

QML beyond kernels with smaller devices

Vedran Dunjko applied Quantum algorithms Leiden v.dunjko@liacs.leidenuniv.nl

 \neq QIP \rightarrow ML (quantum-enhanced ML) ['94] \neq ML \rightarrow QIP (ML applied to QIP problems) ['74] \neq QIP \leftrightarrow ML (generalizations of learning concepts) ['00]

ML-insipred QM/QIP
Physics inspired ML/AI
beyond (Q. AI)?

ML and AI is a big jumble of problems and methods

big data analysis unsupervised learning

supervised learning deep learning

generative models

non-parametric learning

ML

online learning

computational learning theory

parametric learning

statistical learning

reinforcement learning control theory

non-convex optimization

local search

Symbolic Al

sequential decision theory

Large playground to find new exciting QC applications

big data analysis

Quantum unsupervised learning linear algebra

supervised learning

generative models

Shallow quantum circuits

non-parametric learning

Adiabatic QC/ parametrio grantum **Atum optimization** computational lear

online learning

sequential decision reinforcement Quantum oracle theory identification

> Quantum walks & search

Symbolic Al

Why QML? Many ways quantum can help

•Speed-up training (optimization bottlenecks)

•Linear-algebraic, big data (big data bottleneck)

$$(\dot{\boldsymbol{w}}, \dot{b})^* = rg\min_{\dot{\boldsymbol{w}}, \dot{b}} \left\{ \frac{1}{S} \sum_{s=1}^{S} L_{ ext{square}} \left(y_s (\dot{\boldsymbol{w}}^T \boldsymbol{x}_s + \dot{b}) \right) + \lambda \| \dot{\boldsymbol{w}}
ight\}$$

https://www.nature.com/articles/nature24047

Near-term quantum computing: potential and limitations

- Size-limited

- Yet powerful!

Noisy Intermediate-Scale Quantum (NISQ) Era

- Architecture limited Noisy (error-prone)
 - Hard to "program"; no useful applications

Why QML? Many ways quantum can help

•Speed-up training (optimization bottlenecks)

- •Linear-algebraic, big data (big data bottleneck)
- "Genuinely quantum models", or Near-term-QC-motivated approaches (not speed-ups... better quality)

$$(\dot{\boldsymbol{w}}, \dot{b})^* = rg\min_{\dot{\boldsymbol{w}}, \dot{b}} \left\{ rac{1}{S} \sum_{s=1}^{S} L_{ ext{square}} \left(y_s (\dot{\boldsymbol{w}}^T \boldsymbol{x}_s + \dot{b})
ight) + \lambda \| \dot{\boldsymbol{w}}_s \|$$

https://www.nature.com/articles/nature24047

Models in machine learning?

Supervised learning

or

Model = hypothesis family or family of functions/distributions

Typically:

input = sets the parameters of some gates trainable parameters = settings of other gates output = expectation values of observable / measurement output

Parametrized function; hypothesis class; machine learning *model*;

$\Rightarrow \quad f_{\overrightarrow{\theta}}(\overrightarrow{x}) = \text{Tr}[\rho(\overrightarrow{\theta}, \overrightarrow{x})O(\cdot)]$ O =

11

Parametrized quantum circuits as machine learning models

tune $\overrightarrow{\theta}s$, test x, as to minimize error on training set

Not just quantum cats v. quantum dogs

Combinatorial optimization (QAOA) Linear systems

. . .

- ML: supervised, generative, reinforcement learning
- Quantum chemistry & many-body (variational ground states)
- Differential equations (numerical methods, variational) & finance

Basic concepts

- Supervised learning: classification (e.g. cats v. dogs)
- Total error: on all data including unseen
- •Generalization performance: (rate of decrease of) gap between training and total error

• Training error/empirical risk: regularized error on training set: RegRisk = Train error(f,D) + Reg(f,D)

Typically: input = sets paramet trainable parameter: output = expectatio

Parametrized function; hypothesis class; machine learning model;

 $= \operatorname{Tr}[\rho(\overrightarrow{\theta}, \overrightarrow{x})O(\cdot)]$

QML

Typically: input = sets paramet trainable parameters output = expectatio

 $|0\rangle$

 $= \operatorname{Tr}[\rho(\overrightarrow{\theta}, \overrightarrow{x})O(\cdot)]$

Typically: input = sets paramet trainable parameter: output = expectatio

 θ_{3}

 $|0\rangle$

 $|0\rangle$

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Good models?

- expressive •
- flexible (various NNs, e.g. convolutional nets)
- easy to regularize well
- easy to optimize
- can match important real-world distributions
- can compute them!

Parametrized quantum circuits as machine learning models (variational quantum circuits)

Q1: Can we get it to work? (robustness to noise, training features, match with devices)

Q2: Should we get it to work? (Expressivity/"type"? Generalization bounds? Capacity for q. advantage?)

