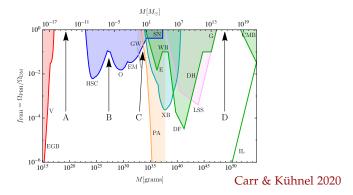
Probing hybrid scenarios with primordial black holes and particle dark matter

Thomas Lacroix (IFT) Collaborators: M. Boudaud (IFT, deceased), M. Stref (LAPTh, Annecy), J. Lavalle (LUPM, Montpellier), P. Salati (LAPTh, Annecy)

XVII MultiDark Consolider Workshop (online)

January 25-27, 2021

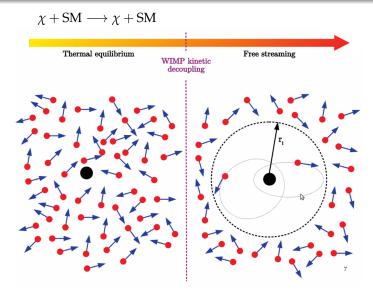


Introduction

- Renewed interest in primordial black holes (PBHs) as DM candidates with LIGO/Virgo detections of BH mergers
- Significant constraints on PBH fraction $f = \Omega_{\text{PBH}} / \Omega_{\text{DM}}$
- A few open mass windows (if monochromatic mass function)
- Complicated picture for more realistic assumptions

 \rightarrow Hybrid DM models with PBHs + (annihilating) particles? \hookrightarrow WIMPs but not necessarily

Hybrid scenarios: formation of mini-halos of particle DM around PBHs


WIMPs + PBHs in the literature

- Simple models for formation of mini-halos in the early Universe Mack+ 2007, Ricotti+ 2009, Lacki+ 2010, Saito+ 2010, Dong+ 2011
- Very concentrated objects (mini-spikes), $\rho \propto r^{-\gamma}$ with $\gamma \ge 3/2$ \Rightarrow strong γ -ray constraints from WIMP annihilation
- Effect of orbits of DM particles around the PBH (Eroshenko 2016)
- PBHs and WIMPs: "all or nothing" (Boucenna+ 16, Carr+ 2020)

This work

- In-depth study of formation process and dependence of profiles on PBH and particle DM parameters
- Reduce theoretical uncertainties
- Go beyond WIMPs: lighter DM candidates, smaller annihilation cross sections than $3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1} \rightarrow \text{new constraints}$
- Use Galactic cosmic rays (CRs) in addition to γ -rays

Kinetic decoupling of DM particles and radius of influence of a PBH

Courtesy from M. Stref

Setting up the DM profile

Radius of influence of the BH

Decoupling from the Hubble flow: $\ddot{r} = -\frac{GM_{BH}}{r^2} + \frac{\ddot{a}}{a}r = 0$ Equivalently: $M_{BH} \approx \frac{4\pi}{3} r_{infl}^3 \rho_{rad}$ (c = 1)

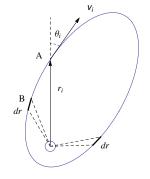
 \Rightarrow Turnaround radius $r_{infl}(t) \approx (2GM_{BH}t^2)^{1/3}$

Onion-shell mini-spike profile

- Below *r*_{kd}: all DM particles fall at same time *t*_{kd}
- Above *r*_{kd}: infall after kinetic decoupling and before matter-radiation equality

• Building the profile:
$$r_{i} \equiv r_{infl}(t_{i})$$

 $\rho_{i} \equiv \rho_{dm}(a_{i}) \propto a_{i}^{-3}, \quad a_{i} \propto \rho_{rad}^{-1/4} \quad \text{and} \quad \rho_{rad} \propto r_{i}^{-3}$
 $\rho_{i}(r_{i}) \approx \begin{cases} \rho_{i}^{kd} \equiv \rho_{dm}(t_{kd}) & \text{if } r_{i} \leq r_{kd}, \\ \rho_{i}^{kd} (r_{i}/r_{kd})^{-9/4} & \text{if } r_{kd} \leq r_{i} \leq r_{eq} \end{cases}$

