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Very broad intro 

Two results



Quantum Information 
Processing (QIP)Machine Learning/AI 

(ML/AI)

Quantum Machine Learning 
(QML)

QIP→ML (quantum-enhanced ML) [‘94] 
ML→QIP (ML applied to QIP problems) [’74] 
QIP↭ML (generalizations of learning concepts) [‘00] 
  
ML-insipred QM/QIP 
Physics inspired ML/AI 
beyond (Q. AI)?
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big data analysis

ML and AI is a big jumble of problems and methods
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Large playground to find new exciting QC applications 
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Why QML? Many ways quantum can help

•Speed-up training (optimization bottlenecks) 

•Linear-algebraic, big data (big data bottleneck) 

https://www.nature.com/articles/nature24047



• Size-limited	
• Architecture	limited		
• Noisy	(error-prone)	
➡Hard	to	“program”;	no	useful	applications

Noisy	Intermediate-Scale	Quantum	(NISQ)	Era

Yet	powerful!

Near-term	quantum	computing:	potential	and	limitations



Why QML? Many ways quantum can help

•Speed-up training (optimization bottlenecks) 

•Linear-algebraic, big data (big data bottleneck) 

•“Genuinely quantum models”, or  
Near-term-QC-motivated approaches 
(not speed-ups… better quality) 

https://www.nature.com/articles/nature24047



Models in machine learning?

Supervised learning

or
cat!

Model = hypothesis family or family of functions/distributions

or



11

Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

⇒ f ⃗θ ( ⃗x ) = Tr[ρ( ⃗θ , ⃗x )O( ⋅ )]=
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Typically:		
input	=	sets	the	parameters	of	some	gates	
trainable	parameters	=	settings	of	other	gates	
output	=		expectation	values	of	observable	/	measurement	output

Parametrized	function;	hypothesis	class;	machine	learning	model;



Classical=
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Parametrized	quantum	circuits	as	machine	learning	models	

tune	 	test	x,	as	to	minimize	error	on	training	set⃗θ s,



Not just quantum cats v. quantum dogs

ML: supervised, generative, reinforcement learning 

Combinatorial optimization (QAOA) 

Quantum chemistry & many-body (variational ground states) 

Differential equations (numerical methods, variational) & finance 

Linear systems 

…

Classical

Quantum 

computation
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

=

|0⟩

|0⟩

O ⇒ f ⃗θ ( ⃗x ) = Tr[ρ( ⃗θ , ⃗x )O( ⋅ )]
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xi xjθk

⋅

⋅

⋅
⋅

⋅

⋅ ⋅

⋅

Basic	concepts		

‣Supervised	learning:	classification	(e.g.	cats	v.	dogs)	
‣Training	error/empirical	risk:	regularized	error	on	training	set:			 	

‣Total	error:	on	all	data	including	unseen		
‣Generalization	performance:	(rate	of	decrease	of)	gap	between	training	and	total	error

RegRisk = Train_error(f,D) + Reg(f,D)



Typically:		
input	=	sets	parameters	of	some	gates;		
trainable	parameters	=	settings	of	other	gates	
output	=		expectation	values	/	measurement	output

Parametrized	function;	hypothesis	class;	machine	learning	model;
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

=
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⋅ ⇒ f ⃗θ ( ⃗x ) = Tr[ρ( ⃗θ , ⃗x )O( ⋅ )]

QML

QML



Typically:		
input	=	sets	parameters	of	some	gates;		
trainable	parameters	=	settings	of	other	gates	
output	=		expectation	values	/	measurement	output
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

=

|0⟩

|0⟩
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xi xjθk

⋅

⋅

⋅
⋅

⋅

⋅ ⋅

⋅ ⇒ f ⃗θ ( ⃗x ) = Tr[ρ( ⃗θ , ⃗x )O( ⋅ )]

QML

QML

But	why???



Typically:		
input	=	sets	parameters	of	some	gates;		
trainable	parameters	=	settings	of	other	gates	
output	=		expectation	values	/	measurement	output
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

=
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⋅
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⋅ ⇒ f ⃗θ ( ⃗x ) = Tr[ρ( ⃗θ , ⃗x )O( ⋅ )]

QML

QML

Because	models	matter.



• expressive
• flexible (various NNs, e.g. convolutional nets)
• easy to regularize well
• easy to optimize
• can match important real-world distributions
• can compute them! 

