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¢ Very broad intro

¢ Two results
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Quantum Machine Learning
(QML)

Machine Learning/Al
(ML/AI)

# QIP—ML (quantum-enhanced ML) [‘94]
¢ML—QIP (ML applied to QIP problems) [74]
# QIP~ML (generalizations of learning concepts) [‘00]

¢ ML-insipred QM/QIP
¢ Physics inspired ML/AI
¢ beyond (Q. Al)?
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ML and Al is a big jumble of problems and methods

big data analysis  unsupervised learning

M L supervised learning

_ generative models
deep learning

sequential
hon-parametric online learning decision
learning theory
reinforcement
computational learning theory learning

control theory

parametric learning

statistical learning NON-convex

optimization local search

Symbolic Al
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Climate, Market

predictions

big data ang Arning

M L supervised learning

deep learning

Automated medical

generatiWs diagnosis

decision
theory

hon-parametric
learning

reinforcement

Machine- :
assisted N sarnigs
Automated research Automated driving control theory

translation

Ing )

optimization

local search

Game Al
(complex control)

Model-checking/
software verification
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Large playground to find new exciting QC applications

big data analysis

M ’ Quantum upervised learning
linear algebra

super “anerative models
Shallo.w ql.ltantum online learning sequential
non-parame . ic CIrcuits reinforcemen ¢ decision
learning ‘Quantum oracletheory
paramet Quantum xdiabatic QC/ identiﬁcation
co i
1tum optimization
COLEL ang P Quantum

walks & search

Symbpoiic Al
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Why QML? Many ways quantum can help

*Speed-up training (optimization bottlenecks)

Linear-algebraic, big data (big data bottleneck)

https://lwww.nature.com/articles/nature24047
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Near-term quantum computing: potential and limitations

The world this week

Newsinfocus
B .
3

o ‘ e l“"v‘. ,<‘ _

gl

- &~
The Sycamor» chip Is composed of 54 qubks, sach made of supercoaducting loxps

GOOGLE PUBLISHES
LANDMARK QUANTUM
SUPREMACY CLAIM

Thecaompanysays that its quantum compuseristhe first to parforma
calaulationthat weuld be practically impossible for aclzssiczl machine.

By Elzabeth Gbney ‘casscal machines ¥, Arutz eral. Natwe 574, Michelle Simmons, a quantum physiclst at
505-510 209), The same calc dlatlionwould  the Unbversky of New South Wales In Sydeey,
ciNUSTS 1T Coogle sty thatthey have  tike even the Dest classical supercomputer  Australia,
achleved quantum sepremacy.along- 10,000 yrare to comrplete, Coogle estimates, The feat was firstreparted ir September by
avaled milestone In quamum com- Quantum supemacyhaslonz beensecsas  the flnanclal T'mes ar r .
- pating. The anncuncement_nuklished a milestone because it sroves “har auantam  an earlvversion of the nanerwas lezked on

Noisy Intermediate-Scale Quantum (NISQ) Era

No. qubits

(& quality) 1

>100 f----------

Full Quantum
Computation

~500

2018 2020

e Size-limited
e Architecture limited
e Noisy (error-prone)

2024

2030

= Hard to “program’’; no useful applications

Yet powerful!

g

.
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Why QML? Many ways quantum can help

*Speed-up training (optimization bottlenecks)

Linear-algebraic, big data (big data bottleneck)

*“Genuinely quantum models”, or
Near-term-QC-motivated approaches
(not speed-ups... better quality)

https://lwww.nature.com/articles/nature24047

- o
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Models in machine learning?

Supervised learning

A

Model = hypothesis family or family of functions/distributions
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

1) g, . - -
e gm0 2 f7(0) =THp(0,7)0C))
i Sl -
0) ' -
Typically:

input = sets the parameters of some gates
trainable parameters = settings of other gates
output = expectation values of observable [ measurement output

Parametrized function; hypothesis class; machine learning model;

~= - ™\ /.1.1\ O



(0Qa)

Parametrized quantum circuits as machine learning models

—
tune 0 s, test x, as to minimize error on training set

~g
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Not just quantum cats v. quantum dogs

ML: supervised, generative, reinforcement learning

O

Combinatorial optimization (QAQOA)

Quantum chemistry & many-body (variational ground states)

