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Simulation bridges Theory and Experiment.
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ATLAS Preliminary
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@ At the start of LHC Run 4, the computational
needs will likely exceed the available budget. 4 \

™ = Data Proc
o . MCFUI(SIm)

MCFull(Rec)
- C-Fast(Sim)

@ A large fraction goes into simulation. = e
= Simulating Data might become the Bottleneck. CERN-LHCC-2022-005
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Breaking Simulation Bottlenecks with
Normalizing Flows

Part I The Simulation Chai =
T s Bottlenecks |

— Part Il Normalizing Flows
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I: Full Simulations are expensive.

-
forward N
>
scattering decay QCD shower detectors
vl I B I N e B ey IR A=
<
B inverse
L “Machine Learning and LHC Event Generation”, Butter et al. [2203.07460]
-
.
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I: Full Simulations are expensive.
P
forward \ h

A
scattering decay QCD shower detectors
i inverse
“MachingAearning and LHC Event Generation”, Butter et al. [2203.07460] )
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= Matrix elements are slow for many legs / loops.
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I: Full Simulations are expensive.

P

forward \

A
Y >
scattering l_dg QCD shower detectors
-
i inverse
“MachingAearning and LHC Event Generation”, Butter et al. [2203.07460]

Matrix elements are slow for many legs / loops.

44

Unweighting efficiencies can be really small.

f(xi)
max f(x)

reproduce the shape of f(x).

. The kept events are unweighted and

@ The unweighting efficiency is the fraction of
events that “survives” this procedure.

(&

o Unweighting: we need to accept/reject each event with probability
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Matrix elements are slow for many legs / loops.

44

Unweighting efficiencies can be really small.

do |
=

= need samples ~

f(xi)
max f(x)

reproduce the shape of f(x).

. The kept events are unweighted and

@ The unweighting efficiency is the fraction of
events that “survives” this procedure.

(&

e Unweighting: we need to accept/reject each event with probability
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I: Full Simulations are expensive.

forward g
.
scattering decay QCD shower
P [T s | [0 &
<
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inverse

“Machine Learning and LHC Event Generation”, Butter et al. [2203.07460]
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I: Full Simulations are expensive.

~
forward / .~ \
7 >

scattering decay QCD shower

S [T [T a2 || T

2
<

inverse
“Machine Learning and LHC Event Generation”, Butter et al. 3.07460] )

-

= Detector Simulation model stochastic interactions of particles with
matter

o Flagship code GEANT4 is very slow.

~
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I: Full Simulations are expensive.

7 >

scattering decay QCD shower i detectors

S [T [T a2 || T

( N
forward / .~ \

P
‘ inverse
L “Machine Learning and LHC Event Generation”, Butter et al. 3.07460] )

= Detector Simulation model stochastic interactions of particles with
matter

o Flagship code GEANT4 is very slow.

= need samples ~ p(shower|Ei,cident)!

-

~
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I: Full Simulations are expensive.

scattering decay QCD shower i detectors

PN
forward / .~ Y
7 >

<

S inverse
“Machine Learning and LHC Event Generation”, Butter et al. 3.07460] )
~

-

= Detector Simulation model stochastic interactions of particles with
matter

o Flagship code GEANT4 is very slow.

= need samples ~ p(shower|Ei,cident)!

= Use Normalizing Flows to sample!
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Breaking Simulation Bottlenecks with
Normalizing Flows

Part I The Simulation Chai =
T s Bottlenecks |

— Part Il Normalizing Flows

Part lll:  i-flow and CALOFLOW
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II: Normalizing Flows learn a
change-of-coordinates efficiently.

“easy” base

“target”
distribution

distribution

o buectlve.
transformation

density estimation, p(x)

sample generation

Dinh et al. [arXiv:1410.8516],
Rezende/Mohamed [arXiv:1505.05770], Review: Papamakarios et al. [arXiv:1912.02762]

o Normalizing Flows learn the parameters of a series of easy
transformations.

@ Each transformation has an analytic Jacobian and inverse.

@ Require a triangular Jacobian for faster evaluation.
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1 = al| Hl: The Bijector is a chain of “easy”

transformations.

