

Active-sterile neutrino oscillations in very low reheating scenarios

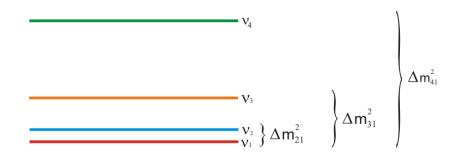
Mario Fernández Navarro

17th MultiDark Consolider Workshop, January 26th

Collaborators:

Sergio Pastor (IFIC, CSIC-Universitat de València)

Stefano Gariazzo (INFN Turin)


Pablo F. de Salas (Oskar Klein Centre, Stockholm University)

Introduction

•Most neutrino oscillation experiments are well explained through the mixing of the three standard neutrino flavours of the Standard Model [de Salas et al., JHEP 2020], including two mass splittings $\Delta m_{31}^2 = 2.55^{+0.02}_{-0.03} \cdot 10^{-3} \,\mathrm{eV}^2$ and $\Delta m_{21}^2 = 7.50^{+0.22}_{-0.20} \cdot 10^{-5} \,\mathrm{eV}^2$.

•However, some anomalies in short baseline oscillation experiments remain unexplained, for example the anomalies of DANSS (2018) and NEOS (2017).

•These anomalies may be explained by the existence of a new neutrino with $\Delta m^2_{41} \sim \mathcal{O}(\mathrm{eV}^2)$.

Introduction

•The sterile neutrino mixes with the active flavours \implies 3+1 framework

Three new mixing angles $\theta_{14}, \theta_{24}, \theta_{34}$, along with the three mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$ that mix the three active flavours.

•Neutrinos contribute to the radiation density of the Universe:

$$\rho_r = \left(1 + N_{\text{eff}} \frac{7}{8} \left(\frac{T_{\nu}}{T}\right)^{4/3}\right) \rho_{\gamma} \qquad \text{Measure:} \quad N_{\text{eff}}^{\text{Planck}} = 2.91^{+0.39}_{-0.37} (95\% \text{ CL}) \qquad \text{[Planck Collab., 2018]} \\ \text{Prediction:} \quad N_{\text{eff}}^{\text{standard}} = 3.0440 \pm 0.0002 \qquad \text{[Bennet et al., preprint: 2012.02916]}$$

•In the 3+1 framework, for a wide range of mixing parameters $N_{
m eff} \sim 4\,$ is obtained. [Gariazzo et al., JCAP 2019]

• A solution \implies To suppress the thermalisation of the sterile neutrino in the early universe

We'll show that one way of achieving this is considering low reheating scenarios

Low reheating scenarios

We asume that a late reheating process took place before BBN:

•A massive, non-relativistic scalar component ϕ dominates the early universe, afterwards it decays to relativistic species other than neutrinos:

$$\frac{\mathrm{d}\rho_{\phi}}{\mathrm{d}t} = -\Gamma_{\phi}\rho_{\phi} - 3H\rho_{\phi}$$

•The active neutrinos are generated through weak processes, while the sterile neutrino is generated only through oscillations.

Low reheating scenarios

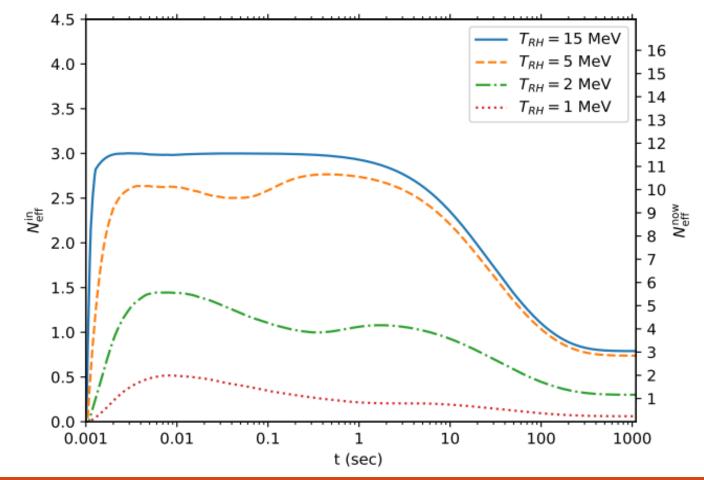
 \implies The radiation epoch begins at a temperature $T_{\rm RH} \sim \mathcal{O}({\rm MeV})$:

$$T_{\rm RH} \simeq 0.7 \left(\frac{\Gamma_{\phi}}{\rm s^{-1}}\right)^{1/2} {\rm MeV}$$

