Testing Yukawa Unification at LHC and Dark Matter Experiments

Cem Salih Ün

Department of Physics, Bursa Uludag Univeristy

in collaboration with Mario Gòmez and Qaisar Shafi JHEP 2007 (2020), 096

17th MultiDark Consolider Workshop

January 25 2021, Spain

Outline

- The Standard Model
- SUSY and MSSM
- Pati-Salam Model
- Yukawa Unification
- LHC Implications
- Dark Matter Implications
- Conclusion

The Standard Model

► The SM is a gauge theory of fields of spin 0, 1/2 and 1 based on $SU(3)_c \times SU(2)_L \times U(1)_Y$

 $SU(3)_c \rightarrow$ QCD, confinement

 $SU(2)_L \times U(1)_Y \rightarrow$ electroweak interactions, chiral, spontaneous symmetry breaking

$$SU(2)_L imes U(1)_Y o U(1)_{
m em}$$

The SM is one of the most successful theories in physics. It has been tested rigorously.

 W^{\pm}, Z bosons

Rare B-meson decays: $B_s
ightarrow \mu^+ \mu^-$, $b
ightarrow s \gamma$

The Higgs Boson

SM is not a fundamental theory!

- Gauge Hierarchy problem: $\delta m_h^2 \propto \Lambda^2$
- ► The Higgs vacuum stability: $\lambda < 0$ for $\Lambda \gtrsim 10^{10}$ GeV Stability Condition: $m_h > (129.6 \pm 1.5)$ GeV
- The gauge symmetry
- Neutrino masses and mixings
- Dark matter

SUSY is a symmetry that relates fermions and bosons

 $Q | \text{fermion} \rangle = | \text{boson} \rangle, \ Q | \text{boson} \rangle = | \text{fermion} \rangle$

- Resolution to the gauge hierarchy problem.
- Fast proton decay R-parity conservation Stable LSP and DM: neutralino, sneutrino, gravitino
- ▶ $h \sim H_{\rm SM}$ when $m_h \ll m_H \sim m_A \sim m_{H^{\pm}}$ (Decoupling Limit)
- Radiative Electroweak Symmetry Breaking
- Gauge Coupling Unification: SUSY GUTs

Pati-Salam Model

▶ Based on
$$SU(4)_c \times SU(2)_L \times SU(2)_R$$

$$M_1 = \frac{3}{5}M_{2R} + \frac{2}{5}M_3$$

► $U(1)_{B-L} \in SU(4)_c$: R-Parity, Proton decay . . .

- The matter fields are in $\psi(4,2,1)$ and $\psi(\overline{4},1,2)$.
- MSSM Higgs doublets can solely be included in H(1,2,2)
- Yukawa Unification arises from

$$\psi_c \psi H \Rightarrow y_t = y_b = y_\tau$$

Right-handed neutrinos are required: See-saw mechanisms

Fundamental Parameters

$0.1 \leq$	mL	$\leq 10 { m ~TeV}$
$0.05 \leq$	M_{2L}	$\leq 5~{ m TeV}$
$-3 \leq$	M_3	$\leq 5~{ m TeV}$
$-3 \leq$	A_0/m_L	\leq 3
$2 \leq$	aneta	\leq 60
$-3 \leq$	x _{RL}	\leq 3
$-3 \leq$	Y RL	≤ 3
$0 \leq$	x _d	\leq 3
$-1 \leq$	x _u	≤ 2

SSB mass for LH scalars SSB mass for $SU(2)_L$ gaugino SSB mass for $SU(3)_c$ gaugino SSB Trilinear Scalar Coupling $\tan\beta\equiv {\bf v}_{\rm u}/{\bf v}_{\rm d}$ $m_{R} = x_{RL}m_{L}$ $M_{2R} = y_{RL}M_{2L}$ $m_{H_{d}} = x_{d}m_{L}$ $m_{H_{u}} = x_{u}m_{L}$

Experimental Constraints

 $123 \leq m_h \leq 127 \text{ GeV}$ $m_{\widetilde{g}}~\geq 2100~{
m GeV}~$ (800 GeV, if NLSP) LHC constraints $0.8 imes 10^{-9} \le {
m BR}(B_s o \mu^+ \mu^-) \le 6.2 imes 10^{-9}$ $2.9 imes 10^{-4} \leq \mathrm{BR}(b
ightarrow s \gamma) \leq 6.2 imes 10^{-9}$ 0.114 $\leq \Omega h^2$ (Planck) ≤ 0.126 $m_t = 173.3 \; {
m GeV}$ $\mu > 0$ $R_{tb\tau} \equiv \frac{\operatorname{Max}(y_t, y_b, y_\tau)}{\operatorname{Min}(y_t, y_t, y_\tau)} \leq 1.1$

YU needs threshold corrections

All points are consistent with the REWSB and LSP neutralino conditions. Green points satisfy the mass bounds and constraints from rare B-meson decays. Brown points form a subset of green and they represent relic abundance of LSP neutralino consistent with the Planck bound within 5σ . The horizontal lines indicate $R_{tb\tau} = 1.1$ and the regions below these lines are considered to be compatible with the YU condition.

LHC Implications

LHC Implications:

Dark Matter Implications: Coannihilation Scenarios

Dark Matter Implications: Direct Detection

LZ XENON

Conclusion

- ▶ $m_{\tilde{t}} \gtrsim 3 TeV$ can be probed in the HL-LHC and HE-LHC experiments,
- ▶ $m_{\tilde{g}}$ NLSP in ~ [0.8 2.4] TeV: about to be probed in LHC Run-3,
- ▶ A-boson with $m_A \gtrsim 1$ TeV is about to be probed through its hadronic decays,
- $m_{ au} \gtrsim 500$ GeV can be probed through $ilde{\chi}^0, ilde{\chi}^\pm$ productions,
- LSP neutralino coannihilations (stau, gluino and chargino scenarios) and A-resonance solutions.
- Bino-like DM: Further upgrades in XENONnT
- Wino-like and Higgsino-like DM: Testable at the LUX-Zeplin and XENON1T experiments.