(" o
Each transformation

&

@ is chosen to factorize:
C(%:P) = (Gi(x1; p1), G(x2i p2)s - -+ Calni Pn)) T
where X are the coordinates to be transformed and p the parameters of
the transformation.

@ must be invertible and have analytical Jacobian

J

(Rational Quadratic Splines:

"

(" N\
Rational Quadratic Spline Transformation

J

Gregory/Delbourgo [IMA Journal of Numerical Analysis, '82]

_ maitaa+ta
a b20[2 + by + by

Durkan et al. [arXiv:1906.04032

@ numerically easy

@ expressive

\The NN predicts p;: the bin widths, heights, and derivatives that go in a;&b;. )

]\

Claudius Krause (Rutgers)

Normalizing Flows in HEP Simulations

June 15, 2022

8/35



II: Triangular Jacobians 1: Bipartite Blocks
(aka Coupling Layers)

XA

z @@ Y permutation |—>

xg —C(xg; m(xa))

forward: The C are numerically cheap, invertible, and
YA = XA separable in xp ;.
yB,i = C(xg,i; m(xa)) ,
Jacobian:

inverse: ay| |1 gTC . n-aC(XB’“ m(xa))

XA = Ya x| |0 28] T axg,
XB,i = C(ys,ii m(xa))

= O(n) Dinh et al. [arXiv:1410.8516]
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[l: Triangular Jacobians 2: Autoregressive
Blocks (aka MADE Blocks)

MADE Block

bijector input cond. input
o o o o 0 O o

000000 OO&).0.00
- ®7 L] @ ® ®
O- O, 0 Q O o
o o o o o

000000000000 000

transformation parameters

Implementation via masking:

@ a single “forward” pass gives
the full output of all
p(X,'|X,',1 000 Xl).
= very fast

o the “inverse” needs to loop
through all dimensions and
gets a single p(x;|xi—1...x1)
each time.
= very slow

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

@ Masked Autoregressive Flow (MAF), introduced in Papamakarios et al.

[arXiv:1705.07057], are slow in sampling and fast in inference.

@ Inverse Autoregressive Flow (IAF), introduced in Kingma et al.
[arXiv:1606.04934], are fast in sampling and slow in inference.
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[1l: i-flow and CALOFLOW

forward

AN

Y

\

scattering

X

decay

Qcp

B

shower

—

-0

detectors

ER

<

<€
“MMing and LHC Event Generation”, Butter et al.

inverse

[2203.07460]
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[I1: Numerical Integration is at the Core of
MR F .t Generation.

In the limit g(X) o f(X), we get o1s(/) = 0

s

1
/:/0 f(x)dg 25 %E,-:f()?i) X% ...uniform, omc(l) ~
1 — -
1C . MC 1 f(x) o
= —— g(x)dx _ — - Xi...q(X
/0 q(X) q( ) importance sampling N Z q(X,') q(

—

We therefore have to find a g(x) that approximates the shape of f(X)

= Once found, we can use it for event generation,
i.e. sampling p;,¥;, and ¢; according to do(p;,¥;, ;)
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[I1: Numerical Integration is at the Core of
MR F .t Generation.

( 1

1
T 2 “ i
/:/0 f(x) dx — N E (%) X ...uniform,  omc(/) ~ 71@

L X —
F(X) o MC 1 f(x) . .
= = X)dx —_— — — Xi ... q(xX),
/0 q(x) q( ) importance sampling N 2’: q(x,-) q( )

In the limit g(X) o f(X), we get o1s(/) = 0

—

We therefore have to find a g(x) that approximates the shape of f(X)

= Once found, we can use it for event generation,
i.e. sampling p;,¥;, and ¢; according to do(p;,¥;, ;)

We need both samples x and their probability g(x).
= We use a bipartite, coupling-layer-based Flow.
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[1l: i-flow: Numerical Integration with
oo Normalizing Flows.

