Based on: arXiv:2012.10421 With D. Gaggero, R. Connors, J. Manshanden, M. Ricotti, G. Bertone

17th MultiDark Consolider Workshop

Francesca Scarcella IFT UAM-CSIC

Multi-wavelength searches for isolated Black Holes in the Milky Way

Do Primordial Black Holes constitute (a fraction of) the DM?

Francesca Scarcella (IFT UAM/CSIC)

Primordial Black Holes

PBHs: constraints and detection

Francesca Scarcella (IFT UAM/CSIC)

Detecting Isolated BHs in the Milky Way

- Detection: BH expected to accrete gas (if within a molecular cloud) and emit non-thermal radiation
- Identification: multi-wavelength study: X-ray + Radio "fundamental plane"
- Central molecular zone: dense gas + large number of BHs ideal target

Francesca Scarcella (IFT UAM/CSIC)

Astrophysical background

- Large number of ABHs in CMZ ($\sim 10^4 10^5$)
- Assess background this work
- No A-IBH detected so far interesting per-se

Goal: estimating the number of detectable ABHs

Francesca Scarcella (IFT UAM/CSIC)

Multi-wavelength detectability of isolated black holes in the Milky Way

Francesca Scarcella,^{1*} Daniele Gaggero,¹[†] Riley Connors,² Julien Manshanden,³

Massimo Ricotti,⁴ Gianfranco Bertone⁵

¹ Instituto de Física Teórica UAM-CSIC, Campus de Cantoblanco, E-28049 Madrid, Spain

² Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA

³ II. Institut für Theoretische Physik, Universität Hamburg, 22761 Hamburg, Germany

⁴ Department of Astronomy, University of Maryland, College Park, MD 20740, USA

⁵ Gravitation Astroparticle Physics Amsterdam (GRAPPA), Institute for Theoretical Physics Amsterdam, and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

astro-ph.HE

ABSTRACT

Isolated black holes in our Galaxy have eluded detection so far. We present here a comprehensive study on the detectability of isolated stellar-mass astrophysical black holes that accrete interstellar gas from molecular clouds in both the local region and the Central Molecular Zone. We adopt a state-of-the-art model for the accretion physics backed up by numerical simulations, and study the number of observable sources in both the radio and X-ray band, as a function of a variety of parameters. We discuss in particular the impact of the astrophysical uncertainties on our prediction for the number of bright X-ray sources in the central region of the Galaxy. We finally consider future developments in the radio domain, and assess the potential of SKA to detect a population of astrophysical black holes accreting gas in our Galaxy.

Key words: astroparticle physics - black hole accretion - ISM: jets and outflows

arXiv:2012.10421

Modelling accretion

Previous works: Bondi-Hoyle-Lyttleton model

- Simple textbook model for accretion onto a moving compact object
- Ruled out by observations
- suppression factor (not physically motivated) $\lambda \sim 10^{-2} 10^{-3}$
- Does not take into account radiative feedback

Francesca Scarcella (IFT UAM/CSIC)

This work: Park-Ricotti model

Based on state-of-the-art hydrodynamical simulations including radiative feedback

• The region surrounding the BH is ionized

 At low velocities a bow shock forms ahead of the BH -> the flux is deflected -> accretion rate is suppressed

arXiv:1211.0542, arXiv:2003.05625

Park-Ricotti vs B-H-L accretion

- Bondi: accurate at large BH speed
- Very large deviations at low speeds
- PR: peak accretion at $v_{BH} = 2c_s^{ionized} \sim O(10)$ km/s

Francesca Scarcella (IFT UAM/CSIC)

• High gas densities necessary

10^{-7}

Number of sources detectable in the

$$N^{ ext{sources}}\left(\phi^{*},
ight. N^{ ext{tot}}\int_{\phi\left(ext{v}_{ ext{BH}},M,d,\{p_{i}\}
ight)>\phi^{*}}P(ext{v}_{ ext{BH}})$$

- Uniform spatial distribution ullet
- Density of clouds $P(n) \propto n^{-\beta}$
- Luminosity (RIAF) $L = \eta \dot{M}, \eta = 0.1 \frac{\dot{M}}{\dot{M}_{crit}}$

Francesca Scarcella (IFT UAM/CSIC)

 $\{p_i\}, \{q_i\}) =$ $P(M)P(r)P(n)d\mathbf{v}_{\mathrm{BH}}dMdrdn$

• Velocity distribution: MB distribution (progenitor stars, $\mu \approx 130 \,\mathrm{km/s}$ + natal kicks $\mu \sim 50 - 100 \,\mathrm{km/s}$)

 $L \propto \dot{M}^2$

X-ray: number of detectable sources

- Order of 10 sources above NuSTAR threshold
- Largest uncertainties: number of BHs in the region, distribution in clouds

Francesca Scarcella (IFT UAM/CSIC)

Radio: number of detectable sources

Francesca Scarcella (IFT UAM/CSIC)

Francesca Scarcella (IFT UAM/CSIC)

Preliminary: PBH Bounds

CMZ NuSTAR Bound – PBH (Preliminary)

Conclusions & Outlook

- Significant number of Astrophysical X-ray sources predicted
- Could some isolated ABHs be present in NuSTAR catalog?
- Science case for SKA
- space distribution, gas distribution (threshold effect)
- Differentiate ABH and PBH populations (luminosity function?)

Francesca Scarcella (IFT UAM/CSIC)

• Study dependence of bound on parameters, mass function, phase

Thank you!