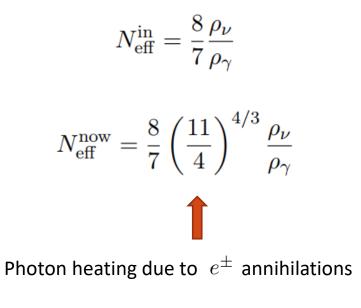
Neutrinos may decouple from the cosmic plasma before they are fully thermalised.

Low reheating scenarios

•To study neutrino thermalisation and decoupling, we solve:

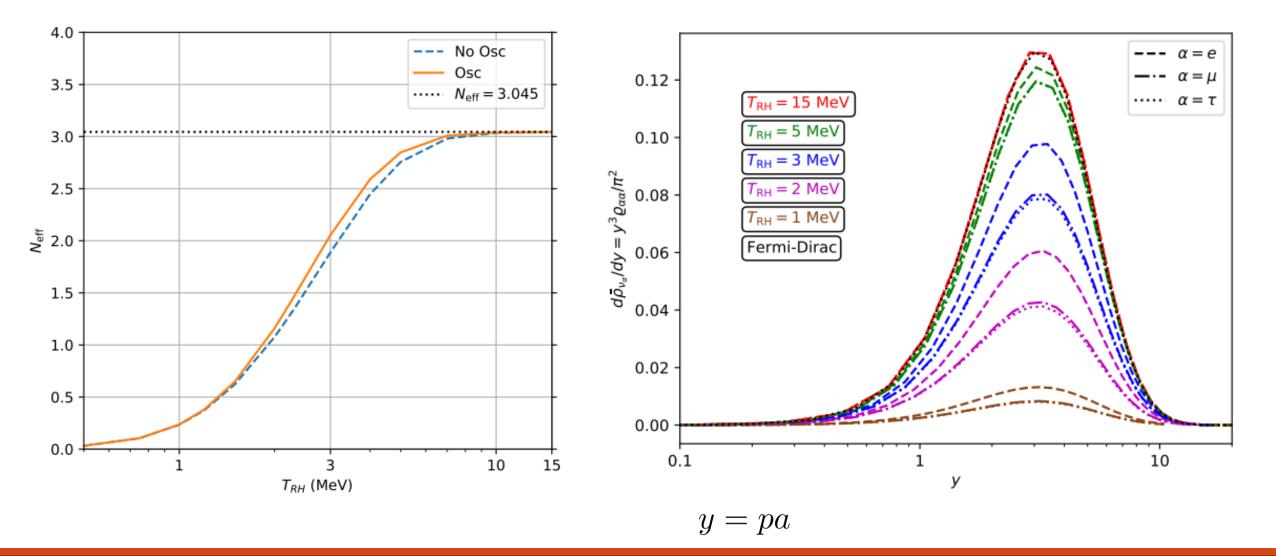

$$\frac{d\rho_{tot}}{dt} = -3H \left(\rho_{tot} + P_{tot}\right)$$

$$\frac{d\rho_{\phi}}{dt} = -\Gamma_{\phi}\rho_{\phi} - 3H\rho_{\phi}$$


$$(\partial_t - Hp\partial_p) \varrho_p = -i \left[\Omega_p, \varrho_p\right] + C(\varrho_p) \checkmark$$
Collision term (inelastic scattering)
$$\bullet$$
We solve the system of equations using FortEPiaNO
[Gariazzo et al., JCAP 2019], modified to include the low reheating scenario.

