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Dark matter substructure
DM models warmer than CDM predict a 
suppression in the formation of structure 
below a certain mass called the half mode 
mass or . 

 parametrises the DM model via the 
subhalo mass function. 

Measuring this mass function (counting 
subhaloes) in the universe constrains the 
dark matter model. 

MHM

MHM

Background:
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Data Model ResidualsData

Corrected Potential Corrected DensitySource

Vegetti+ (2012)

subhalo  
in the lens
109M⊙
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Quantify the 
sensitivity of 
each pixel

Places limits on 
non-detections

*Traditionally we compare the change 
in evidence for a subhalo in every 
pixel, for every mass

Very expensive to calculate Replace/approximate with 
a machine learning method

Find the best 
smooth model

Make 
corrections to 
the potential

Yields 
detections of 

subhaloes

Gravitational imaging
Background:

Despali+ (2021)
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Currently known strong 
lenses

~102
Euclid, DES and Vera Rubin 
will increase this to

~105

Collett (2015)
Upcoming surveys
Background:
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ResNet50

Pr (Subhalo |D)
Pr (No subhalo |D)

10

Training data has: 
‣ Hubble deep field sources (and redshifts) 
‣ Elliptical power-law lens 
‣ Euclid pixel size, noise, PSF 
‣ Range of subhalo masses and concentrations 
‣ Range of source and lens magnitudes 
‣ External shear 
‣ (Poisson-limited) Lens subtraction 
‣ Either one or “some” (1-4) subhaloes, 

randomly placed

Network gives a simple binary probability of 
subhalo/no subhalo for each image

Architecture and data
Method:
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Subhalo sensitivity in Euclid 5

S/N "sub/"�
Min. Max. Min. Max. Epochs Loss Acc.

1 102 103 1011 - 180 0.307 0.867
2 102 103 109 1011 60 0.575 0.673
3 20 103 109 1011 180 0.610 0.638
4* 20 103 109 1011 180 0.641 0.599
5* 20 103 108.6 1011 270 0.678 0.538

Table 1. Changes in the training data during training. Each stage used 2⇥106

images. To achieve changes in the range of total signal to noise ratios, source
magnitudes were changed from an initially constant "VIS = 20 in stage 1,
to a uniformly sampled range 20 < "VIS < 26 in stage 3 onwards. The
lower limit of the subhalo mass range was moved down to 108.6

"� in stage
5 from 109

"� in stages 1-4 once it was realised that a small number of
lenses had sensitivity below this limit. *In stages 4 and 5 external shear was
also added, hence the drop in performance between stage 3 and 4.

The network is assumed to have converged when three decreases in
learning rate do not improve the test loss. Total training time was
over 870 epochs, taking 140 hours using 4 A100 GPUs in parallel.

3.2 General model performance

Before using the trained model to estimate sensitivity, we first eval-
uate its performance as an image classifier. The classification per-
formance is, in general, very poor, but this is to be expected. The
majority of images with subhaloes (⇠ = 1) used in training do not
contain any detectable subhalo signal. This is because the subhalo
is too small to be detected, or too far away from the lensed images
to e�ect their magnification, or both. Even if a subhalo of the right
mass is in the right position, an unfavourable signal to noise ra-
tio, source structure, lens/source redshift, or subhalo concentration
could all prevent it from being detected.

In Fig. 3 we show two performance statistics, as a function
of the primary factors of detectability: subhalo mass and position.
All positive (contains subhalo) systems are binned according to
subhalo mass "sub and the radial position of the subhalo relative
to the Einstein radius. To each bin we then add an equal number
of random negative (does not contain subhalo) images. We then
compute two statistics in each bin. The accuracy is the fraction
of images where the class assigned the largest probability by the
network is also the true class. The area under the curve of the
receiver-operator characteristic (ROC-AUC) is a common metric
used to evaluate binary classifiers (Citation, Year)and measures the
true and false positive rate. A perfect classifier has an ROC-AUC
score of unity, and a random classifier has a score of 0.5. Statistics
for the entire data set, not binned by subhalo property, are given in
the final line of Table 1

The model performs best when the subhalo is large and close to
the Einstein radius. Performance degrades as the subhalo becomes
smaller in mass, or moves away from the Einstein radius. In this
case, distance from the Einstein radius is used as a proxy for the
proximity to the lensed images, which is the true deciding factor.
At lower masses and larger subhalo distances, the accuracy and
ROC-AUC both drop below 0.5, a worse performance than a ran-
dom classifier. This is because the network confuses these images
for those containing no subhalo, which is to be expected. For the
purposes of estimating sensitivity, the scenario where a subhalo is
too small or far from an image to have an e�ect, and the scenario
where there is no subhalo at all, are functionally the same.

Figure 3. Model performance statistics binned by subhalo mass "sub and
radial subhalo position \sub relative to the Einstein radius \E. These statistics
are computed on the testing data set, at the end of training stage 5. The upper
frame gives the accuracy, i.e., the fraction of model predictions which are
correct for both classes. The lower frame gives the area under the curve of
the receiver-operator characteristic (ROC-AUC). To compute each statistic,
an equal number of random negative (not containing subhalo) images are
added to each bin of positive (containing subhalo) images. The black line
marks the position where subhaloes are positioned on the Einstein radius,
i.e., where \sub/\E = 1.