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Good models?
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

=
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Q2:	Should	we	get	it	to	work?		
(Expressivity/“type”?	Generalization	bounds?	Capacity	for	q.	advantage?)

Q1:	Can	we	get	it	to	work?		
(robustness	to	noise,	training	features,	match	with	devices)



What we to know about QC ML models (complexity separations)

General QC ML models can do more:

• classically intractable model families (“supremacy” for generative)

• there are classical/quantum learning separations  
 
 
There exist (contrived) supervised/generative learning problems  
(even with classical, classically efficiently generatable data!) 
 
which require exponential compute time classically, poly quantumly 
(unlesss discrete log is easy)

Basis: Cryptographic function used to instill 
classically hard, quantum easy structure in data-label correlations

arxiv.org/abs/2010.02174 
arxiv.org/abs/2007.14451

https://arxiv.org/abs/2010.02174


What we know about PQC ML models (learning 2)

arxiv.org/pdf/2008.08605
arxiv.org/abs/2106.03880

• correspond to (big!) generalized trigonometric polynomials
• very different from NNs so likely different applications…

• increasing understanding of generalization performance  
and regularization (10+ papers), e.g. in explicit map

arxiv.org/abs/2105.05566

• some metrics on data indicating a performance advantage  
may be achievable 

arxiv.org/abs/2011.01938

x → Tr[ρ(x)O(θ)]
rank and Frobenious norm of O directly influence the VC,
and fat shattering dimensions



In essence
• a peculiar family that we are starting to understand

• different than NNs:  
so promising where NNs struggle

• not clear what it should be used for (esp. in ML)

Challenges: 

•more understanding
•empirical advantage: need real experiments (guided by theory above)
•theoretically supported separations for relevant problems

WHAT IS THE RIGHT NAIL FOR OUR HAMMER?



What is the right application?

Learning from data generated by highly interacting systems: chemistry, condensed matter

cryptographic structure  quantum mechanical nature of ground truth/underlying distribution↔

But can apply to real-world data now!

https://www.nature.com/articles/s41467-019-12875-2
Proton transfer in malondialdehyde

https://www.nature.com/articles/s41467-020-15724-9



Applications in HEP: arXiv:2005.08582 

Applications in astronomy: 
npj Quantum Information 7, 161 (2021) (arXiv:2101.09581) 
Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)

But for now capacities to help very limited…

https://arxiv.org/abs/2005.08582


This is not the end… 
…end of the beginning



In essence

Challenges: 

•more understanding
•empirical advantage: need real experiments (guided by theory above)
•theoretically supported separations for relevant problems

WHAT IS THE RIGHT NAIL FOR OUR HAMMER?



What we (want) to know about QC ML models 
(performance parameters)

Generalization performance bounds

Want:

Have:

Can prove:

How this behaves is critical!!!

P - true distribution/correlation data-label 
-error function e.g abs-value 

h - a classifier 
S - dataset of size m 

 - function family

ℓ

ℱ

=

error everywhere

error on training set



• expressive
• flexible (various NNs, e.g. convolutional nets)
• easy to regularize well
• easy to optimize
• can match important real-world distributions
• can compute them! 

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Good models?
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

ρ(x) O(θ)
x → Tr[ρ(x)O(θ)]

Explicit

K(x, x′ ) = Tr[ρ( ⃗x )ρ( ⃗x′ )]

Implicit/Kernels

x → Tr[ρ(x, θ)O(θ)]

Data	re-uploading

Various	types

Universal	approximators	[1]

	[3];		

(for	all)	various	bounds	(Rademacher,	Pseudodimension,	VC,	Fat-shattering)	[3,4,5,g]
[g]	C	Gyurik,	D	van	Vreumingen,	VD,	“Structural	risk	minimiza;on	for	quantum	linear	classifiers”,	
arXiv:2105.05566	(2021).