How it works:

. _) f(X)
— [l
T—{ ADAM optimizer

i-flow: C. Gao, J. Isaacson, CK [arXiv:2001.05486, ML:ST]
gitlab.com/i-flow/i-flow

»
o
3

=2
=

@

Statistical Divergences are used as loss functions:

o Kullback-Leibler (KL) divergence:
Dki = [ p(x) log ;ﬁ(%dx ~ L > et j log £(x) i ... q(x)

(Xl q(Xi) ?

o Exponential divergence
2
Dexp = [ p(x) (Iog ()) dx =~ ZZE)X(’ ( (—i’;> , Xi-..q(x)
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B B & 111: Sherpa needs a high-dimensional integrator.

(Sherpa is a Monte Carlo event generator for the Simulation of High-Energy )
Reactions of PArticles. We use Sherpa to

@ compute the matrix element of the process.

@ map the unit-hypercube of our integration domain to momenta and
angles. To improve efficiency, Sherpa uses a recursive multichannel
algorithm.

= Ndim = 3Nfina) — 4+ Nfpay — 1
—_———— —\

kinematics multichannel

@ However, the COMIX++ ME-generator uses color-sampling, so we should
also integrate over final state color configurations. While this improves
the efficiency, it is not possible to handle group processes like W + nj
with a single flow.

= Ndim = 4nﬁn3/ —4+ 2nC0/°’ https://sherpa.hepforge.org/)
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<— cos ¢ of decaying fermion with beam

<—‘g0 of decaying fermion with beam ‘Target distribution ‘

lIl: An easy example: ete™ — 3j.

¢ cos®) of decay ‘without learning color‘

< multichannel

5
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lIl: An easy example: ete™ — 3j.

<— cos19 of decaying fermion with beam

< ¢ of decaying fermion with beam ‘ Learned distribution ‘

‘ﬂﬂ
v

< cos v of decay ‘wnthout learning coIor‘

— cp of decay

| H Hj — propagator of decaying fermion

< multichannel
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B BB 111: High Multiplicities are still difficult to learn.

unweighting efficiency LO QCD

(W) / Winax n =0 n=1 n =2 n=3

W' + njets  Sherpa 2.8-1071 3.8-1072 7.5-1073 1.5-1073
i-flow 6.1-10"" 1.2-107! 1.0-1072 1.8-1073
Gain 2.2 33 1.4 1.2

W™ + njets Sherpa 2.9.107¢ 4.0-1072 7.7-1073 2.0-1073
i-flow 7.0-107¢ 15-1071 1.1-1072 2.2.1073
Gain 2.4 33 1.4 1.1

Z + n jets Sherpa 3.1-107¢ 3.6 - 1072 1.5-1072 4.7-1073
i-flow 3.8.107! 1.0-1071 1.4-1072 2.4.1073
Gain 1.2 2.9 0.91 0.51

C. Gao, S. Héche, J. Isaacson, CK, H. Schulz [arXiv:2001.10028, PRD]
Normalizing Flows in HEP Simulations June 15, 2022

18/35



B RO | i-flow and CALOFLOW

forward / g \
7 ra

scattering decay QCD shower

v [T [T |2 [ osl T

B inverse
“Machine Learning and LHC Event Generation”, Butter et al. 3.07460]
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I(Ijljxl\f\ée(}uiel\}he same calorimeter geometry as

@ We consider a simplified version of the ATLAS ECal:
flat alternating layers of lead and LAr

@ They form three instrumented layers of dimension
3x 96,12 x 12, and 12 x 6

Geantd, Pb Absorber, lar Gap, 10 GeV ¢

30

»

1 direction [mm]

Local Energy Deposit [MeV]

-1

-2

0
Depth from Calorimeter Center [mm]

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
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@ We consider a simplified version of the ATLAS ECal:

»

1 direction [mm]

-1

-2

Claudius Krause (Rutgers)

[1l: We use the same calorimeter geometry as

CALOGAN.

flat alternating layers of lead and LAr

@ They form three instrumented layers of dimension
3x 96,12 x 12, and 12 x 6

Geantd, Pb Absorber, lar Gap, 10 GeV ¢

30

0 s
Depth from Calor

Local Energy Deposit [MeV]

Generative Adversarial Network:
A generator and a critic play a game

against each other.

