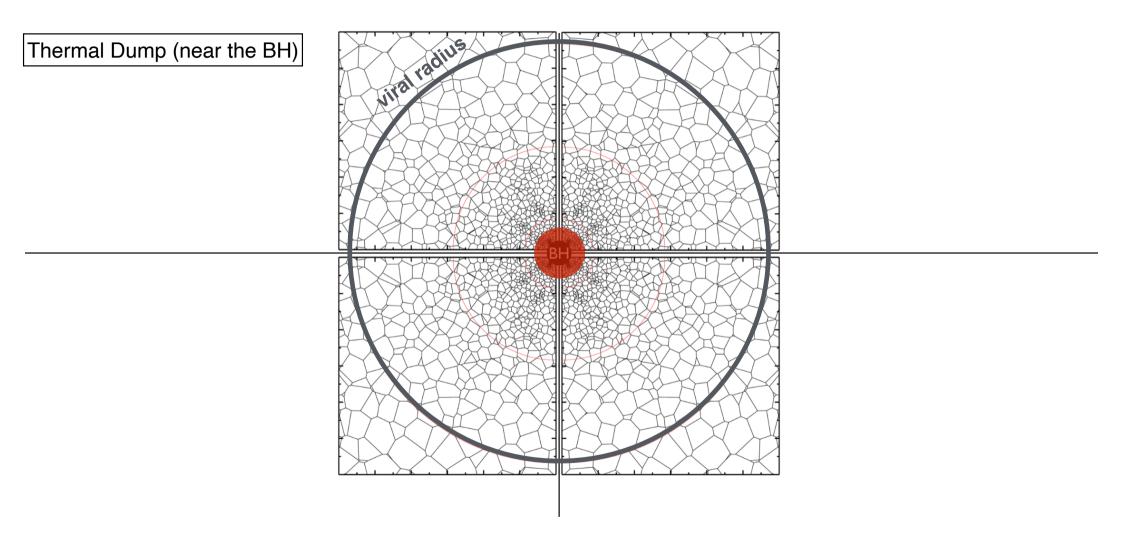
Cosmological Galaxy Simulations

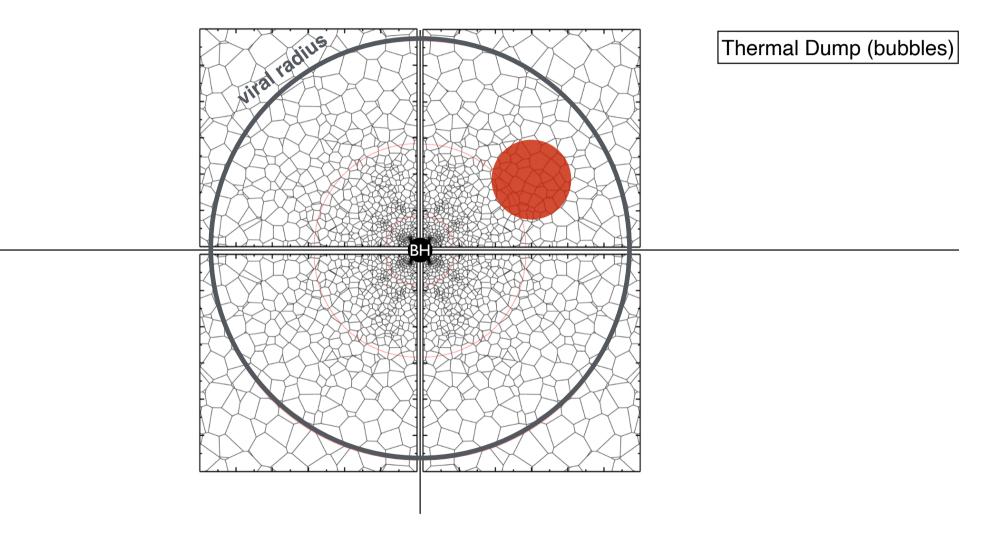
Annalisa Pillepich, ISAPP21 School, 2021/06/24

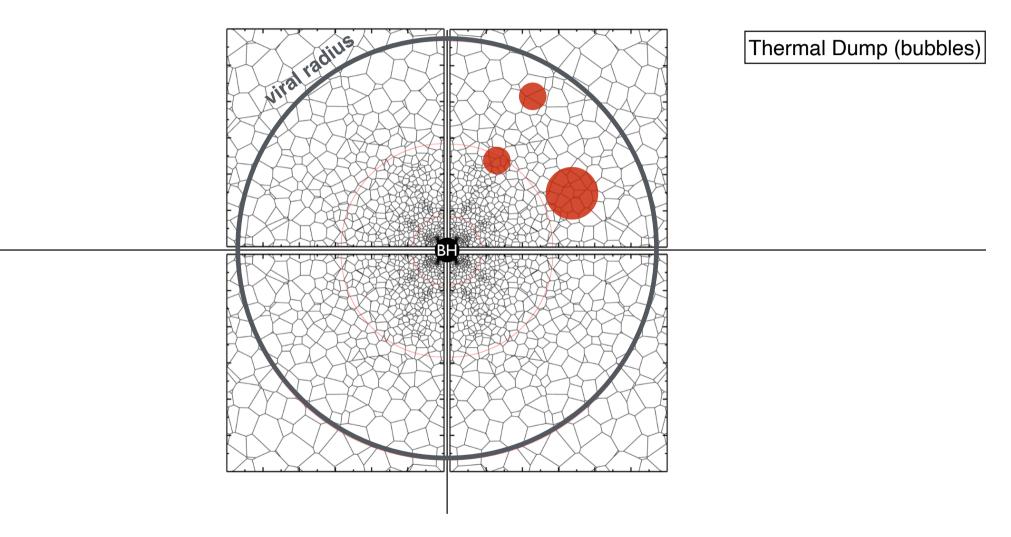
SMBH feedback: the basic idea is to mimic what observed