Famous	connection	to	kernel	models	[6,7]:	

Learning	separations	[2]First	ideas	
linear	models	(and	SVMs)	[11]
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

ρ(x) O(θ)

x → Tr[ρ(x)O(θ)]Explicit:

“Quantum	feature	spaces”

Linear	classifiers	&	feature	spaces

Frobenius	inner	product	in	feature	space	 ;	restricted.ℝ4n

Cover’s	theorem

Support	vector	machine:	maximum	margin	classifier

Classifier:	inner	product	of	normal	vector	and	mapped	data

Linear	classifiers:	feature	map	is	data-independent.
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

Kernel	methods	and	the	representer	theorem

ρ(x) O(θ)
x → Tr[ρ(x)O(θ)]

Explicit

K(x, x′ ) = Tr[ρ( ⃗x )ρ( ⃗x′ )]

Implicit/Kernels

“Quantum	feature	spaces”

Representer	theorem:	reguralized	loss		
is	minimized	by	an	implicit	model

k( ⃗x , ⃗y ) = Tr[ρ( ⃗x )ρ( ⃗y )]

Kernels	are	powerful;	if	they	all	there	is,	is	this	bad	news?
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

=Kernels	are	powerful;	if	they	all	there	is,	is	this	bad	news?

Kernel	methods	and	the	representer	theorem

ρ(x) O(θ)
x → Tr[ρ(x)O(θ)]

Explicit

K(x, x′ ) = Tr[ρ( ⃗x )ρ( ⃗x′ )]

Implicit/Kernels

“Quantum	feature	spaces”

Representer	theorem:	reguralized	loss		
is	minimized	by	an	implicit	model

From:	
Power	of	data	in	quantum	machine	learninq

k( ⃗x , ⃗y ) = Tr[ρ( ⃗x )ρ( ⃗y )]
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

[h]	S	Jerbi,	LJ	Fiderer,	HP	Nautrup,	JM	Kübler,	HJ	Briegel,	VD,		
"Quantum	machine	learning	beyond	kernel	methods",arXiv:2110.13162	(2021)

Questions:	is	this	the	full	picture?	What	about	data	re-uploading	(not	kernel)?

K(x, x′ ) = Tr[ρ( ⃗x )ρ( ⃗x′ )]

Implicit/Kernels

x → Tr[ρ(x, θ)O(θ)]

Data	re-uploading

ρ(x) O(θ)
x → Tr[ρ(x)O(θ)]

Explicit
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

Summary	of	results	[h]:

[h]	S	Jerbi,	LJ	Fiderer,	HP	Nautrup,	JM	Kübler,	HJ	Briegel,	VD,		
"Quantum	machine	learning	beyond	kernel	methods",arXiv:2110.13162	(2021)

a) Poly-sized	data-re-uploading	models	are	exactly	(restricted)	poly-sized	explicit	models	
(and	are	not	poly-sized	implicit	models)	

⇒

• via	MBQC	or	gate	teleportation	
• but	there	is	a	penalty	for	implementation	due	to	postselection	( )O ⇒ O ⊗ |0⟩⟨0 |⊗k
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

[h]	S	Jerbi,	LJ	Fiderer,	HP	Nautrup,	JM	Kübler,	HJ	Briegel,	VD,		
"Quantum	machine	learning	beyond	kernel	methods",arXiv:2110.13162	(2021)

b) Quantum	kernel	models	can	dramatically	overfit.	Also	gives	different	result	to	[8]

Kernel	diagonal…	yet	circuit	computes	an	effective	kernel

Summary	of	results	[h]:
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Parametrized	quantum	circuits	as	machine	learning	models	
(variational	quantum	circuits)

[h]	S	Jerbi,	LJ	Fiderer,	HP	Nautrup,	JM	Kübler,	HJ	Briegel,	VD,		
"Quantum	machine	learning	beyond	kernel	methods",arXiv:2110.13162	(2021)

c) Fine-grained	distinctions	and	sample	complexity	differences.	
There	exist	learning	problem	involving	parities	such	that…

. sample efficient 

, sample efficient

,   dataΩ(2d)

qubit	no.	also	matters	from	implementation

Summary	of	results	[h]:



Parametrized	quantum	circuits	as	machine	learning	models	
Mid-	way	summary

Challenges:	

When	does	QML	make	sense?	

•empirical	advantage:	need	real	experiments	(guided	by	theory)	
•theoretically	supported	separations	for	relevant	problems

• For	theory:	a	broad	class	of	QML	models	fit	in	one	paradigm:	explicit	models	
• Not	all,	not	in	a	useful	sense?		
• What	does	this	imply	for	analysis	of	properties?	New	quantum-specific	tools	needed.	