CaloGAN:Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
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I(IJIAI\{\éeGuRel\}Che same calorimeter geometry as

The GEANT4 configuration of CALOGAN is available at
https://github.com/hep-Ibdl/CaloGAN

We produce our own dataset: available at [DOI: 10.5281/zenodo.5904188]
Showers of e™,~, and 7 (100k each)
All are centered and perpendicular

Eiot is uniform in [1,100] GeV and given in addition to the energy
deposits per voxel:

10°
102
-]
10! 3
S
-
100
1
-1
10 "

10 20 30 40 50 60 70 80 90
ncelllp

Energy (MeV)
Energy (MeV)
Energy (MeV)

$Cell D
Cvovounswneo

$Cell D

El
1 Cell D

75 6 7 8 9T
n Cell 1D

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
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I1l: CALOFLOW uses a 2-step approach to

BB p(7]E..).

p
Flow |
o learns p1(Eo, E1, Ex| Einc)

@ is a MAF that is optimized using the LL.

e M)

Flow Il

@ learns p2(f|E07 E1, By, Einc) of normalized showers
e in CALOFLOW vl (2106.05285 — called “teacher”):

( 1)

o MAF trained with LL
@ Slow in sampling (= 500x slower than CALOGAN)

. v

in CALOFLOW v2 (2110.11377 — called “student”):
@ |AF trained with Probability Density Distillation from
teacher (LL prohibitive)
van den Oord et al. [1711.10433]

i.e. matching IAF parameters to frozen MAF
@ Fast in sampling (= 500x faster than CALOFLOW v1) ]

. v
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B BB 1: A Classifier provides the “ultimate metric”.

e B
According to the Neyman-Pearson Lemma we have:
@ The likelihood ratio is the most powerful test statistic to distinguish
the two samples.

@ A powerful classifier trained to distinguish the samples should therefore

|eal’n (something monotonically related to) thIS
o If this classifier is confused, we conclude pgpanta(X) = Pgenerated(X)
= This captures the full 504-dim. space.

? But why wasn't this used before?

= Previous deep generative models were separable to almost 100%!

DCTRGAN: Diefenbacher et al. [2009.03796, JINST]
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ooo [1l: CALOFLOW passes the “ultimate metric”

test.

(According to the Neyman-Pearson Lemma we have:
PGeanta(X) = Pgenerated(X) if @ classifier cannot distinguish data from
generated samples.
& v
g
DNN based classifier
AUC
GEANT4 vs. | GEANT4 vs. (teacher) | GEANT4 vs. (student)
CALOGAN CALOFLOW vl CALOFLOW v2
_+ | unnorm. | 1.000(0) 0.859(10) 0.786(7)
norm. 1.000(0) 0.870(2) 0.824(4)
unnorm. 1.000(0) 0.756(48) 0.758(14)
0l
norm. 1.000(0) 0.796(2) 0.760(3)
_ | unnorm. | 1.000(0) 0.649(3) 0.729(2)
norm. 1.000(0) 0.755(3) 0.807(1)
LAUC (€ [0.5,1]): Area Under the ROC Curve, smaller is better, i.e. more confused )

Claudius Krause (Rutgers)
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[I: Sam

Pllng Speed: The Student beats the

* .

Teacher!
CaLoFLow™ CALOGAN* GEANTAT
teacher | student
training 22482 min | + 480 min 210 min 0 min
generation time per shower
batch size batch size req. 100k req.
10 835 ms 5.81 ms 455 ms 22 ms 1772 ms
100 96.1 ms 0.60 ms 45.5 ms 0.3 ms 1772 ms
1000 41.4 ms 0.12 ms 4.6 ms 0.08 ms 1772 ms
10000 36.2 ms 0.08 ms 0.5 ms 0.07 ms 1772 ms

on our TiITAN V GPU

t: on the CPU of caloGAN:

Paganini, de Oliveira, Nachman [1712.10321, PRD]

Claudius Krause (Rutgers)

1010
10°
10%

107

time [s]

10°
10°
10

10

—— GEANT 4
—— CaloFlow v1
—— CaloFlow v2
—— CaloGAN

102
10

107
10°

10°

10° k

10°

10° 10! 10°

10° 107
Generated Showers

108 10° 101
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GEANT4. CaloFlow student CaloFlow teacher

