# Constraining branon dark matter with MAGIC

from observations of the Segue 1 dwarf spheroidal galaxy

<u>Tjark Miener</u> (tmiener@ucm.es), Daniel Nieto, Viviana Gammaldi, Daniel Kerszberg, Javier Rico







Crupo de Altas Energias - UCM

17th MultiDark Consolider Workshop (27/01/2021)

### Outline

#### Constraining branon dark matter

Introduction

Branon dark matter

gLike tool

Results

#### Introduction



Figure: Dark matter (DM) self-annihilation.

#### Introduction



Figure: Dark matter (DM) self-annihilation.

4/15

## MAGIC telescope & Segue 1 observations

- Imaging atmospheric Cherenkov telescope located at the Roque de los Muchachos Observatory on La Palma at about 2200m above sea level
- ► Two telescopes with 17m diameter mirror dishes placed at a distance of 85m
- ightharpoonup Sensitive to VHE gamma-rays (between  $\sim$  50 GeV and  $\sim$  50 TeV) arXiv1601.06590
- Segue 1 data set is almost 160 hours of good-quality data and was taken under four different experimental conditions



### Dark matter particle zoo



Figure: Summary of the DM particle zoo candidates. arXiv1705.11165

## Brane World Theory

- Dark matter cannot be made of any of the known particles of the Standard Model (SM).
- Our work focuses on Brane World Theory as a prospective framework for DM candidates.
- Branons are new degrees of freedom that appear in flexible brane-world models corresponding to brane fluctuations.
- Branons behave as Weakly Interacting Massive Particles (WIMPs), that are one of the most favored candidates for DM.

#### Branon dark matter

$$\frac{\mathrm{d}\Phi\left(\Delta\Omega,E_{\gamma}\right)}{\mathrm{d}E_{\gamma}} = \underbrace{\mathcal{J}\left(\Delta\Omega\right)}_{\mathsf{Astrophysics}} \cdot \frac{1}{4\pi} \underbrace{\frac{\left\langle\sigma_{ann}v\right\rangle}{2m_{\chi}^{2}} \sum_{i} \mathsf{BR}_{i} \frac{\mathrm{d}N_{\gamma}^{i}}{\mathrm{d}E_{\gamma}}}_{\mathsf{Particle physics}}$$



# Annihilation photon yield for $m_\chi = 1 \text{ TeV}$



### Branon annihilation photon yields



#### Profile likelihood

- ▶ We are interested in the parameter  $g = (g_1, ..., g_k)$ . (For DM searches g is  $\langle \sigma v \rangle$ )
- The model describing our data depends on g and additional nuisance parameters  $h = (h_1, \ldots, h_l)$ .
- ▶ The full likelihood function is given by

$$\mathcal{L}(g; h|X) = \prod_{i=1}^{n} f(X_{i}|g; h),$$

where  $X = (X_1, ..., X_n)$  are n independent observations and f(X|g; h) is the probability density function PDF.



### gLike

- gLike is a code framework for the numerical maximization of joint likelihood functions.
- gLike can estimate the dark matter annihilation cross-section combining observations of dark matter targets by different ground-based gamma-ray telescopes, satellite gamma-ray detectors, neutrino telescopes, ...
- ▶ Open source on GitHub: https://github.com/javierrico/gLike

# Observational 95% CL upper limits to branon dark matter



Figure: 95% CL upper limits to branon dark matter annihilation cross-section from MAGIC observations of Segue 1

### Summary & Outlook

- We analyzed the MAGIC Segue 1 high-level data set, which is the deepest IACT observational campaign on any dwarf galaxy.
- We performed a full joint likelihood analysis from four different instrument conditions.
- We modified the gLike code to include the branon dark matter model in our analysis.
- We would like to combine more observations from other dark matter targets from different instruments to improve our branon limits.



# Gracias por su atención!



 $\mathsf{Back}\ \mathsf{up}$ 

## Segue1 observational campaign with MAGIC

|                        | Sample $A$    | Sample B1     | Sample B2     | Sample C          |
|------------------------|---------------|---------------|---------------|-------------------|
| Readout                | DRS2          | DRS4          | DRS4          | DRS4              |
| MAGIC-I camera         | old           | old           | old           | new               |
| Obs. period            | Jan-May 2011  | Jan–Feb 2012  | Mar-May 2012  | Nov 2012–Feb 2013 |
| Obs. time [h]          | 64            | 24.28         | 59.77         | 55.05             |
| Zd range [deg]         | 13 - 33.7     | 13 – 32.5     | 13 - 35.7     | 13 - 37           |
| Az range [deg]         | 104.8 – 250.2 | 120.2 – 252.0 | 115.4 – 257.2 | 103.8 – 259.4     |
| Wobble around          | dummy         | dummy         | dummy         | Segue 1           |
| Wobble offset [deg]    | 0.29          | 0.29          | 0.29          | 0.40              |
| W1 $t_{\rm eff}$ [h]   | 22.66         | 6.07          | 25.02         | 23.71             |
| W2 $t_{\rm eff}$ [h]   | 24.35         | 6.20          | 26.11         | 23.80             |
| $t_{ m eff}$ [h]       | 47.00         | 12.26         | 51.13         | 47.51             |
| Total $t_{ m eff}$ [h] |               |               |               | 157.9             |

Table 1: Basic details of the Segue 1 observational campaign with MAGIC. Refer to the main text for additional explanations.

Figure: <u>arXiv1312.1535</u>

#### Joint likelihood

Combining likelihood functions for different targets:

$$\mathcal{L}\left(\langle \sigma v \rangle; \nu | X\right) = \prod_{i=1}^{N_{target}} \mathcal{L}_i\left(\langle \sigma v \rangle; J_i, \mu_i | X_i\right) \cdot \mathcal{J}\left(J_i | J_{obs,i}, \sigma_i\right)$$

Combining likelihood functions (of a particular target) for different experiments:

$$\mathcal{L}_{i}(\langle \sigma v \rangle; J_{i}, \mu_{i} | X_{i}) = \prod_{i=1}^{N_{instrument}} \mathcal{L}_{ij}(\langle \sigma v \rangle; J_{i}, \mu_{ij} | X_{ij})$$