Differential equations (numerical methods, variational) & finance

— —

Quantum Linear systems

computation

U 4

Z %

~=2 F D n?s/
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

0 =g, . . - -

N 0= 2 f(3) =Tp(0, 7))

A

Basic concepts

»Supervised learning: classification (e.g. cats v. dogs)

> Training error/empirical risk: regularized error on training set: RegRisk = Train error(f,D) 4+ Reg(f,D)
> Total error: on all data including unseen

»Generalization performance: (rate of decrease of) gap between training and total error

_ B ® &
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

—>
-‘ » ~ (' ‘- > ,
R NN L S RN g
o oy .
A SV >

e
Q.
@
@

Typically:
iInput = sets parame s — - .

trainable paramete > T
output = expectatic

{
Parametrized function; hypothesis class; machine learning model;

15
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

= Tr(p(6, %)O( )]

.............

e e

7 ” N :

D et A

X .‘ .._.: "- - -:'

.l' < i Y

7 W X

SR A B A

S SN o AT

WX .

AL S

Typically:
Input = sets parame i 1 4
trainable paramete . B A
output = expectatic - - -
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

|0) - 0.
6 = Tr[p(6, ¥)O(-)]
- 0, r_,
0) —
Typically:

Input = sets parame
trainable paramete
output = expectatic
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

0) —, . - -
B S T s 0= 2 f5(X) =Trp(0, T)0( )]
1 el bent_berad

o ML )

Q1: Can we get it to work?
(robustness to noise, training features, match with devices)

Q2: Should we get it to work?
(Expressivity/“type”? Generalization bounds? Capacity for g. advantage?)

— Y O
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What we to know about QC ML models (complexity separations)

General QC ML models can do more:

p—3
f.(x) = +1, if log, x € [s,s + 7 > ]
- classically intractable model families (“supremacy” for generative) ~1  otherwise

- there are classical/quantum learning separations
There exist (contrived) supervised/generative learning problems
(even with classical, classically efficiently generatable data!)

which require exponential compute time classically, poly quantumly
(unlesss discrete log is easy)

Basis: Cryptographic function used to instill arxiv.org/abs/2010.02174
classically hard, quantum easy structure in data-label correlations arxiv.org/abs/2007.14451


https://arxiv.org/abs/2010.02174
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What we know about PQC ML models (learning 2)

+ correspond to (big!) generalized trigonometric polynomials SR
- very different from NNs so likely different applications... '

Wt L+1]

- Increasing understanding of generalization performance
and reqgularization (10+ papers), e.g. in explicit map

x = Trlp(x)0O(0)]

rank and Frobenious norm of O directly influence the VC,
and fat shattering dimensions

+ some metrics on data indicating a performance advantage

- arxiv.org/pdf/2008.08605
may be achievable arxiv.org/abs/2106.03880

arxiv.org/abs/2105.05566
arxiv.org/abs/2011.01938
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In essence

- a peculiar family that we are starting to understand

- different than NNs:
so promising where NNs struggle

- not clear what it should be used for (esp. in ML)

WHAT IS THE RIGHT NAIL FOR OUR HAMMER?

Challenges:

*more understanding
-empirical advantage: need real experiments (guided by theory above)
‘theoretically supported separations for relevant problems
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What is the right application?

Learning from data generated by highly interacting systems: chemistry, condensed matter

cryptographic structure <> quantum mechanical nature of ground truth/underlying distribution

But can apply to real-world data now!

-73214 | - == Hartree-Fock CCSD(T) -105.75 1 | - == Hartree-Fock CCSD(T)
\ e rd v . 106.00 \\ - . -
=734 1 | N CCSD S t | CCSD
\ - 1
_ =736] \\ 7465 _ =106.25 ‘ ~107.64 ,
2 78] \\ oo £ -106501{ \ =, ad
3 \“ \\‘--Q———"’ 3 \ \-___-;‘;-;_, P
g -740; \\\\ 74.7 1 — e § ~106.75 1 \\ 107.68 ey
0 0] \\\, 12 126 1.’3’_,_- $ —107.001 ,
S o”
< \ e - -107.25 1 -
-74.4 \ ‘‘‘‘‘‘‘‘‘ i 107,50 \\\\ /,, a—
_ ] ‘_‘.- -— . 4 - —— ——
e S 107.75 S |

0.75 100 125 150 175 200 225
Nuclear separation (A)

0.8 1.0 1.2 1.4 1.6 1.8 20 22
Nuclear separation (A)

https://www.nature.com/articles/s41467-020-15724-9

.....................

