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Background:
Dark matter substructure

DM models warmer than CDM predict a
suppression in the formation of structure
below a certain mass called the half mode

mass or M-

M\ parametrises the DM model via the
subhalo mass function.

Measuring this mass function (counting
subhaloes) in the universe constrains the
dark matter model.
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Background:
Gravitational imaging
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Data Model Residuals
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Despali+ (2021)

Background:
Gravitational imaging
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Find the best
smooth model

Make Yields
corrections to detections of
the potential subhaloes
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Quantify the
sensitivity of
each pixel

Places limits on
non-detections

Replace/approximate with

*Traditionally we compare the change
: a machine learning method

In evidence for a subhalo in every
pixel, for every mass

Very expensive to calculate —»
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Background:

Upcoming surveys
Collett (2015)
Currently known strong

lenses == Euclid

1 LSST-optimal
~102

I LSST-all
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Euclid DES and Vera Rubin
will Increase this to
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Method:
Architecture and data

Network gives a simple binary probability of
subhalo/no subhalo for each image

Training data has:

» Hubble deep field sources (and redshifts)

» Elliptical power-law lens

» Euclid pixel size, noise, PSF

» Range of subhalo masses and concentrations

» Range of source and lens magnitudes

» External shear

» (Poisson-limited) Lens subtraction Pr (Subhalo | D)

» Either one or “some” (1-4) subhaloes,
randomly placed

Pr (No subhalo | D)
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A sample of training data, ordered by S/N DM detection with deep learning | 11




Method:
Training procedure

S/N Msub/MQ

Mlzn- M%X- Mllnl- Max. We train In five stages, making the data
1 10 10 10 - more complex, and the classification
2 102 10° 10° 10"

- problem harder at each stage.
3 20 10° 107 101!
N 3 9 11

4 20 103 108 p 101 Each stage has 2M images and starts
3* 20 10 10° 10

from the weights of the previous stage,

. trained until convergence.
*Stages 4 and 5 add external shear. This can S

produce a very similar magnification effect to

~1000 total epochs, ~200 GPU hours
substructure

total
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Method:
Model performance

s, at a glance, terrible...

But most of the data the network sees are
simply not sensitive to the subhaloes shown.

The network learns to be Incredibly cautious
about making detections, but is able to do so
accurately in the situations we expect.

Subhalo probability, Pr(C = 1|d)
50% 90% 99%

10° M 1010 101 M
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Method:
Estimating sensitivity

The network as trained can give us the
sensitivity for an individual system

We create realisations of the same system with
a sub-halo in each pixel, over a range of
subhalo masses
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Lens model, source, noise realisation etc stay
the same
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We run every realisation through the trained network and produce a map of the detection odds
for each subhalo mass

Mgy = 108'6M® Mgyp = 109'6M® Mgy = 1010°6M®

Pr(Subhal i i
Plotted quantity is log R = log [ roubhalo) ] = predict nothing

Pr(No subhalo) positive values predict substructure
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We obtain the odds R of detecting a subhalo as a function of mass in every pixel
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Image plane Sensitivity map at 36 or Py, = 0.9978
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Method:

Comparison of methods

Expected number of subhaloes
detectable at 36 in CDM

Sensitivity (NN)

Sensitivity (FM)

U, = 44.1

IMSU.b — 425
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Results:

Sensitivity in Euclid

0.4 0.6
Redshift ratio z;/z

Following LensPop (Collett, 2015) we simulate a
sample of 20k Euclid strong lenses and find the
sensitivity in detalil.

Where a sensitivity map used to take weeks to

compute, we can now run one in 30 mins on - - L0 L5 2.0
Einstein radius (arcsec)
one GPU.

1 LowS/N

1 High S/N
LensPop (Collett, 2015)

150 200 250 300

Total S/N
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A large number of sensitivity maps
allows us to mine for correlations

with the lensing parameters.
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Results:

Learning degeneracies
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Once external shear is added to the
model, the confidence of the network’s
predictions drops, no matter the
specific shear strength.

Accuracy
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Msub(MG))

0.68 ! ! - - - The accuracy does not correlate with
shear strength - implying the network
Is not confusing shear for substructure
but has learnt to account for It.
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Results:

Detection statistics

The sensitivity in each pixel tells us the
minimum mass subhalo we could detect. We
can integrate the mass function,

MHM

Y
m l Lovell (2020)

to find the expected number, 4, of

detectable subhaloes per pixel (and by
summing up, per system)

The mass function is normalised by f ;, the

fraction of mass in substructure within 20y
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:SL+MW (Nadler+21)
. iSL+MW+Lya (Enzi+20)

: Flux ratios (Hsueh+19)
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Detectable haloes per lens
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Halt mode mass, Mym

= '1'(')'11

= '1'612

The expected number of
detectable haloes does
not change with respect to

CDM for My S 10°M

Other studies have already
ruled out models warmer
than this limit (various
95% CLs shown)
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Detectable haloes per lens
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Sensitivity area: total area sensitive within mass range

|

' Best 100 selected by depth

" No selection

Half mode mass, Mygm

Selecting by area or depth greatly
Improves the possible constraints

on .., (fixed here to 1072)
Either selection can (very)
marginally improve the constraints

on M

But how do we a priori select for
the most sensitive lenses?
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Next steps:

Predicting sensitivity directly

We can train new neural networks using the
existing sensitivity maps to predict maps
and statistics directly from the images.

A trained network could assess new lenses
very cheaply, giving sensitivity predictions
for found lens candidates for follow-up.

Higher level

B e ——  sensitivity
statistics
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Mass sensitivity (Mmax/M )
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Next steps:
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Other work:

Generating realistic galaxy images

Training Data

Hozlschuh+ (2022, arXiv:2203.11956)

We generated high resolution images of

galaxies using a variety of generative models
and input data.

Our best model was able to accurately
reproduce all the tested physical properties of
the input galaxy population

We also found that mixing the generated data
with the original data in a separate de-noising

problem significantly improved model
robustness.
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Other work: )
Interpreting CNN lens finders Herle+ (in prep.)

Testing lens finding neural
networks to see what (if any)
physics they have learned.

When we adjust the brightness

of images to create non- |

physical flux ratios, the network ) — s
quickly loses confidence that 5 :
the object is a lens

This is very sensitive to how £ 3
many “real” galaxies the ’
network has seen In training

100 10! 102 103 - 10
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Conclusions

We can estimate subhalo sensitivity orders of

magnitude faster than before.

For Euclid, we expect 1 detectable subhalo per
~10 lenses

This improves with some pre-selection

WDM cannot be distinguished from CDM below
the point where WDM has already been ruled out.
A small number of lenses could give strong

constraints on f .

With enough data from the current method, a
new neural network could predict sensitivities
directly from images.