Low reheating with three active neutrinos

Our first step is to reproduce previous results [de Salas et al., PRD 2015]



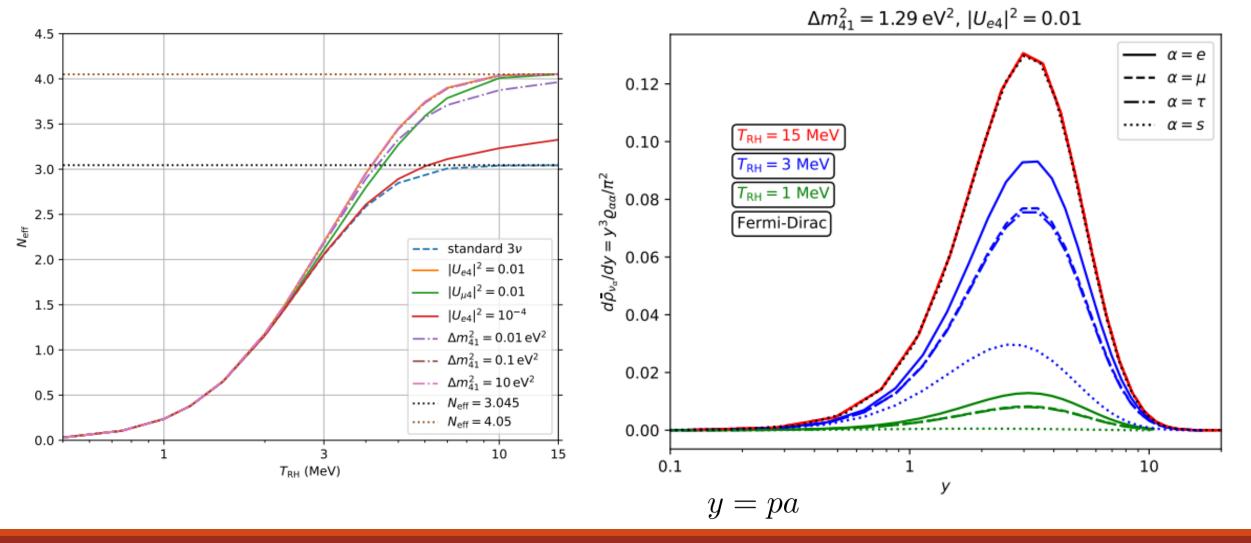
Time evolution of N_{eff} in the three-neutrino case

Final N_{eff} as a function of T_{RH}

Final differential spectra of neutrino comoving energies as a function of the comoving momentum y = pa

Low reheating in the 3+1 neutrino model

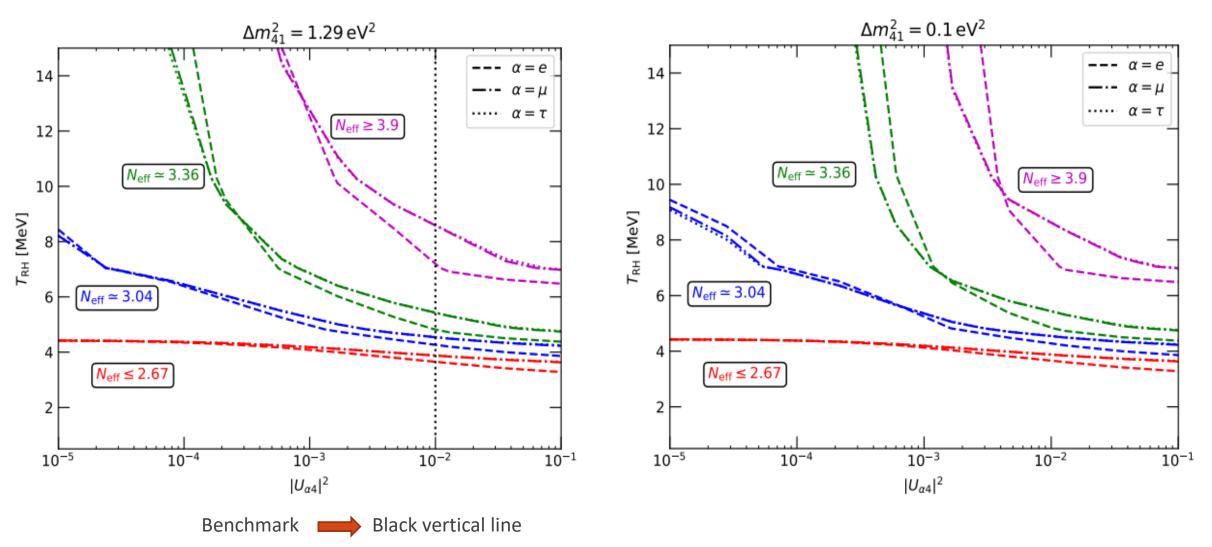
3+1 4.5 $T_{RH} = 15 \text{ MeV}$ - 16 --- $T_{RH} = 7 \text{ MeV}$ 4.0 15 $T_{BH} = 5 \text{ MeV}$ - 14 $T_{RH} = 4 \text{ MeV}$ 3.5 - 13 $- - T_{RH} = 3 \text{ MeV}$ - 12 --- $T_{RH} = 2 \text{ MeV}$ 3.0 --- $T_{RH} = 1 \text{ MeV}$ - 11 ····· standard 3v - 10 2.5 Nin eff N^{now} 9 8 2.0 7 6 1.5 5 1.0 з 0.5 2 0.0 0.001 0.01 0.1 10 100 1000 1 t (sec)


