

Primordial black holes in an early matter era and stochastic inflation

Julián Rey (IFT/DFT-UAM)

In collaboration with Guillermo Ballesteros (IFT/DFT-UAM), Fabrizio Rompineve (Tufts U.), Marco Taoso (INFN, Turin), and Alfredo Urbano (Sapienza, Rome).

This talk is based on [1912.01638], [2001.08220] and [2006.14597] [1,2,3]. Full list of references at the end!

Overview and Introduction

- Primordial Black Holes are relevant dark matter candidates. They are interesting because they do not require physics beyond inflation.
- A large window of masses remains viable (much smaller than LIGO observations) [4,5,6,8]

$$10^{-16}~M_\odot \lesssim M_{
m PBH} \lesssim 10^{-11} M_\odot.$$

- Their astrophysical signatures (gravitational waves, lensing, etc.) could be probed within the next decade [7].
- We wish to determine the effects on the PBH abundance of
 The equation of state of the Universe at the time of their formation.
 The stochastic inflation formalism.
- We explore these aspects in the context of a numerical inflationary model, and an analytical one.

PBHs from Inflation

PBHs are black holes formed in the early universe by mechanisms different to stellar collapse. For PBHs to form, we need large density fluctuations $\delta = \delta \rho / \rho$, produced during inflation [9].

The latter takes into account non-sphericity and angular momentum.

The power spectrum $\mathcal{P}_{\delta}(\mathbf{k})$ encodes how these fluctuations are distributed, can be computed, and is measured. $\mathcal{P}_{\delta}(\mathbf{k}) \sim \mathcal{P}_{\mathcal{R}}(\mathbf{k}) \sim H^4/\dot{\phi}^2$ (slow-roll).

Figures from [3,10]. The PBH masses are $M_{\rm RD} \propto k^{-2}$ and $M_{\rm MD} \propto k^{-3}$. Collapse during matter-domination has two big advantages,

- 1 The power spectrum required to get a significant PBH abundance is much smaller than in RD ($P_{RD} \sim 10^{-2}$ vs $P_{MD} \sim 10^{-4}$).
- **2** The abundance is **much** less sensitive to small changes in $\mathcal{P}_{\mathcal{R}}$.

The Simplest Model

Consider a scalar field coupled to gravity in the Jordan frame [10]

$${\cal S}=\int d^4x \sqrt{-g}\left[-rac{1}{2}(M_p^2+\xi\phi^2)R+rac{1}{2}g_{\mu
u}\partial^\mu\phi\partial^
u\phi-V(\phi)
ight].$$

We can redefine the fields as $\Omega^2\equiv 1+\xi\phi^2/M_p^2$ and $g_{\mu
u} o\Omega^2[\phi]\,g_{\mu
u},$

$$\Omega^2 rac{dh}{d\phi} = \left[\Omega^2 + rac{3}{2} M_p^2 \left(rac{d\Omega^2}{d\phi}
ight)^2
ight]^{1/2}$$

where h is obtained by solving this equation and is such that the kinetic term is canonically normalized,

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[-rac{1}{2} M_p^2 R + rac{1}{2} g_{\mu
u} \partial^\mu h \partial^
u h - V(\phi(h))/\Omega^4
ight].$$

Arguably the simplest potential is a polynomial ($\phi(h)$ is monotonic)

$$U(h)\equiv rac{V}{\Omega^4}=rac{a_2\phi^2+a_3\phi^3+a_4\phi^4}{(1+\xi\phi^2/M_p^2)^2}\Big|_{\phi=\phi(h)}$$

Julián Rey (IFT-UAM)

,

The main issue is adjusting the spectral index, which is in tension with evaporation bounds, $n_s^{\text{pred}} \simeq 0.949$ but $n_s^{\text{ACDM}} = 0.9649 \pm 0.0042$.

1 Extend ACDM, since $n_s^{ ext{ACDM}+N_{eff}+dn_s/d\log(k)}=0.950\pm0.011$ [11]

2 Add higher-dimensional operators $c_n \phi^n / \Lambda^{n-4}$ (expected anyway)

The Stochastic Formalism

What is Stochastic Inflation?