$O = \Rightarrow f_{\overrightarrow{\theta}}(\overrightarrow{x}) = \text{Tr}[\rho(\overrightarrow{\theta}, \overrightarrow{x})O(\cdot)]$

What we to know about QC ML models (complexity separations)

General QC ML models can do *more*:

- classically intractable model families ("supremacy" for generative) ullet
- there are classical/quantum *learning separa* •

There exist (contrived) supervised/generative learning problems (even with *classical, classically efficiently generatable data*!)

which require exponential compute time classically, poly quantumly (unlesss discrete log is easy)

Basis: Cryptographic function used to instill classically hard, quantum easy structure in data-label correlations

$$f_s(x) = \begin{cases} +1, & \text{if } \log_g x \in \left[s, s + \frac{p}{2}\right] \\ -1, & \text{otherwise} \end{cases}$$

arxiv.org/abs/2010.02174 arxiv.org/abs/2007.14451

What we know about PQC ML models (learning 2)

- correspond to (big!) generalized trigonometric polynomials
- very different from NNs so likely different applications...
- increasing understanding of generalization performance and regularization (10+ papers), e.g. in explicit map

 $x \to Tr[\rho(x)O(\theta)]$

rank and Frobenious norm of O directly influence the VC, and fat shattering dimensions

some metrics on data indicating a performance advantage may be achievable

arxiv.org/pdf/2008.08605 arxiv.org/abs/2106.03880 arxiv.org/abs/2105.05566 arxiv.org/abs/2011.01938

In essence

- a peculiar family that we are starting to understand
- different than NNs: so promising where NNs struggle
- not clear what it should be used for (esp. in ML)

WHAT IS THE RIGHT NAIL FOR OUR HAMMER?

Challenges:

- more understanding
- empirical advantage: need real experiments (guided by theory above)
- theoretically supported separations for relevant problems

ments (guided by theory above) or relevant problems

What is the right application?

But can apply to real-world data now!

https://www.nature.com/articles/s41467-020-15724-9

- Learning from data generated by highly interacting systems: chemistry, condensed matter
- cryptographic structure \leftrightarrow quantum mechanical nature of ground truth/underlying distribution

https://www.nature.com/articles/s41467-019-12875-2

Applications in HEP: <u>arXiv:2005.08582</u>

Applications in astronomy: npj Quantum Information 7, 161 (2021) (arXiv:2101.09581)

But for now capacities to help very limited...

Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)

This is not the end... ...end of the beginning

In essence

WHAT IS THE RIGHT NAIL FOR OUR HAMMER?

Challenges:

- more understanding
- empirical advantage: need real experiments (guided by theory above)
- theoretically supported separations for relevant problems

What we (want) to know about QC ML models (performance parameters)

Generalization performance bounds

Want:
$$R(h) = \int_{\mathcal{X} \times \mathcal{Y}} \ell(h(x), y) dP(x, y)$$
. error *eve*

Have:
$$\hat{R}_S(h) = \frac{1}{|S|} \sum_{(x_i, y_i) \in S} \ell(h(x_i), y_i)$$
 error on t

Can prove: $P\left(R(h) < \hat{R}_S(h) + g(\mathcal{F}, m, \delta)
ight) > 1 - \delta$

How this behaves is critical!!!

erywhere

P - true distribution/correlation data-label ℓ -error function e.g abs-value h - a classifier *S* - *dataset of size m* \mathcal{F} - function family

training set

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Good models?

- expressive •
- flexible (various NNs, e.g. convolutional nets)
- easy to regularize well
- easy to optimize
- can match important real-world distributions
- can compute them!

Various types

Learning separations [2]

(for all) various bounds (Rademacher, Pseudodimension, VC, Fat-shattering) [3,4,5,g]

[g] C Gyurik, D van Vreumingen, VD, "Structural risk minimization for quantum linear classifiers", arXiv:2105.05566 (2021).

Linear classifiers & feature spaces

- Cover's theorem
- Support vector machine: maximum margin classifier
- Classifier: inner product of normal vector and mapped data
- Linear classifiers: feature map is data-independent.

- $x \to Tr[\rho(x)O(\theta)]$
- Frobenius inner product in feature space \mathbb{R}^{4n} ; **restricted.**

Kernels are powerful; if they all there is, is this bad news?

$$(\boldsymbol{x}) = \sum_{m=1}^{M} \alpha_m k(\boldsymbol{x}, \boldsymbol{x}^{(m)}),$$

$$K(x, x') = Tr[\rho(\vec{x})\rho(\vec{x'})]$$

31

Questions: is this the full picture? What about data re-uploading (not kernel)?

