

Signatures of ULTRALIGHT DARK MATTER in DUNE

Original manuscript is accepted for publication (JHEP)

Pablo Martínez-Miravé (IFIC, CSIC – U. Valencia)

in collaboration with Abhish Dev and Pedro A. N. Machado

17th MultiDark Consolider Workshop Presentation based on arXiv:2007.03590

DUNE* could detect ultralight scalars via signal time modulations and distorted neutrino oscillations.

*Other neutrino oscillation experiments too.

Neutrino oscillations in a nutshell

Quantum phenomena with a **L/E** dependence.

Parametrised in terms of 3 angles, 1 phase and 2 mass splittings.

Tested against different sources, baselines and energies for neutrinos and antineutrinos.

Neutrino **interactions with matter** can significantly alter the picture.

Neutrino oscillation experiments have reached the precision era.

de Salas *et al.* JHEP XX (2021) XXX (2006.11237) https://globalfit.astroparticles.es

See also:

Esteban *et al.* JHEP 09 (2020) 178, Capozzi *et al.* PRD 101 (2020) 11, 116013 (addendum)

ULTRALIGHT DM*

Ultralight dark matter seems to offer a solution to three **small-scale cosmological puzzles**:

- Cups-vs-core,
- Missing satellite,
- And too-big-to-fail problem.

*Ultralight refers to a mass scale much smaller than the eV scale.

Ultralight scalars and neutrinos

An ultralight scalar field

See G.Krnjaic et al

Phys.Rev.D 97 (2018) 7, 075017

$$\phi(x,t) \simeq \frac{\sqrt{2\rho_{\phi}}}{m_{\phi}} \sin\left[m_{\phi}(t - \vec{v} \cdot \vec{x})\right]$$

coupling (effectively) to neutrinos as

$$\mathcal{L}_{\text{eff}} = -m_{\nu} \left(1 + y \frac{\phi}{\Lambda} \right) \bar{\nu} \nu + \text{h.c.}$$

induces time dependencies on the mass splittings and also on the mixing angles (depending on the flavour structure of the coupling)

$$\Delta m_{ij}^2(t) \equiv m_i^2(t) - m_j^2(t) \simeq \Delta m_{ij}^2 \left[1 + 2\eta \sin(m_\phi t) \right]$$
$$\theta_{ij}(t) = \theta_{ij} + \eta \sin(m_\phi t),$$

The mass of the ultralight scalar is related to the modulation period

$$\tau_{\phi} \equiv \frac{2\pi\hbar}{m_{\phi}} = 0.41 \left(\frac{10^{-14} \text{ eV}}{m_{\phi}}\right) \text{ seconds.}$$

There are three characteristic time scales in the experimental set up:

- Time of flight, τ_{ν} .
- Time between two events (inverse of the event rate), $\tau_{\rm evt}$.
- Lifetime of the experiment, $au_{ ext{exp}}$.

Mass range: ~10⁻¹³ -10⁻²³ eV

Three regimes can be identified.

Signal time modulation ($\tau_{\rm evt} \lesssim \tau_{\phi} \ll \tau_{\rm exp}$).

A temporal variation could be measured in experiments with large statistics and high event rates.

Averaged Distorted Neutrino Oscillations (DiNOs) ($\tau_{\nu} \ll \tau_{\phi} \ll \tau_{\rm evt}$).

Modulation is too fast but its averaging leads to deviations from the standard picture.

Dynamical Distorted Neutrino Oscillations

 $(au_{\phi} \sim au_{
u})$

Propagation modelled by a modified (time-dependent) matter potential. If matter variations are too fast, one recovers standard oscillations.

Three regimes can be identified.

Signal time modulation ($\tau_{\rm evt} \lesssim \tau_{\phi} \ll \tau_{\rm exp}$).

A temporal variation could be measured in experiments with large statistics and high event rates.

Averaged Distorted Neutrino Oscillations (DiNOs) $(\tau_{\nu} \ll \tau_{\phi} \ll \tau_{\rm evt})$.

Modulation is too fast but its averaging leads to deviations from the standard picture.