In stochastic inflation, quantum fluctuations backreact on the classical trajectory of the inflaton, modifying its background evolution [10,12,13,14],

$$rac{dar{\phi}}{dN} = -rac{\partial_{\phi}V}{3H^2} + rac{H}{2\pi}\xi_{\phi} \quad o \quad \mathcal{P}_{\mathcal{R}} \ll 1 \hspace{0.2cm} (ext{slow roll})$$

The field is split into a coarse-grained part and a perturbation. The field and its conjugate momentum satisfy the Langevin equations,

$$rac{dar{\phi}}{dt}=rac{ar{\pi}}{a^3}+\xi_{\phi}, \qquad ext{and} \qquad rac{dar{\pi}}{dt}=-a^3rac{dV}{d\phi}\Big|_{ar{\phi}}+\xi_{\pi},$$

where ξ_i are noise operators. These are classical stochastic variables, since $[\xi_{\phi}(t, \mathbf{x}'), \xi_{\pi}(t, \mathbf{x})] \rightarrow 0$ on small scales. With an analytical approach we can find explicit expressions for the noise. At leading order, fields are also classical stochastic variables, $\bar{\phi} = \phi_{cl} + \delta \phi_{st}$.

Analytical Model

The enhancement of the power spectrum in any such potential can be understood by considering a three-region model, with $\eta \sim \ddot{\phi}/(H\dot{\phi})$,

The power spectrum is, in terms of classical stochastic variables $\delta \phi_{st}$, $\delta \pi_{st}$

$$\mathcal{P}_{\mathcal{R}} = \frac{1}{2\epsilon_{\rm cl}} \Big[D_{\phi\phi} + \underbrace{2\langle \delta\phi_{\rm st}\delta\pi_{\rm st}\rangle - 2(\epsilon_{\rm cl} - \eta_{\rm cl})\langle \delta\phi_{\rm st}^2 \rangle}_{0} \Big].$$

Conclusions

- The simplest potential that can produce PBHs is viable, provided ACDM is extended, or higher-dimensional operators are considered.
- If dark matter is in the form of PBHs, the corresponding GW signal should be observable by LISA and DECIGO if they form during RD.
- We have shown, both analytically and numerically that, at leading order, stochastic inflation does not affect the power spectrum, even in the presence of a USR phase.
- PBH formation in an early matter-dominated era has significant advantages, namely, that a smaller enhancement of the power spectrum is required, and the potential parameters are less tuned.

References I

 [1] Ballesteros, Guillermo and Rey, Julián and Taoso, Marco and Urbano, Alfredo Stochastic inflationary dynamics beyond slow-roll and consequences for primordial black hole formation. [2006.14597]

 [2] Ballesteros, Guillermo and Rey, Julián and Taoso, Marco and Urbano, Alfredo Primordial black holes as dark matter and gravitational waves from single-field polynomial inflation. [2001.08220]

 [3] G. Ballesteros, J. Rey and F. Rompineve Detuning primordial black hole dark matter with early matter domination and axion monodromy. [1912.01638]

[4] B. J. Carr, Kazunori Kohri, Yuuiti Sendouda, and Jun'ichi Yokoyama New cosmological constraints on primordial black holes. [0912.5297]

 [5] Alexandre Arbey, Jérémy Auffinger, and Joseph Silk Constraining primordial black holemasses with the isotropic gamma ray background. [1906.04750]

 [6] Hiroko Niikura et al. Microlensing constraints on primordial black holes with Subaru/HSCAndromeda observations [1701.02151]

 [7] Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, and Shuichiro Yokoyama Primordial blackholes—perspectives in gravitational wave astronomy [1801.05235]

 [8] Andrey Katz, Joachim Kopp, Sergey Sibiryakov, and Wei Xue Femtolensing by dark matter revisited [1807.11495]

References II

- [9] Bernard J. Carr The Primordial black hole mass spectrum [10.1086/153853]
- [10] Guillermo Ballesteros, and Marco Taoso Primordial black hole dark matter from single field inflation [1709.05565]
- [11] Akrami, Y. et al.
 Planck 2018 results. X. Constraints on inflation [1807.06211]
- [12] A. A. Starobinsky Stochastic De Sitter (inflationary) Stage In The Early Universe [10.1007/3-540-16452-9-6]
- [13] M. Biagetti, G. Franciolini, A. Kehagias and A. Riotto Primordial Black Holes from Inflation and Quantum Diffusion [1804.07124]
- [14] J. M. Ezquiaga and J. García-Bellido Quantum diffusion beyond slow-roll: implications for primordial black-hole production [1805.06731]
- [15] Harada, Tomohiro and Yoo, Chul-Moon and Kohri, Kazunori and Nakao, Ken-ichi and Jhingan, Sanjay Primordial black hole formation in the matter-dominated phase of the Universe [1609.01588]

[16] Harada, Tomohiro and Yoo, Chul-Moon and Kohri, Kazunori and Nakao, Ken-Ichi Spins of primordial black holes formed in the matter-dominated phase of the Universe [1707.03595]