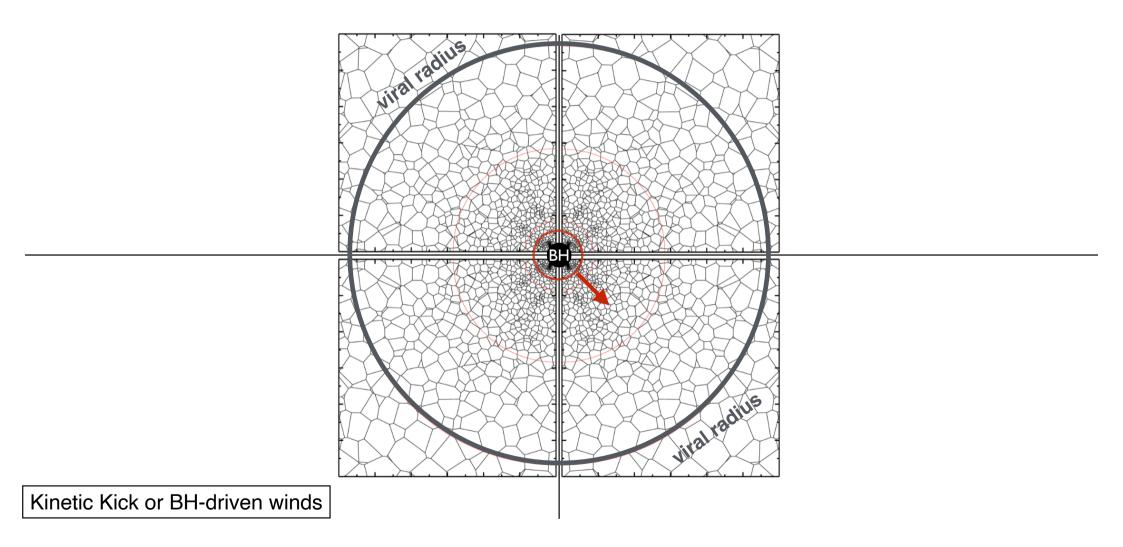

AGNs and SMBHs are ubiquitous

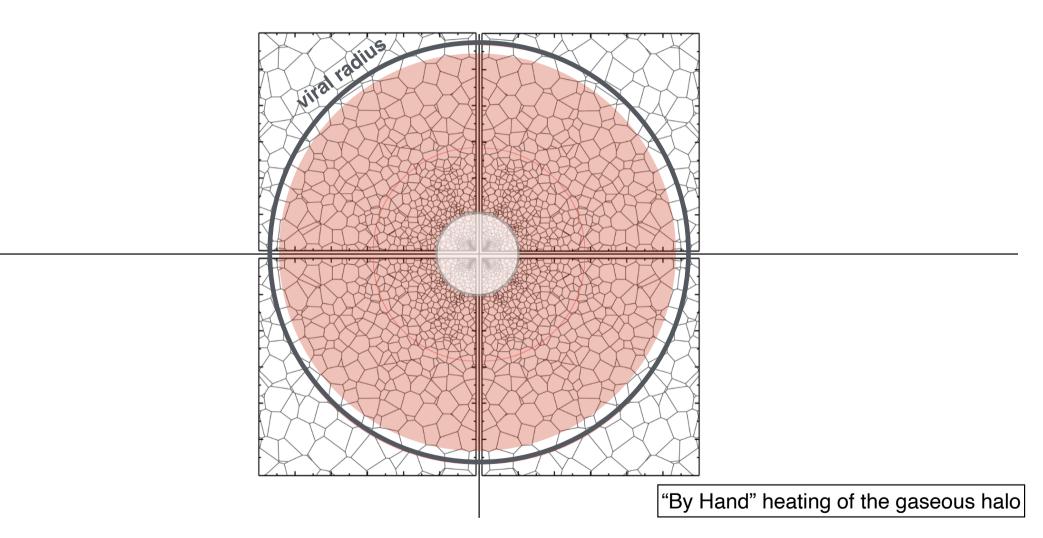

Powerful energy injections are known to be launched from the sites of SMBHs

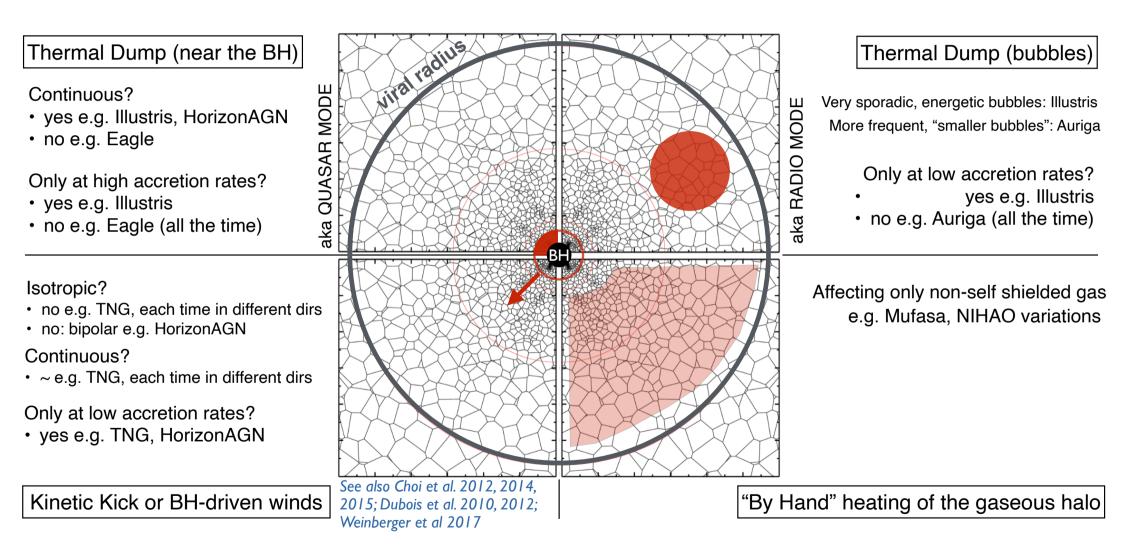

SMBH feedback is the only mechanism that can quench entire populations of simulated massive consistently with observations