Dynamical Distorted Neutrino Oscillations

 $(au_{\phi} \sim au_{
u})$

Propagation modelled by a modified (time-dependent) matter potential. If matter variations are too fast, one recovers standard oscillations.

Three regimes can be identified.

Signal time modulation ($\tau_{\rm evt} \lesssim \tau_{\phi} \ll \tau_{\rm exp}$).

A temporal variation could be measured in experiments with large statistics and high event rates.

Averaged Distorted Neutrino Oscillations (DiNOs) $(\tau_{\nu} \ll \tau_{\phi} \ll \tau_{\rm evt})$.

Modulation is too fast but its averaging leads to deviations from the standard picture.

Dynamical Distorted Neutrino Oscillations

 $(au_{\phi} \sim au_{
u})$.

Propagation modelled by a modified (time-dependent) matter potential. If matter variations are too fast, one recovers standard oscillations.

Deep Underground Neutrino Experiment

Next-generation neutrino experiment.

High-energy neutrino beam.

Far detector 1300km away from source.

Large statistics expected.

Good energy reconstruction.

For $\Delta m_{31}^2(t)$

Signal time modulation

Maxima and minima shift with time, leading to changes in the average disappearance probability.

$$P_{\mu\mu}^{\rm mass} \simeq 1 - \sin^2(2\theta) \sin^2\left\{\left(\frac{\Delta m^2 L}{4E}\right) \left[1 + 2\eta \sin(m_\phi t)\right]\right\}$$

$$0.8 - \frac{1.0}{1.0} = 0.05, \ m_\phi t = 0$$

$$0.8 - \frac{1.0}{1.0} = 0.05, \ m_\phi t = \pi/2$$

$$0.0 - \frac{1.5}{0.5} = 0.0$$

For $\Delta m^2_{31}(t)$ Average DiNOs

0.0

Very fast modulations get averaged and lead to a distortion in the disappearance probability. Maxima and minima are not shifted so its determination is not expected to be affected. $\langle P_{\alpha\beta}\rangle = \frac{1}{\tau_\phi} \int_0^{\tau_\phi} dt \, P_{\alpha\beta}(t)$

3.0

3.5

4.0

1.0

0.8- $\eta = 0.05, m_{\phi}t = 0$ $\eta = 0.05, m_{\phi}t = \pi/2$ $\eta = 0.05, m_{\phi}t = \pi$ $\eta = 0.05, averaged$

2.0

E [GeV]

2.5

1.5

1.0

For $\Delta m^2_{31}(t)$ Average DiNOs

For different values of $\,\eta\,$, different smearing of the oscillation probability.

For $\Delta m^2_{31}(t)$ Dynamical DiNOs

- As the value of τ_v/τ_{Φ} gets larger, the effect shrinks.
- As the value of $\tau_{\rm v}/\tau_{\rm \Phi}$ gets smaller, one recovers the averaged regime.

3.5 + 3.5 years.
GLoBES & files from the CDR.
Oscillation parameters from de Salas et al. PLB 782, 633 (2018)*.

*2018 ValenciaFit (not 2020 update)

DUNE SENSITIVITY

to a modulation in the mass splitting $\Delta m^2_{31}(t)$

Lomb Scargle periodogram and signal time modulation

Lomb Scargle (LS) analysis using different binning in time allows to cover a wide range of modulation periods (from ~ 3 years to ~ week).

Average DiNOs

$$\langle P_{\alpha\beta} \rangle = \frac{1}{\tau_{\phi}} \int_{0}^{\tau_{\phi}} dt \, P_{\alpha\beta}(t)$$

DUNE could find evidence for such distortions (3σ for $2\eta \sim 0.1$).

Only a small degeneracy with θ_{23} is found.

Average DiNOs

DUNE could evidence for such distortions (3σ for 2η ~0.1).

Only a small degeneracy with θ_{23} is found.

Dynamical DiNOs

Combining the Lomb Scargle approach (LS) with searches for Distorted Neutrino Oscilations allows to cover almost ten orders of magnitude in masses and a large range of modulation amplitudes.

Take-home message:

DUNE could detect ultralight scalars via signal time modulations and distorted neutrino oscillations.

Thank you.