Proton transfer in malondialdehyde

https://www.nature.com/articles/s41467-019-12875-2
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Applications in HEP: arXiv:2005.08582

Applications in astronomy:
npj Quantum Information 7, 161 (2021) (arXiv:2101.09581)
Photometric LSST Astronomical Time-series Classification Challenge (PLAsTICC)

But for now capacities to help very limited...


https://arxiv.org/abs/2005.08582

(0QQ)

This Is not the end...
...end of the beginning
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In essence

WHAT IS THE RIGHT NAIL FOR OUR HAMMER?

Challenges:
*more understanding

-empirical advantage: need real experiments (guided by theory above)
‘theoretically supported separations for relevant problems
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What we (want) to know about QC ML models
(performance parameters)

Generalization performance bounds P - true distribution/correlation data-label

£ -error function e.g abs-value
h - a classifier
Want: R(®) = / A(h(z),y)dP(z,y). €ITor everywhere S - dataset of size m
e F - function family

: A 1 ..
Rave: &= > «ne)w)  error on training set
(7i,y:)ES
M /o e
r=  BplgBgl B
:93 :

Can prove:  P(R®) < Rs(h) +g(Fm, ) >1-9

How this behaves is critical!l!
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

Various types

Explicit Implicit/Kernels Data re-uploading
|0> HH /7( 10) H o L ‘ 0 —~ U U )..... —~
o L2 [l ve 20 0 720 [|ud [ZR X j Sﬂ%n = l J%L— 0
Feature encoding || Variational meas. Quantum kernel O) ~ - D freeee . R
p(x) 0(0) K(x, x') = Tr{p(¥)p(x)] x = Tr(p(x, )0(O)]
x = Trip(x)O(0)] Universal approximators [1]
First ideds Learning separations [2] |
linear models (and SVMs) [11] Famous connection to kernel models [6,7]: flx) = Z Cw exp(—iw) [3]

wel2(H)

(for all) various bounds (Rademacher, Pseudodimension, VC, Fat-shattering) [3,4,5,8]

[g] C Gyurik, D van Vreumingen, VD, “Structural risk minimization for guantum linear classifiers”,
arXiv:2105.05566 (2021).

- PR ® &
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

Linear classifiers & feature spaces

/

P
. // .

———

/
X ant

¢

———

/ ,"

./

Ve

N

O
<

ettt o

Input Space

Feature Space

““Quantum feature spaces”

Explicit:

Q)IU HVB ]:53:0
0) o (X) (0) —

Feature encoding

Variational meas.

p(x)

0(0)

~J

Cover’s theorem

Support vector machine: maximum margin classifier

Classifier: inner product of normal vector and mapped data

Linear classifiers: feature map is data-independent.

x = Trlp(x)O(0)]

Frobenius inner product in feature space R* restricted.

» ® &
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

Explicit

10) %
i @ ﬁ V() IEO

J I\

“Quantum feature spaces” / os *0\
o —

| Feature encoding || Variational meas.

Input Space Feature Space p (.X) O (9 )
x = Trip(x)O0(0)]

M e o
Kernel methods and the representer theorem fap(@) =Y ak(zz™) Implicit/Kernels
. 9, Mot [d p
KT, 7) = Trlp(F)p(3)] oyt Yot "o
Quantum kernel

K(x,x) = Tr[p(X)p(x')]

Representer theorem: reguralized loss &~ A 2
is minimized by an implicit model Lx(f) = L(f) + AlOlF

Kernels are powertul; if they all there is, is this bad news?

31 = /
— - Ve O "~\ /:
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Parametrized quantum circuits as machine learning models

(variational quantum circuits)

““Quantum feature spaces” / ols *)\
e @

Input Space Feature Space
M |
Kernel methods and the representer theorem fan(T) = Z ak(z, ™)
m=1

k(X y) = Trip(xX)p(Y)]

Representer theorem: reguralized loss = A >
is minimized by an implicit model Lx(f) = L(f) + AlOlF

=Kernels are powerful; if they all there is, is this bad news?