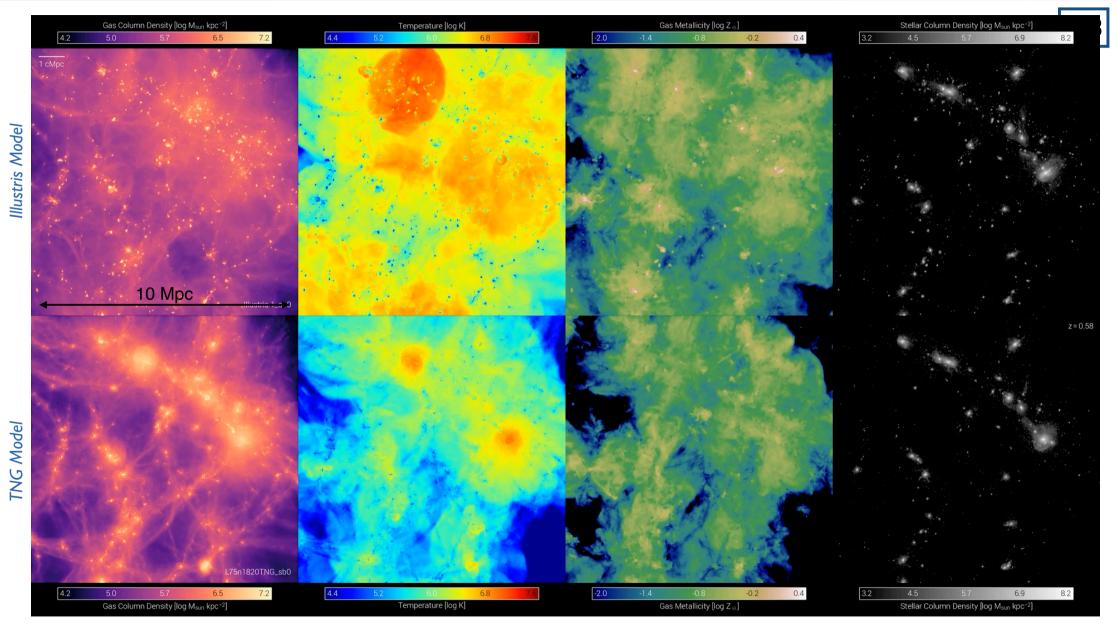

SMBH seeding, growth, and positioning: we do not know how SMBHs form


Magneticum





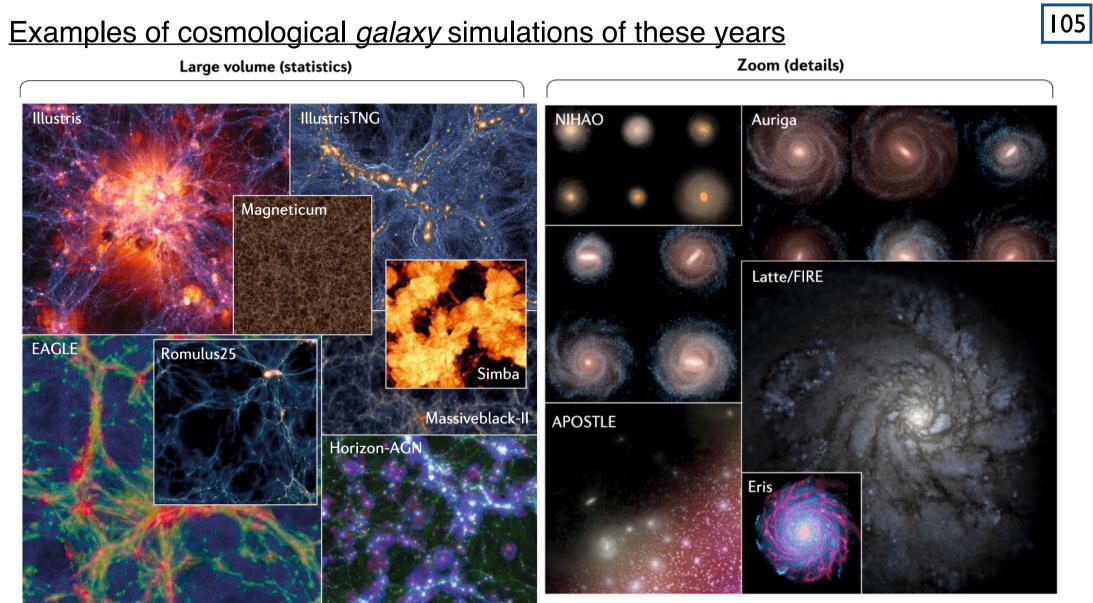



SMBH feedback: different simulations, dif	ferent recipes in the detail			
Eagle	Magneticum			
One mode: thermal dump <i>("</i> quasar") Intermittent	Two "modes": High-accr. rates: thermal dump (continuous) Low-accr. rates: x4 more energetic thermal dump			
	Low/High Accretion Transition: χ constant = 0.01 \dot{M}_{Edd}			
Schaye, Crain, Bower et al. 2015	Hirschmann, Dolag, Saro et al. 2014			
Illustris	IllustrisTNG			
Two modes:	Two modes:			