CaloGAN

1 CALOFLOW Comparing Shower

Averages: e"

Layer 0

Energy (MeV)

6 cellip

0710203040300 7080 90
T3

Energy (Mev)

scelp

010 20 30 40 50 60 70 80 90
ncellD

Energy (MeV)

scein

010 20 30 40 50 60 70 80 50
acell

Energy (MeV)

010 20 30 40 50 60 70 80 90
ncello
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Laver1

0123456789101
ncellio

Laver1

0123456769101
ncelio

Laver1

0123456785100
ncellip

Layer1
o
1
2
3
o4
5
36
.7
8
9
10
n

0123456769101
ncelip
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BB | CALoFLOw: Flow | histograms: e*

10 100 107
10° 10°
1072
1071 1071
102 102 10-2
1073 10-3
10-¢ 104 107
10-° 10-°
10-5 i
" ! - i i
107 15- - 00 107 1 o0 Tor 00 0 25 50 75 100 125
Eo (GeV) £, (GeV) £, (GeV) Eor (GeV)
1
10t N 10
10°
10°
107!
107!
1072 Y
2 j
1073 10 i
104 " hl
107t 10 1073 1071 10t

EvfEror EofEror

et GEANT =71 et CaloFlow teacher
~--7 e™* CaloGAN [—1 et CaloFlow student

-
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1072
1073
1074
10°°
10°¢
1077

1078

lll: CALOFLOW: Flow I+l histograms: e*

7 7
6 6
5 5
4 4
3 3
2 2
1 1
10 05 10 15 20 %0 . 2 06 08
Depth-weighted total energy /Iy Shower Depth s4 Shower Depth Width o,
10° 10°
107t
1072
1073
1074
107°
10° 107 107
o1
et GEANT IL=>1 e* CaloFlow teacher
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e™ CaloGAN
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lll: CALOFLOW: Flow Il histograms: e™

10
B 25 4
8
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6 15
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IIl: CALOFLOW: Nearest Neighbors: 7
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layer 0

CaloFlow

o ]

layer 1

layer 2

CaloFlow

Etor =5.0 GeV.

l |\ I

GEANT

GEANT

Eg =10.0 GeV

kil

GEANT

Eit=20.0GeV  Eyo=50.0 GeV

Eior = 95.0 GeV

--

Eoeant=1.6 GeV  Egeant=6.5 GeV  Eceant=4.8 GeV  Egeant=28.4 GeV Egeant = 0.3 GeV
Ecatoriow =1.2 GeV  Ecaioriow = 4.8 GeV  Ecaioriow = 4.7 GeV  Ecalorion = 28.9 GeV Ecaioriow = 0.3 GeV

Claudius Krause (Rutgers)

M=

Normalizing Flows in HEP Simulations

10!

10°

1072
102

10t

10°

Energy (MeV)

1071

June 15, 2022

30/35



BB | CALoFLow: Flow | histograms: 7+

10t 10! 10t 107
10° 10° 10°
1072
1071 1071 107!
10 10 102 107
1073 10-3 1073
107 10 1074 107
10-° 10-° 107°
107
. " -
B T T S T N T 107 T o0 Tor FU S T T T/ N [ LR T 6 25 50 75 100 125
Eo (GeV) E1 (GeV) E2 (GeV) o (GeV)
10?2
10t
10t
100
10°
10°
107!
101 107t
102
1072
102
1073 107t 107t 10 1073 107t 10t
Eo/Etot E1/Eor Ea/Etor

mt GEANT n* CaloFlow teacher
n*t CaloGAN n* CaloFlow student

Claudius Krause (Rutgers) Normalizing Flows in HEP Simulations June 15, 2022 31/35



B EE |1: CALoFLow: Flow I+l histograms: 7+
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lll: CALOFLOW: Flow Il histograms: 7+
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A little Advertisement — CaloChallenge 2022

Welcome to the home of the Fast Calorimeter Simulation
Challenge 2022!

e Fa i Challer

Welcome to the home of the Fast Calorimeter Simulation Challenge
2022!