• Practice,	situation	more	contrived.	Trade-offs;	
There	will	be	no	one-size-fits	all	solutions…	
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Divide-and-quantum	hybrid	models
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Divide-and-quantum	hybrid	models

“When	does	QML	make	sense?”	

Easy	ML	is	too	easy	for	advantages.	
Hard	ML	is	too	big	for	devices.	

Can	we	have	our	cake	and	eat	it	too?

		
Idea:	“mimic”		QML	with	large	quantum	circuits		
using	smaller	QCs	

Actual		
problem

quan
tum	

	com
pute

r
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Divide-and-quantum	hybrid	models
the	“circuit	chop”	[9,10]

U(1,2) = ∑
i,j

αi,jU(1)
i ⊗ U(2)

j

Exponential	in	#	entangling		
gates	cut

(think	of	these	as	hypotheses	
families/models	again)

Can	we	approximate	behaviour	
with	just	few	terms?	Concentration?

Even	if	yes…	which	terms?	
Combinatorial	problem…

40



Divide-and-quantum	hybrid	models
Approach:

Combinatorially	many	sub-circuits…	
but	differ	only	in	the	cut	gates.

Relaxations	still	all	valid	solutions	(!)	
…but	no	longer	truncated	large	circuits.

➡	Big(er)-quantum-inspired	hybrid	models
41

Make	those	variational.		
Pre-define	number	of	terms.

Relaxation	of	combinatorial	problem.
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Divide-and-quantum	hybrid	models

Generalization	performance:	whole-circuit	bounds	from	literature	apply.		
	

Findings:

Theory:

same	family

all

intuitively	
restricted	
(simpler)

few few
ζ

ζ

the	restricted	
generalized	

(more	complex)



Divide-and-quantum	hybrid	models
Findings:

Theory:

Generalization	performance:	
We	need	new	quantum-specific	approaches	for	g.	bounds;	
Some	are	possible	through	rewriting!

Training:		
May	have	advantages	w.r.t.	barren	plateaus	in	training.	
Possible	error	levels	can	be	taken	into	account

Applications:	
A	convenient	framework	for	further	hybridization	
(e.g.	localized	Fourier	functions)
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Divide-and-quantum	hybrid	models
Findings:

64* qubit	case

*	64	>	53,	just	saying	

Empirical:
Numerics	show	what	one	would	expect.	
For	quantum	problems	more	terms	improve	
Classical	not	as	much

Synthetic
MNIST
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A	take	home

QC	has	been	mostly	driven	by	theory.	Real-world	ML	by	empirical	
success;	heuristic.	Domain	specific.

Theory	can	be	extremely	practical,	but	QML	is	unlikely	to	show	all		
it	can	show	using	theory	alone.

Need	case	studies	and	tools	to	do	them.	Domain	analyses…
45

All	models	can	be	understood	via	explicit	picture.		
But	each	types	of	QML	model	has	advantages	in	certain	aspects.	No	one	to	rule	all.

Slicing	circuit	is	a	promising	starting	point	to	devise	hybrid	models.



With:

Quantum Machine Learning Beyond Kernel Methods, arxiv:2110.13162
High Dimensional Quantum Machine Learning With Small Quantum Computers, arXiv:2203.13739

https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning

aQa: Open PhD and PostDoc positions -
drop me an email! 

Casper Gyurik

Hans Briegel  
(Innsbruck)

Simon MarshallAndrea Skolik Sofiené Jerbi

Jonas Kübler 
(MPI for Intelligent Systems)

Hendrik Poulsen Nautrup 
(Innsbruck)

Lukas Fiderer 
(Innsbruck)
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aQa Leiden

Development of novel quantum algorithms

Hardware-aware designs and optimizations

Application-specific aspects 

with experimental groups (Delft)

with industrial partners

practical 

impact

AI and ML for quantum information



48

References:

[1]	1907.02085	
[2]	2010.02174	
[3]	2106.03880	
[4]	2002.01490	
[5]	2103.03139		
[6]	1803.07128	
[7]	2101.11020			
[8]	2011.01938	
[9]	1506.01396		
[10]	1904.00102	
[11]	1804.11326	

https://arxiv.org/abs/2002.01490
https://arxiv.org/abs/2103.03139
https://arxiv.org/abs/2101.11020
https://arxiv.org/abs/1506.01396
https://arxiv.org/abs/1904.00102