High-accr. rates:	High-accr. rates: thermal dump (continuous)			
thermal dump (continuous)				
Low-accr. rates:	Low-accr. rates:			
thermal 'bubbles' in the ICM (intermittent)	BH-driven winds (isotropic, pulsated)			
constant: 0.05 $\dot{M}_{\rm Edd}$ Low/High Accretion	n Transition: χ BH-mass dependent, $\leq 0.1 \dot{M}_{Edd}$			
A radiativ	+ e feedback			
Vogelsberger, Genel, Sijacki, Torrey et al. 2013	Weinberger, Springel, Hernquist, Pillepich et al. 2017			
Cosmological Galaxy Simulations	Annalisa Pillepich, ISAPP21 School, 2021/06/24			

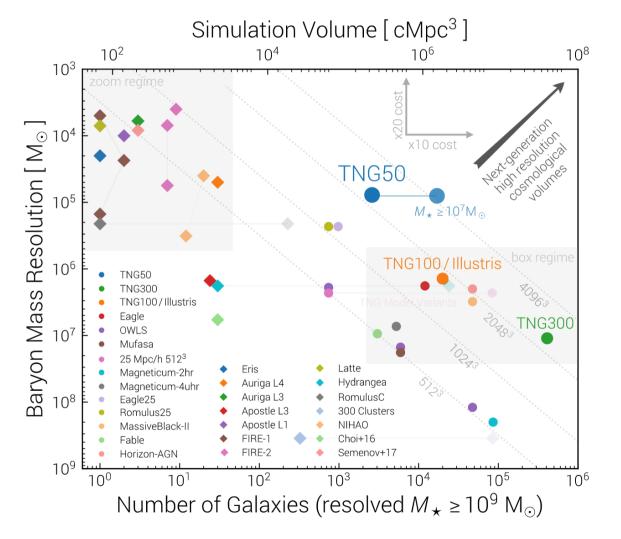
For cosmological galaxy simulations, a large and uncertain parameter space