This s the homepage for the Fast Calorimeter Simulation Data Challenge. The purpose of this
challenge s to spur the development and b dng of fast and high-fidel
generation. Currently, generating calorimeter showers of elementary particle
pions, ..) using GEANT4 is a major computational bottleneck at the LHC, and it s forecast to

overwhelm the computing budget of the LHC in the near future. Therefore there is an urgent need to

Michele Faucci Giannelli, Gregor Kasieczka, Claudius Krause, Ben

Nachman, Dalila Salamani, David Shih, and Anna Zaborowska

= https://calochallenge.github.io/homepage/
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Breaking Simulation Bottlenecks with
Normalizing Flows

@ Simulations are a crucial bridge

between Theory and Experiment! —r = = =

@ They might limit the analyses we can
do at the LHC.
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Breaking Simulation Bottlenecks with
Normalizing Flows

@ Simulations are a crucial bridge

between Theory and Experiment! —r = = =

@ They might limit the analyses we can
do at the LHC.

Other HEP applications:
o | introduced Normalizing Anomaly Detection, Lattice QCD, ...

few of their realizations. I
@ They are Density Estimators and / \ ‘ W V
Generative Model. ‘ ‘
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Breaking Simulation Bottlenecks with
Normalizing Flows

@ Simulations are a crucial bridge

between Theory and Experiment! —r = = =

@ They might limit the analyses we can
do at the LHC.

@ | introduced Normalizing Flows and a
few of their realizations. _—

@ They are Density Estimators and
Generative Model.

@ i-flow improves the unweighting

efficiency in event generation. -H -H ni
o CALOFLOW provides a fast and L L

faithful detector simulation.
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CALOFLOW uses a 2-step approach.

<— density estimation in training, Ei from GEANT4 data <+——

3 dim. Flow I

Base dist.

Normalizing Flow Bijector

GEANT4 data
E;

sampled E;

post-processing

—— sampling of E; for Eyy ———

GEANT4 data

<«— density estimation in training, £E; from GEANT4 data «——

504 dim. Normalizing Flow Bijector — Flow II ) @ g
Base dist. - -

o
T o0
c,eb“’\ CaloFlow samples

= [ - — | 2¥ P T N
— — Log
St .
—— shower generation, E; from Flow [ plo("'syj ﬂ
Sigg @l

Data processing Flow |
“+" map E; to [0,1] “—" invert logit
“<" work in logit space “—" map back to E;
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CALOFLOW uses a 2-step approach.

<— density estimation in training, Ei from GEANT4 data <+——

Flow I

3 dim.
Base dist.

Normalizing Flow Bijector

sampled E;

post-processing

—— sampling of E; for By ———s

GEANT4 data

<«— density estimation in training, £; from GEANT4 data «——

504 dim. Normalizing Flow Bijector — Flow II ) @ g
Base dist. - - - -

v S )
<l CaloFlow samples
2l | St | F— »\ o ‘_ || o
g Los.
——— shower generation, £; from Flow I plb(’qs.s,]. @ EE !
“,
¢ . 7
Data processing Flow Il
<" add noise “—" invert logit
“<" normalize layers to 1 “—" renormalize to E;
“<" work in logit space “—" apply threshold
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loss

~14001
~16001
~18001
~20001

Adding Noise is important for

training with noise
— test with noise
I training without noise
—— test without noise

0 10 20 30 40 50 60 70 80 90
1 Cell ID

102

Energy (MeV)

the sampling quality.

n* GEANT
n* CaloFlow, no noise
n* CaloFlow, with noise

@ The log-likelihood is less noisy, but smaller. Yet, the quality of the
samples is much better!

@ This is due to a “wider” mapping of space and less overfitting.
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Nearest Neighbors: e™ (student)
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Comparing Shower Averages: ~
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Nearest Neighbors: ~ (student)

Eior=5.0 GeV. Eor =10.0 GeV Ewor = 20.0 GeV Eor = 50.0 GeV Eor = 95.0 GeV
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Flow | histograms: ~
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Flow I+I1 histograms: ~
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Flow Il histograms: ~
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Comparing Shower Averages:
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