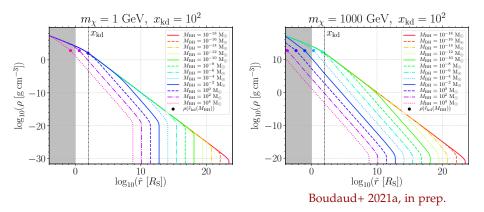

Free streaming and reshaping of the mini-spike profile

Final profile from particle orbits

• Redistribution from time spent at a given radius *r*

$$\begin{split} 4\pi r^2 \rho_{\chi}(r) \, \mathrm{d}r &= \int \mathrm{d}r_{\mathrm{i}} \, 4\pi r_{\mathrm{i}}^2 \rho_{\mathrm{i}}(r_{\mathrm{i}}) \\ &\times \int \mathrm{d}^3 \vec{v}_{\mathrm{i}} f(\vec{v}_{\mathrm{i}}) \frac{2\mathrm{d}t/\mathrm{d}r}{T_{\mathrm{orb}}} \, \mathrm{d}r \end{split}$$

• Strong dependence on initial velocity dispersion σ_i of DM particles

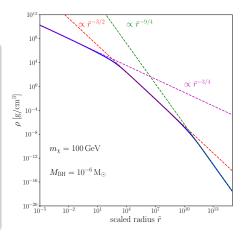


Eroshenko 2016

Wrong assumption in some previous studies

- *r* corresponds to pericenter or apocenter of the orbit
- \Rightarrow cuts off significant portion of parameter space
- \Rightarrow underestimated profile for large BH masses

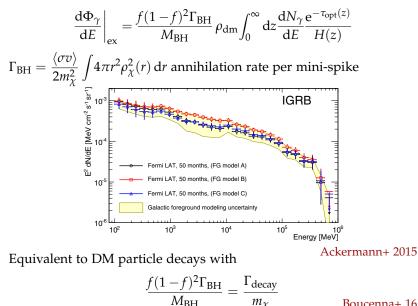
Mini-spike profiles



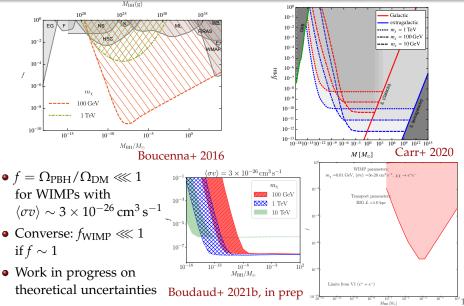
- Slope -3/2 for light BHs, -9/4 for heavy BHs and both in intermediate regime + slope -3/4 at the center
- More complex behavior than simple power laws
- Strong dependence on $M_{\rm BH}$, m_{χ} and $x_{\rm kd} \equiv m_{\chi}/T_{\rm kd}$
- Truncation for annihilating DM

Physical origin of the various slopes

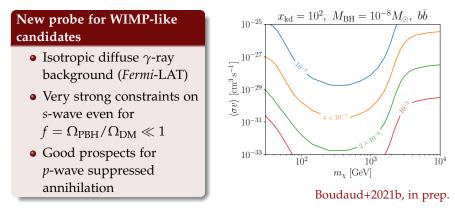
Qualitative explanations


- −9/4: Very small initial velocity dispersion of DM particles
 ⇒ radial orbits
- -3/2: Related to the fraction of DM particles above escape speed
- -3/4: Connected to direction of initial velocity

Boudaud+ 2021a, in prep.


Constraints from isotropic γ -ray background (IGRB)

DM-induced extragalactic γ -ray flux


Boucenna+ 16

Limits on PBH fraction assuming the WIMP scenario from IGRB and CRs

New probe of annihilating DM beyond WIMPs

Constraining annihilation cross section for given PBH fraction \Rightarrow probe very weakly annihilating DM

Connection with concrete PBH models?

Conclusion

Particle DM mini-spikes around PBHs

- More complex density profiles than simple power laws
- Fully driven by properties of PBHs and DM particles
- Comparison with simulations? Need to extend study on stellar mass range (Adamek+ 19) to other masses

Signatures

- Concrete model for PBH "dresses" (Kavanagh+ 2018)
 - \rightarrow GW signatures of mini-spike mergers?
 - \rightarrow Impact on CMB constraints?
- Go further than "all or nothing" conclusion with γ-rays/CRs
 → new probe of very weakly annihilating DM particles:
 p-wave? Feebly interacting massive particles (FIMPs)?
- Complementary constraints from Galactic CRs to probe lighter particle DM candidates

Thank you for your attention!