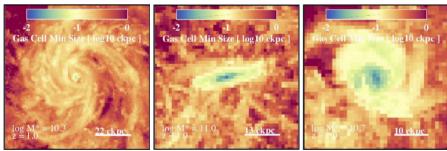
Illustris	Model features	TNG	Technical Reference	
	MHD			
No	Magnetohydrodynamics (MHD)	Yes: Powell $\nabla \cdot B$ cleaning	Pakmor et al. (2011)	
-	Seed B field strength	1.6×10^{-10} phys Gauss at $z = 127$	Pakmor & Springel (2013)	
_	Seed B field configuration	Uniform in random direction	Pakmor & Springel (2013)	
	^c			Functional forms and inclusion of physical
e este les	BHs and BH feedback	a safa las		
$1 \times 10^{5} h^{-1} M_{\odot}$	BH seed mass	$8 imes 10^5 h^{-1} \mathrm{M_{\odot}}$	Weinberger et al. (2017)	processes are by choice,
$5 \times 10^{10} h^{-1} M_{\odot}$	FoF halo mass for BH seeding	$5 \times 10^{10} h^{-1} M_{\odot}$	Vogelsberger et al. (2013)	
$\alpha = 100$ Boosted Bondi–Hoyle	BH accretion	Un-boosted Bondi-Hoyle (w/ vA)	Weinberger et al. (2017)	dictated by scientific applications and
Parent gas cell, Eddington limited	BH accretion	Nearby cells, Eddington limited	Weinberger et al. (2017)	computing capabilities
Pixed to local potential minimum	BH positioning	Fixed to local potential minimum	Vogelsberger et al. (2013)	computing capabilities
Two: 'Quasar/Radio'	BH feedback Modes	Two: 'high-/low-accretion state'	Weinberger et al. (2017)	
Thermal Injection around BHs	High-accr-rate feedback	Thermal injection around BHs	Weinberger et al. (2017)	
Thermal 'bubbles' in the ICM	Low-accr-rate feedback	BH-driven kinetic wind	Weinberger et al. (2017)	
Constant: 0.05	Low/high-accretion transition: χ	BH-mass dependent, <0.1	Weinberger et al. (2017)	
0.2	Radiative efficiency: ϵ_r	0.2	Weinberger et al. (2017)	
$\epsilon_{f}\epsilon_{r}$, with $\epsilon_{f} = 0.05$	High-accretion-rate feedback factor	$\epsilon_f \epsilon_r$, with $\epsilon_f = 0.1$	Weinberger et al. (2017)	
$\epsilon_m \epsilon_r$, with $\epsilon_m = 0.35$	Low-accretion-rate feedback factor	$\epsilon_{\rm f,kin} \leq 0.2$	Weinberger et al. (2017)	
Yes	Radiative BH feedback	Yes	Vogelsberger et al. (2013)	Parameter values are from a mixture of:
	Galactic winds			 Ab initio results.
Non-local, from sf-ing gas	General approach	Non-local, from sf-ing gas	Vogelsberger et al. (2013)	 Smaller-scale simulations/theory.
Bipolar	Directionality	Isotropic	This paper	Observations.
Cold	Thermal content	Warm	This paper	
$\propto \log \sigma_{DM}$	Injection velocity	\propto Local σ_{DM} with $H(z)$ scaling	This paper	
-	Injection mass loading	Gas-metallicity (Z) dependent	This paper	A calibration/tuning step is required to constrain free
No	Injection velocity floor	Yes: $350 \rm km s^{-1}$	This paper	3 1 1
3.7	Wind velocity factor: κ_w	7.4	This paper	parameters:
1.09	Wind energy factor: \overline{e}_w	3.6	This paper	• ~ 10 to ~ 50 dimensions.
-	Thermal Fraction: τ_w	0.1	This paper	Minimize the loss function?
-	Z-dependence reduction factor: $f_{w,Z}$	0.25	This paper	
-	Z-dependence reference metallicity: Zw. Z	0.002	This paper	 Nope. By hand, e.g. domain-based expertise.
-	Z-dependence reduction power: $\gamma_{w,Z}$	2	This paper	
0.4	Metal loading of wind particles: γ_w	0.4	Vogelsberger et al. (2013)	
	Stellar Evolution			
Chabrier (2003)	IMF	Chabrier (2003)	Vogelsberger et al. (2013)	
[6, 100] M _☉	[min, max] SNII Mass	[8, 100] M _O	this paper	
see Table 2	Yield Tables	see Table 2	this paper	
at every star timestep	ISM Chemical Enrichment	time/stellar mass discrete	this paper	
	Metal Advection			
gradient extrapolation	Advection Scheme	same + renormalization	this paper	
0	Initialization Metal Fractions	10^{-10} at $z = 127$	this paper	
H, He, C, N, O, Ne, Mg, Si, Fe	Tracked Element Scalars	same 9 + other metals	this paper	
-	Metal Tagging	from SNIa, SNII, AGB separately	Naiman et al. (2017)	
-	Iron Tagging	from SNIa and SNII separately	Naiman et al. (2017)	
-	r-processes	from NS-NS mergers	Naiman et al. (2017)	

Different simulations, different "calibration Eagle	strategies" [102]
 z=0 galaxy stellar mass function z=0 galaxy sizes z=0 BH mass - galaxy mass 	 z=0 BH mass - galaxy mass X-ray luminosity-mass of massive haloes Stellar metallicity content of L* galaxies
Fits to specific observational data sets	In comparison to some observations
Schaye, Crain, Bower et al. 2015; Crain, Schaye, Bower et al. 2015	
Observables of reference for Illustris	r development of the models IllustrisTNG
 cosmic star formation rate density z=0 galaxy stellar mass function z=0 stellar to halo mass relation (z=0 gas metallicity-mass relation) (z=0 BH mass - galaxy mass) 	 cosmic star formation rate density z=0 galaxy stellar mass function z=0 stellar-to-halo mass relation z=0 gas fraction within R500c z=0 BH mass vs. galaxy mass relation z=0 stellar sizes vs. galaxy mass relation
In comparison to some observations Vogelsberger, Genel, Sijacki, Torrey et al. 2013 Torrey, Vogelsberger, Genel, Sijacki et al. 2014	All in comparison to Illustris model outcome Pillepich, Springel, Nelson, Genel et al. 2018 Weinberger, Springel, Hernquist, Pillepich et al. 2017
Cosmological Galaxy Simulations	Annalisa Pillepich, ISAPP21 School, 2021/06/24