[h] S Jerbi, LJ Fiderer, HP Nautrup, JM Kübler, HJ Briegel, VD, "Quantum machine learning beyond kernel methods",arXiv:2110.13162 (2021)

Summary of results [h]:

Poly-sized data-re-uploading models are exactly (restricted) poly-sized explicit models a) (and are not poly-sized implicit models)

- via MBQC or gate teleportation

$$|+\rangle - R_z(x_1) R_z(\theta_1) + R_z(\theta_2) + \langle A \rangle O$$

$$\Rightarrow |+\rangle - R_z(x_2) + \langle A \rangle O = |0\rangle\langle 0|$$

$$|+\rangle - R_z(x_3) + \langle A \rangle O = |0\rangle\langle 0|$$

• but there is a penalty for implementation due to postselection ($O \Rightarrow O \otimes |0\rangle \langle 0|^{\otimes k}$)

[h] S Jerbi, LJ Fiderer, HP Nautrup, JM Kübler, HJ Briegel, VD, "Quantum machine learning beyond kernel methods", arXiv:2110.13162 (2021)

Summary of results [h]:

b) Quantum kernel models can dramatically overfit. Also gives different result to [8]

Kernel diagonal... yet circuit computes an effective kernel

[h] S Jerbi, LJ Fiderer, HP Nautrup, JM Kübler, HJ Briegel, VD, "Quantum machine learning beyond kernel methods", arXiv:2110.13162 (2021)

Summary of results [h]:

Fine-grained distinctions and sample complexity differences. **C**) There exist learning problem involving parities such that...

qubit no. also matters from implementation

[h] S Jerbi, LJ Fiderer, HP Nautrup, JM Kübler, HJ Briegel, VD, "Quantum machine learning beyond kernel methods", arXiv:2110.13162 (2021)

36

Parametrized quantum circuits as machine learning models Mid-way summary

- For theory: a broad class of QML models fit in one paradigm: explicit models
 - Not all, not in a useful sense?
 - What does this imply for analysis of properties? New quantum-specific tools needed.
- Practice, situation more contrived. Trade-offs; There will be no one-size-fits all solutions...

Challenges:

When does QML make sense?

empirical advantage: need real experiments (guided by theory)

theoretically supported separations for relevant problems

Divide-and-quantum hybrid models

Divide-and-quantum hybrid models

"When does QML make sense?"

Easy ML is too easy for advantages. Hard ML is too big for devices.

Can we have our cake and eat it too?

Idea: "mimic" QML with large quantum circuits using smaller QCs

Divide-and-quantum hybrid models the "circuit chop" [9,10]

(think of these as hypotheses families/models again)

Can we approximate behaviour with just few terms? Concentration?

Even if yes... which terms? Combinatorial problem...

Divide-and-quantum hybrid modelsApproach:

Combinatorially many sub-circuits... but differ only in the cut gates.

Make those variational. Pre-define number of terms.

Relaxation of combinatorial problem.

Relaxations still all valid solutions (!) ... but no longer truncated large circuits.

Big(er)-quantum-inspired hybrid models

$$\tilde{f}_{\theta}(x) = \sum_{i=1}^{T} c_i \prod_{k=1}^{K} \langle 0 | U'^{i,k\dagger}(\theta, x) M_k U^{i,k}(\theta, x) | 0 \rangle$$
$$\int$$
$$\bar{f}_{\theta,\zeta,\lambda}(x) = \sum_{i \in [L]} \lambda_i \prod_{k \in [K]} \langle 0 | U^k(\theta, x, \zeta_{i,k}) M_k U^k(\theta, x, \zeta_{i,k+K}) M_k U^$$

Divide-and-quantum hybrid models Findings:

Theory:

Generalization performance: whole-circuit bounds from literature apply.

same family

Divide-and-quantum hybrid models Findings:

Theory:

Generalization performance:

We need new quantum-specific approaches for g. bounds; Some are possible through rewriting!

Training:

May have advantages w.r.t. barren plateaus in training. Possible error levels can be taken into account

Applications:

A convenient framework for further hybridization (e.g. localized Fourier functions)

i,j

 $\mathcal{R}(\mathcal{F} + \mathcal{G}) \leq \mathcal{R}(\mathcal{F}) + \mathcal{R}(\mathcal{G}).$

Divide-and-quantum hybrid models Findings:

Empirical:

Numerics show what one would expect. For quantum problems more terms improve Classical not as much

* 64 > 53, just saying

44

A take home

All models can be understood via explicit picture. Slicing circuit is a promising starting point to devise hybrid models.

QC has been mostly driven by theory. Real-world ML by empirical success; heuristic. Domain specific.

Theory can be extremely practical, but QML is unlikely to show all it can show using theory alone.

Need case studies and tools to do them. Domain analyses...

- But each types of QML model has advantages in certain aspects. No one to rule all.

https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning

With:

Sofiené Jerbi

Andrea Skolik

Hans Briegel (Innsbruck)

Hendrik Poulsen Nautrup (Innsbruck)

Lukas Fiderer (Innsbruck)

aQa: Open PhD and PostDoc positions drop me an email!

Quantum Machine Learning Beyond Kernel Methods, arxiv:2110.13162 High Dimensional Quantum Machine Learning With Small Quantum Computers, arXiv:2203.13739

Casper Gyurik

Simon Marshall

Jonas Kübler (MPI for Intelligent Systems)

aQa Leiden

References:

[1] 1907.02085 [2] 2010.02174 [3] 2106.03880 [4] 2002.01490 [5] 2103.03139 [6] 1803.07128 [7] 2101.11020 [8] 2011.01938 [9] 1506.01396 [10] 1904.00102 [11] 1804.11326