Time evolution of *N*_{eff} in the 3+1 framework

Benchmark [Gariazzo et al., JHEP 2019]

$$\Delta m_{41}^2 = 1.29 \pm 0.03 \,\text{eV}^2$$
$$\sin^2 2\theta_{14} = 0.049 \pm 0.011 \,, \quad \theta_{24} = \theta_{34} = 0$$

These are the parameters that fit the anomalies of DANSS and NEOS


Final differential spectra of neutrino comoving energies as a function of the comoving momentum y = pa

Final *N*_{eff} as a function of *T*_{RH}

MARIO FERNÁNDEZ NAVARRO

Final N_{eff} when varying only one of the active-sterile mixing angles and T_{RH}

 $N_{\rm eff} \simeq 2.67$ (red curves) and $N_{\rm eff} \simeq 3.36$ (green curves) are the bounds of the 2σ range of Planck [Planck Collab., 2018]

Conclusions and next steps

•The 3+1 model is highly constrained by cosmology, since for a wide range of mixing parameters $N_{\text{eff}} \sim 4$ is obtained. A possible solution is to suppress neutrino thermalization.

•In low reheating scenarios, neutrino thermalisation may be suppressed by $T_{\rm RH}$ of MeV order.

•In the standard three-neutrino case, we have seen that neutrinos are not fully thermalised for $T_{\rm RH} \leq 7 \, {\rm MeV}$ and hence $N_{\rm eff} < 3$ is obtained. Here our results are in good agreement with previous studies.

Conclusions and next steps

- •In the 3+1 model neutrino thermalization is suppressed for $T_{\rm RH} \lesssim 4 \, {
 m MeV}$ by the reheating process. This is mostly independent of the mixing parameters.
- For higher values of $T_{\rm RH}$, the mixing is relevant and at least two of the mixing angles affect differently to the final $N_{\rm eff}$.
- •When neutrinos are not fully thermalised, the ν_e are always closer to the equilibrium than ν_{μ} , ν_{τ} and ν_s . This is due to the presence of electrons in the cosmic plasma.

Conclusions and next steps

•For the considered combinations of active-sterile mixing parameters, it is always possible to find a value for $T_{\rm RH}$ leading to a $N_{\rm eff}$ in the 2σ range of Planck 2018.

•Our next step is to study the impact of neutrino thermalisation in the 3+1 model over BBN and CMB observables, obtaining bounds and constrains over the active-sterile mixing parameters and $T_{\rm RH}$.

This is the end. Thank you for your attention!

Acknowledgements

This project has received funding/support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860881-HIDDeN