Movie Credits: Dylan Nelson

The goals/scope of today's lecture


- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a. Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results



Vogelsberger+2020, Nature Technical Review

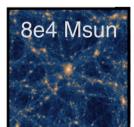
Large-scale cosmological galaxy simulations: a remarkable progress in ~10 yrs

- Cubic volumes of synthetic universes
 - a few tens of cMpc to ~300cMpc a side
- Four main constituents:
 - Gas
 - Dark Matter
 - Stars
 - Super Massive Black Holes
- + Gas/stars mass resolution: ~10^{5-7} $M\odot$
- Spatial resolution: 100 pc a few kpc

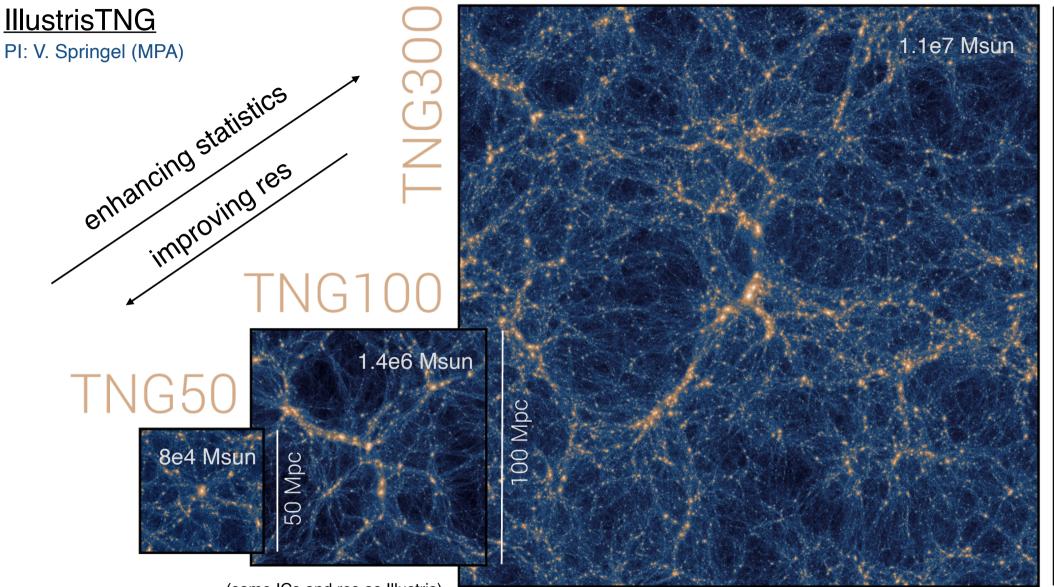
TNG50: Pillepich, Nelson, Springel + 2019

Nelson, Pillepich, Springel + 2019

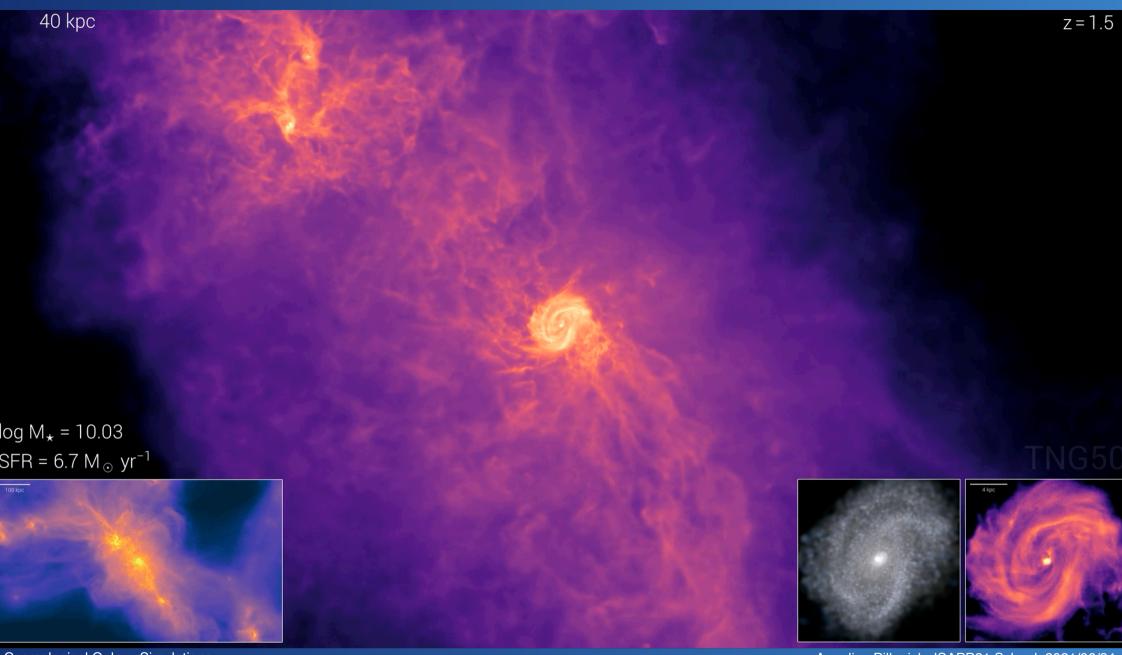
The TNG50 simulation, a field-leading computational endeavour