32
y F N _a—

Explicit

0) Z
o Uy (%) ﬁ V(6) ]:Eo

J I\

| Feature encoding || Variational meas.

p(x) 0(0)

r.— Trlol(x)\O(A)]

Dissecting quantum prediction advantage

V

Geometry test

4 a l’_-r 7 ‘v C b
eV o [ cramen
C

onstrucied]

Classical ML predicts similar or Data set exists with potantial
better than th;a quantum ML quantum advantage

1
Dimension test for Complexity test for

guantum space specific function/label
7 \
-~

3
(n‘jr.[d. 1¥[0%) < .v’\'J |;Else : sc &« N
I :
\ Y
Classical ML Classical ML Classical ML
can learn can work/fail, canlearn &
any U QK likely fails  predict wel to learn

From:
Power of data in quantum machine learning

® &

-
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

- Questions: is this the full picture? What about data re-uploading (not kernel)?

Explicit . :
— P - Implicit/Kernels Data re-uploading
i | U V) | =0 , = 1
10) ¢(x.)ﬁ ( ) J:E |?> U, (x) U;,(x’)]jr?‘ P, o)jgﬂgngl ...... |§l:m 5
| Feature encoding || Variational meas. | 10) Qu:u;tu;n — A | 0) 5-' 3 :N ...... S =
X o0 L =
pLx) ©) K(x.x) = Trip(E)p()] x = Trlp(x, )0()

x — Trp(x)O(0)]

[h] S Jerbi, L) Fiderer, HP Nautrup, JM Kubler, HJ Briegel, VD,
33 "Quantum machine learning beyond kernel methods",arXiv:2110.13162 (2021)

T N o U . | f
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

Summary of results [h]:

a) Poly-sized data-re-uploading models are exactly (restricted) poly-sized explicit models
(and are not poly-sized implicit models)

(a)
Data re-uploading
oer /n_fl_g@lﬁ N |+ )R, (e )R (81)] l R (8,)——#) 0
ngs\,»~ TN + )Rz (X1 R (O Rz (x2){ R (B2)1 R (x3)H | O + )R (x: 010
" Xinearmodets ™, | [ HORIREREIRERA0 =TT [T
'I \I |+)‘Rz(x3) \ ) 10){0]
\ Explicit models I

\

/4
Implicit models

S -
—————————

» via MBQC or gate teleportation
+ but there is a penalty for implementation due to postselection (O = O ® | 0)(0|®")

[h] S Jerbi, L) Fiderer, HP Nautrup, JM Kubler, HJ Briegel, VD,
34 "Quantum machine learning beyond kernel methods",arXiv:2110.13162 (2021)

- - . Y
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

Summary of results [h]:

b) Quantum kernel models can dramatically overfit. Also gives different result to [8]

b) . 1.4- ===+ Training implicit —+— Validation implicit
Llnear mOdels -=¢=- Training explicit —— Validation explicit
. 1.21-2><- Training classical —+— Validation classical
]
RKHS 5
@ 1.01
¢ . 8
Implicit model L os
:Q'-O b
Explicit =
model Lad
0.2
0.0

Kernel diagonal... yet circuit computes an effective kernel

[h] S Jerbi, L) Fiderer, HP Nautrup, JM Kubler, HJ Briegel, VD,
"Quantum machine learning beyond kernel methods",arXiv:2110.13162 (2021)

T r N — U A\ﬁ
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Parametrized quantum circuits as machine learning models
(variational quantum circuits)

Summary of results [h]:

c) Fine-grained distinctions and sample complexity differences.
There exist learning problem involving parities such that...

”C) Parity functions: d
\ A

x= |+1|-1|-1|+#1 | -1 |+1|+1 | -1

\_\\-"‘.h \* “ A’-'-J__’__,
-
flx) =+1

é’cf Data 1 qublt . sample efficient

| / Explicit \ (A(d) qubits, sample efficient qubit no. also matters from implementation

[h] S Jerbi, L) Fiderer, HP Nautrup, JM Kubler, HJ Briegel, VD,
6 "Quantum machine learning beyond kernel methods",arXiv:2110.13162 (2021)

~= F U e &
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Parametrized quantum circuits as machine learning models
Mid- way summary

» Fortheory: a broad class of QML models fit in one paradigm: explicit models
« Not all, not in a useful sense?

« What does this imply for analysis of properties? New quantum-specific tools needed.

