Dark Matter and KM3NeT

Camiel Pieterse 25-01-2021

MultiDark

Multimessenger Approach for Dark Matter Detection

Outline

- Introduction to KM3NeT
- Current status of KM3NeT
- Dark Matter
- Machine Learning

What is KM3NeT?

KM3NeT is the successor to ANTARES and consists of two separate detectors:

- ARCA: Astroparticle Research with Cosmics in the Abyss
 - Goal: study neutrino sources and higher energy astrophysical neutrino from a diffuse flux
- ORCA: Oscillation Research with Cosmics in the Abyss
 - Goal: Study the properties of the neutrinos and neutrino oscillation

Both detectors are suitable for Dark Matter searches

3

KM3NeT: Current Status

- ARCA: 2 lines currently deployed and taking data
 24 lines deployed by the end of 2021
- ORCA: 6 lines currently deployed and taking data
 29 lines built and most of these deployed by the end of 2021

ORCA4 Event Rate

Strict selection cuts to remove noise and atmospheric muons:

- 2019: 3v per day with 4 strings for 6 months
- Since Jan 2020: 5v per day with 6 strings

Neutrino oscillations have an effect on the zenith distribution:

- Oscillations reduce the number of detected events by ~30%
- The data favours the hypothesis of neutrino oscillations

collaboration), Neutrino2020, Poster #363

Dark Matter: Indirect Detection

In KM3NeT we look for Dark Matter through indirect detection:

- Two DM particles annihilate to SM particles
- Observe neutrinos produced in this process

There are several different annihilation channels:

- W-bosons
- Quarks
- Muons, Taus
- Neutrinos

Neutrino fluxes are created and this is the signal we try to observe

Dark Matter: Indirect Detection

Neutrino telescopes have several advantages:

- Good sensitivity to annihilation cross section for large DM masses, in particular ANTARES and KM3NeT due to their position relative to the Galactic Center
- Almost no astrophysical background for searches for DM in the Sun
- Sensitive to the neutrino channel

Dark Matter: Analyses

There are several Dark Matter analyses in KM3NeT:

- Galactic Center WIMPs with ARCA
- Galactic Center WIMPs with ORCA
- Galactic Center WIMPs with ANTARES
- Heavy secluded DM with ANTARES => Talk by Rebecca Gozzini
- Sun WIMPs with ANTARES => Talk by Chiara Poire

The ARCA detector with 230 lines with a live time of 1 year is competitive with similar experiments

Galactic Center WIMPs with ARCA

We need to determine the sensitivity of the ARCA detector to neutrinos from dark matter annihilation => Create Pseudo-experiments

PEX with 28 injected signal events

- We create a skymap of background
- We inject a specific number of signal events between 1 and 30
- Use a minimizer to find the number of signal events
- Potential to use a anomaly detection ML algorithm

Machine Learning: Anomaly Detection

We have started a collaboration an signed an agreement with machine learning experts from Nikhef(S. Caron), the University of Amsterdam(S. Otten, G. Bertone) and IFIC(R. Ruiz) on anomaly detection:

• Learn a representation of the data which becomes the hypothesis

• Compare new data with the hypothesis and find differences or anomalies

Machine Learning: Autoencoders

Autoencoders are useful for anomaly detection because they find patterns in the training data, objects that do not fit these patterns are 'anomalies'.

An autoencoder consists of two parts:

- The encoder: reduces the dimensionality of the input in to a latent space vector
- The decoder: takes the latent space vector and tries to replicate the original input

A latent space with too many dimensions can cause the network to learn an identity operation.

A latent space with too few dimensions prevents the decoder to properly reconstruct the output.

loss = $|| \mathbf{x} - \hat{\mathbf{x}} ||^2 = || \mathbf{x} - \mathbf{d}(\mathbf{z}) ||^2 = || \mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x})) ||^2$

Machine Learning: Variational Autoencoder

A variational autoencoder is a type of autoencoder where a latent distribution is created instead of a latent representation. A sample from this distribution is drawn to feed to the decoder.

A term is added to the loss function to force the distributions to be close to normally distributed gaussians.

Machine Learning: Anomaly Detection

Three potential comparison scenarios exist:

- Data Data: Compare different runs and make a quality estimate
- Data MC: Determine how the data matches with the MC to either find problems in the MC, or perhaps new physics
- MC MC: Insert a signal and distinguish it from the background MC

This last point applies to the pseudo-experiments mentioned earlier

Conclusion

- The KM3NeT ARCA and ORCA detectors are under construction and progress is being made with the analyses
- We look to improve the dark matter galactic center analysis using anomaly detection techniques from Machine Learning
- To achieve this a collaboration has been started with external experts from Nikhef(S. Caron), the University of Amsterdam(S. Otten, G. Bertone) and IFIC(R. Ruiz)

Backup

ORCA Sun Sensitivities