Co-PIs: D. Nelson (MPA), A. Pillepich (MPIA)

HazelHen (Stuttgart) Cray Cluster 7712 nodes with 24 cores/node 5.3GB of memory per core!



Cosmological volume at zoom resolution


It has run for more than one year, 24/7 on 16k computing cores!

TNG50: Pillepich, Nelson et al. 2019 TNG50: Nelson, Pillepich et al. 2019

(same ICs and res as Illustris)

300 Mpc

Cosmological Galaxy Simulations

Annalisa Pillepich, ISAPP21 School, 2021/06/24

<u>IllustrisTNG: fully public output</u>

The Illustris Simulation

Towards a predictive theory of galaxy formation.

www.illustris-project.org

° The IllustrisTNG Project

The next generation of cosmological hydrodynamical simulations.

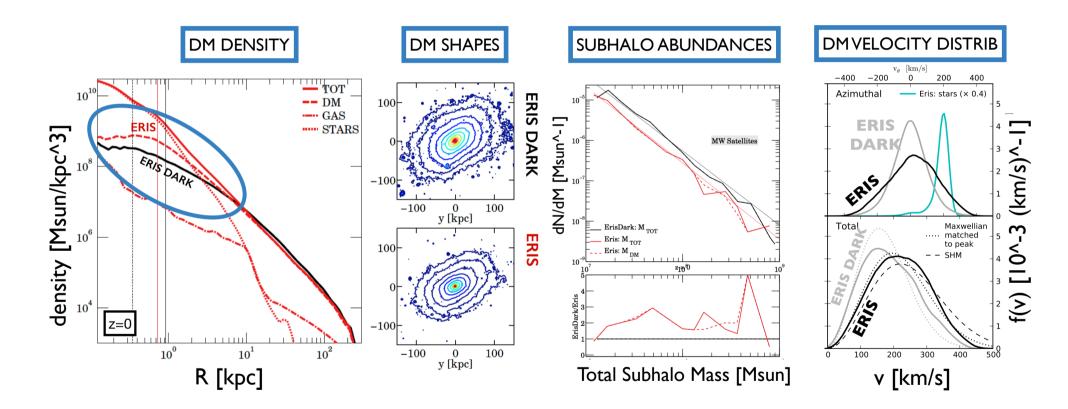
www.tng-project.org

Spelling out the Setup, i.e. a minimal glossary

Cosmological
Gravity+Hydro
MHD
Galaxy Formation/ Full Physics
Uniform Volume
Moving Mesh
Periodic Boundary Conditions

as opposed to

as opposed to

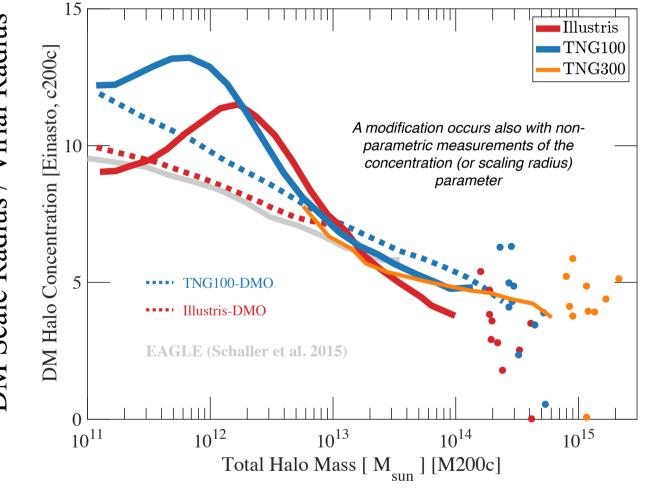

Isolated
DM-only, stars-only
no B fields, gas neutral
Adiabatic (if with gas), non radiative
Zoom
Smooth Particle Hydro (gas particles) Cartesian Grid (yet adaptive)
"Embedded" in a larger volume

The goals/scope of today's lecture

- a. The cosmological context
- b. The goals of cosmological galaxy simulations
- c. The landscape and basic ingredients
- d. The baryonic fluid
- e. Fundamentals of galaxy formation
- f. Euler equations and their numerical solution
 - a. Elements of SPH
 - b. Elements of Eulerian hydrodynamics
 - c. Moving-mesh and mesh-less techniques
- g. The available cosmological codes
- h. On numerical resolution
- i. Modelling the physics of galaxies
 - a. Star formation
 - b. Stellar evolution
 - c. Feedback: needs, from stars and from SMBHs
- j. Examples of state-of-the art simulations
- k.Selected results