* Practice, situation more contrived. Trade-offs;
There will be no one-size-fits all solutions...

Challenges:

When does QML make sense?

e empirical advantage: need real experiments (guided by theory)
e theoretically supported separations for relevant problems

37
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Divide-and-quantum hybrid models

38
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Divide-and-quantum hybrid models

“When does QML make sense?”

Easy ML is too easy for advantages.
Hard ML is too big for devices.

Actual
problem

Can we have our cake and eat it too?

Idea: “mimic” QML with large quantum circuits
using smaller QCs




(@Qa) @&

Divide-and-quantum hybrid models
the “circuit chop” [9,10]

Ty - l | Exponential in # entangling
. 17 — | e gates cut
s G e R p—
i I z _ I : (think of these as hypotheses
=1 ] Yo =T ] families/models again)
[7(1.2) — Z a. .UV @ U® Can we approximate behaviour
- ) J with just few terms? Concentration?
is)
T K
= ¢ [ [OU"*1(0,2) MU (6, 2)|0) Even if yes... which terms?
1—1 k=1

Combinatorial problem...

-\-
-~ “- .“. _J'

4
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Divide-and-quantum hybrid models
Approach:

Combinatorially many sub-circuits...

but differ only in the cut gates. "

O|U" (9, 2) MU, 2)|0)

T
=D ¢

o\~
Make those variational. i—1 k:l
Pre-define number of terms. \/
Relaxation of combinatorial problem. foea@ = 3" A T O1U*0, 2, ) Ml (8, 2, G gy 1) [0)
icll]  kelK]

Relaxations still all valid solutions (!)
.. but no longer truncated large circuits.

= Big(er)-quantum-inspired hybrid models
_ ") ® &
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Divide-and-quantum hybrid models

Findings:

Theory:

Generalization performance: whole-circuit bounds from literature apply.

all —]

1

—

7 Oy

Bl

B

e

—
g

few
> Z -

same family

1

J -

intuitively
restricted
(simpler)

few 1

i,j:j

e
> o

] |-

the restricted

generalized
(more complex)
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Divide-and-quantum hybrid models
Findings:

Theory:

Generalization performance:
We need new quantum-specific approaches for g. bounds;
Some are possible through rewriting!

Training:
May have advantages w.r.t. barren plateaus in training.
Possible error levels can be taken into account

Applications:
A convenient framework for further hybridization
(e.g. localized Fourier functions)

43
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Divide-and-quantum hybrid models
Findings:

Empirical:

Numerics show what one would expect.
For guantum problems more terms improve
Classical not as much

Synthetic

—_— =1 —_ =1

104 ¢ — L_BA‘{!.'_;‘ L=5
\ —— L=5 AVG 0.8 1 — L=10

\ C — =20

é W\ =10 AVG
ot b. = —15 '\\\‘ — =20 s
64 quDit case N\
.é e \\ » \ E )
2] x:;t‘)?;

| epochs | | ' epochs

12q(MSE(validat
V.
fL)

~J ()] un B w N = o

* 64 > 53, just saying

~ - D Y)/

NS
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A take home

All models can be understood via explicit picture.
But each types of QML model has advantages in certain aspects. No one to rule all.

Slicing circuit is a promising starting point to devise hybrid models.

QC has been mostly driven by theory. Real-world ML by empirical
success; heuristic. Domain specific.

Theory can be extremely practical, but QML is unlikely to show all
it can show using theory alone.

Need case studies and tools to do them. Domain analyses...
~=4 ™ 45\ O /
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Quantum Machine Learning Beyond Kernel Methods, arxiv:i2110.13162
High Dimensional Quantum Machine Learning With Small Quantum Computers, arXiv:2203.13739

https:/www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning

With:

Sofiene Jerbi Andrea Skolik Casper Gyurik Simon Marshall

Hans Briegel = Hendrik Poulsen Nautrup Lukas Fiderer Jonas Kubler
(Innsbruck) (Innsbruck) (Innsbruck)  (MPI for Intelligent Systems)

aQa: Open PhD and PostDoc positions -
Quantum Delta i
O drop me an email!
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Development of novel guantum algorithms

L

Hardware-aware designs and optimizations

L.

Al and ML for quantum information

} with experimental groups (Delft)

.
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Application-specific aspects

with industrial partners
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