3.3 Specific model performance

Due to the nature of the problem, it is perhaps more informative to
evaluate the performance in specific situations where we expect pos-
itive classifications to be possible. In Fig. 4 we show the probability
of subhalo presence assigned by the network to di�erent configu-
rations of the same five systems, where the subhalo positions and
masses change. The macro properties of each observation (lens light
and mass model, source model, sky noise realisation, and external
shear) are kept the same. We then place a subhalo in the centre of
the first pixel and iterate across all pixels and a range of subhalo
masses. The subhalo position range covers all pixels in the central 6
arcsec ⇥ 6 arcsec area, and masses of "sub = {109, 1010, 1011}"� .
Each realisation of the same system is ray-traced as in Section 2.4
and passed through the trained model, recording the probability of
a subhalo being present.

Figures 3 and 4 exhibit the same general behaviour. Areas
away from the lensed images do not produce detections, except at
very high masses, and detections close to or on the lensed images

MNRAS 000, 1–8 (2020)

We train in five stages, making the data 
more complex, and the classification 
problem harder at each stage. 

Each stage has 2M images and starts 
from the weights of the previous stage, 
trained until convergence. 

~1000 total epochs, ~200 GPU hours 
total  

*Stages 4 and 5 add external shear. This can 
produce a very similar magnification effect to 
substructure 

Training procedure
Method:
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Is, at a glance, terrible…

Model performance
Method:
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Is, at a glance, terrible…

But most of the data the network sees are 
simply not sensitive to the subhaloes shown.

Model performance
Method:
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Is, at a glance, terrible…

But most of the data the network sees are 
simply not sensitive to the subhaloes shown.

The network learns to be incredibly cautious 
about making detections, but is able to do so 
accurately in the situations we expect.
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Model performance
Method:
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The network as trained can give us the 
sensitivity for an individual system

We create realisations of the same system with 
a sub-halo in each pixel, over a range of 
subhalo masses

Lens model, source, noise realisation etc stay 
the same

Estimating sensitivity
Method:
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We run every realisation through the trained network and produce a map of the detection odds 
for each subhalo mass

log R = log [ Pr(Subhalo)
Pr(No subhalo) ] ⇒Plotted quantity is

negative values predict nothing 
positive values predict substructure
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We obtain the odds  of detecting a subhalo as a function of mass in every pixelR

We fit a rectified linear unit (ReLU) 
function:

log R = max [log R0, a log (Msub − M0) + log R0]
and find the mass at which a given 
odds threshold is reached
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Image plane Sensitivity map at  or 3σ Psub = 0.9978
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Comparison of methods
Method:

Expected number of subhaloes 
detectable at  in CDM3σ μsub = 44.1 μsub = 42.5
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Following LensPop (Collett, 2015) we simulate a 
sample of 20k Euclid strong lenses and find the 
sensitivity in detail. 

Where a sensitivity map used to take weeks to 
compute, we can now run one in 30 mins on 
one GPU.

Sensitivity in Euclid
Results:
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A sample of the most sensitive observations
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A large number of sensitivity maps 
allows us to mine for correlations 
with the lensing parameters.
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Once external shear is added to the 
model, the confidence of the network’s 
predictions drops, no matter the 
specific shear strength.

The accuracy does not correlate with 
shear strength - implying the network 
is not confusing shear for substructure 
but has learnt to account for it.

Learning degeneracies
Results:
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The sensitivity in each pixel tells us the 
minimum mass subhalo we could detect. We 
can integrate the mass function,

dn
dm

∝ m−α1 [1 + α2
MHM

m ]
γ

to find the expected number, , of 
detectable subhaloes per pixel (and by 
summing up, per system)

μsub

The mass function is normalised by , the 

fraction of mass in substructure within  

fsub
2θE

Detection statistics
Results:

Lovell (2020)
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The expected number of 
detectable haloes does 
not change with respect to 
CDM for MHM ≲ 108M⊙

Other studies have already 
ruled out models warmer 
than this limit (various 
95% CLs shown)
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Sensitivity depth: minimum sensitivity in a system 
Sensitivity area: total area sensitive within mass range

Selecting by area or depth greatly 
improves the possible constraints 
on  (fixed here to )fsub 10−2

Either selection can (very) 
marginally improve the constraints 
on MHM

But how do we a priori select for 
the most sensitive lenses?
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UNet

28

We can train new neural networks using the 
existing sensitivity maps to predict maps 
and statistics directly from the images. 

A trained network could assess new lenses 
very cheaply, giving sensitivity predictions 
for found lens candidates for follow-up.

ResNet

Higher level 
sensitivity 
statistics

Predicting sensitivity directly
Next steps:
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Next steps:
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Hozlschuh+ (2022, arXiv:2203.11956)Generating realistic galaxy images
Training Data

Generated Galaxies

We generated high resolution images of 
galaxies using a variety of generative models 
and input data.

Our best model was able to accurately 
reproduce all the tested physical properties of 
the input galaxy population

We also found that mixing the generated data 
with the original data in a separate de-noising 
problem significantly improved model 
robustness.

Other work:

https://ui.adsabs.harvard.edu/link_gateway/2022arXiv220311956H/arxiv:2203.11956
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Herle+ (in prep.)Interpreting CNN lens finders

Testing lens finding neural 
networks to see what (if any) 
physics they have learned.

When we adjust the brightness 
of images to create non-
physical flux ratios, the network 
quickly loses confidence that 
the object is a lens

This is very sensitive to how 
many “real” galaxies the 
network has seen in training

Other work:
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• We can estimate subhalo sensitivity orders of 
magnitude faster than before. 

• For Euclid, we expect 1 detectable subhalo per 
~10 lenses 

• This improves with some pre-selection 

• WDM cannot be distinguished from CDM below 
the point where WDM has already been ruled out. 

• A small number of lenses could give strong 
constraints on . 

• With enough data from the current method, a 
new neural network could predict sensitivities 
directly from images.

fsub

Conclusions