Baryonic physics alter DM expectations from N-body only calculations

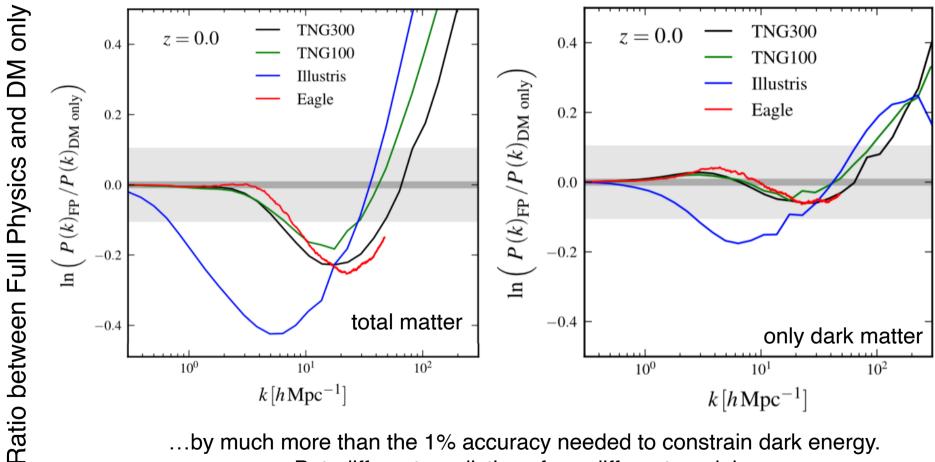
For example, in a MW-like simulated galaxy (Eris):



Pillepich [private communication]

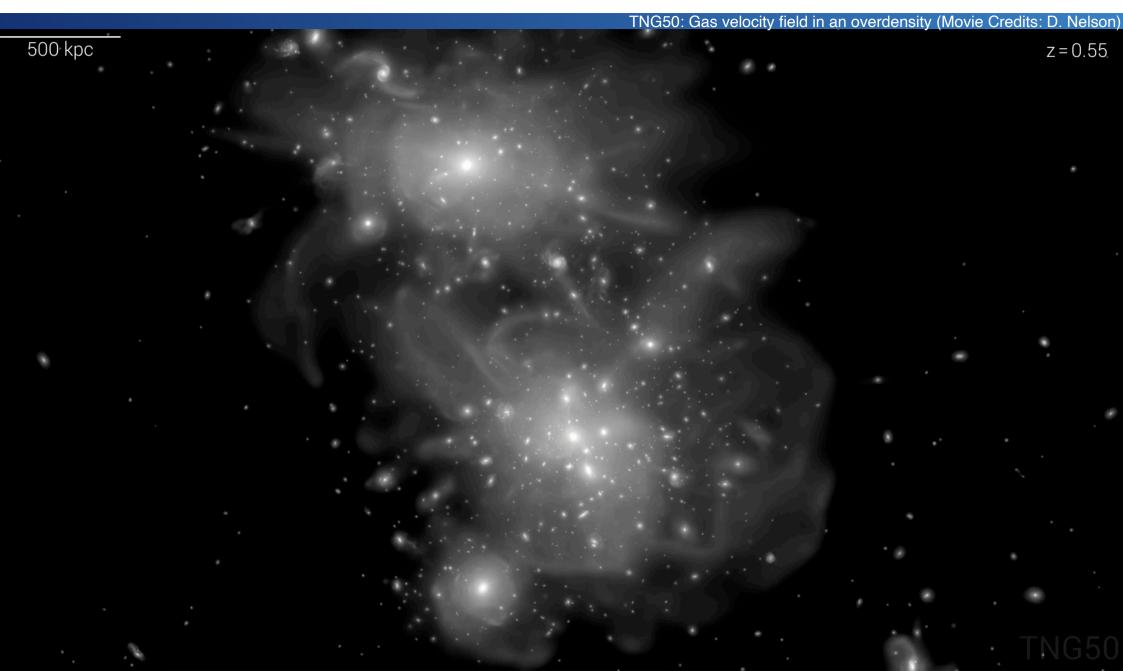
Pillepich, Kuhlen, et al. 2014

Baryonic physics affects the distribution of dark matter within haloes


We have known since many years that more massive haloes are less concentrated than low mass ones

114

In both Illustris and TNG, the DM concentration-mass relation gets modified by baryonic physics, in a notmonotonic way wrt DMO predictions.


Yet, the effects of galaxy physics can be qualitatively and quantitatively different from model to model

[Pillepich: preliminary] Lovell, Pillepich et al. in 2018, Chua, Pillepich et al. 2017

also the dark one! And also on scales >> haloes

...by much more than the 1% accuracy needed to constrain dark energy. But, different predictions from different models.

