Effective comparison of neutrino-mass models

Rupert Coy

Université Libre de Bruxelles (ULB), Belgium

NuTs Extended Workshop, IFT Madrid, 8th June 2022

Based on Phys.Rev.D **99** (2019) 9 and arXiv 2110.09126 (accepted by PRD) with Michele Frigerio

- 2 The models, their EFTs and spurion analysis
- Individual phenomenology
- 4 Effective comparison of models

- Neutrinos have mass: clearest evidence for new physics that couples to SM
- But it's extremely tiny, $m_
 u \lesssim 0.1$ eV
 - \rightarrow Suggestive of very large scale (useful for GUTS, leptogenesis), very small couplings (useful for DM), or fine-tuning
- Could well have new physics which gives small m_{ν} but larger effects elsewhere because
 - $\rightarrow\,$ Tininess of lepton number violating couplings is technically natural
 - $\rightarrow~$ Models may involve multiple mass scales

How will we know the true model of neutrino mass?

- 1. Directly: discovery of a new state (cf. Oleg's and Xabi's talks later this week)
- 2. Indirectly: discover a **pattern of deviations from the SM** which points to one specific mechanism
 - Indirect approach is less obvious but arguably more promising:
 - \rightarrow Great recent and expected progress in low energy and EW-scale observables: $\mu N \rightarrow eN$, $\mu \rightarrow 3e$, $a_{e,\mu}$, d_e , B decays, m_W ,...
 - $\rightarrow~$ Slower progress on energy frontier

New physics above the EW scale

Focusing exclusively on $\Lambda_{NP} \gg v$, there are two main approaches one can take:

- 1. An explicit model
 - ✓ UV complete
 - ✓ Is (somewhat) predictive
 - × Small part of theory space
 - × Can we distinguish it?

Gore Vidal: 'It is not enough to succeed. Others must fail.'

- 2. Effective Field Theory
 - ✓ (Reasonably) complete coverage of possibilities
 - ✓ Calculational ease
 - × Not UV complete
 - × Many models match onto given Wilson Coefficient(s)

- The problem: can't claim uniqueness
- A more useful approach: compare multiple observables (ideally with correlated predictions) in multiple models
- This has been done before, but not enough

Ababda+Biggio+Bordone+Gavela+Hambye '07, Babu+Dev+Janu+Thapa '19,...

- Our work aims to:
 - $\rightarrow\,$ Show the usefulness of deriving EFTs of models
 - $\rightarrow~$ Further develop this approach

- 2 The models, their EFTs and spurion analysis
- Individual phenomenology
- 4 Effective comparison of models

1. Pick a model

2. Integrate out heavy states at their mass scale, generate WCs

de Blas+Criado+Perez-Victoria+Santiago '17 (tree-level dim-6),...

3. Run WCs down to scales of observables

Jenkins+Manohar+Trott+Alonso+Stoffer '13, '17;...

4. Compare with established bounds on WCs from observables

Crivellin+Najjari+Rosiek '13, Falkowski+Riva '14, Berthier+Trott '15, Feruglio+Paradisi+Pattori '15,

Falkowski+Gonzalez-Alonso+Mimouni '17, Frigerio+Nardecchi+Serra+Vecchi '18, Calibbi+Marcano+Roy

'21, RC+Frigerio '21,...

Four different neutrino-mass models:

- Type-I seesaw (tree): $n \ge 2$ singlet fermions, $N \sim (1,1)_0$
- Type-III seesaw (tree): $n\geq 2$ fermion triplets, $\Sigma\sim (1,3)_0$
- Zee model (loop): two scalars, $H_2 \sim (1,2)_{1/2}$ and $\delta \sim (1,1)_1$
- Minimal LQ model (loop): two scalars, $S \sim (3,1)_{-1/3}$ and $D \sim (3,2)_{1/6}$ (in SUSY could call them \tilde{d}_R and \tilde{q}_L)
 - ightarrow Only model with two LQs which induces both $m_{
 u}$ and charged lepton dipoles without y_e -suppression

Wilson Coefficients

WCs	Seesaw I	Seesaw III	Zee	Leptoquarks
c ^W _{ab}	$\frac{1}{2}(\epsilon_N^T\mu_N\epsilon_N)_{ab}$	$\frac{1}{2} (\epsilon_{\Sigma}^{T} \mu_{\Sigma} \epsilon_{\Sigma})_{ab}$	$\begin{array}{l} -2\mu_{Z}(\epsilon_{\delta}y_{e}^{\dagger}\epsilon_{2})_{ab}\boldsymbol{P} \\ -2\mu_{Z}(\epsilon_{2}^{T}y_{e}^{*}\epsilon_{\delta}^{T})_{ab}\boldsymbol{P} \end{array}$	$\begin{array}{l} 3\mu_{DS}(\epsilon_{L}^{T}y_{d}^{\dagger}\epsilon_{D})_{ab}\boldsymbol{P} \\ + 3\mu_{DS}(\epsilon_{D}^{T}y_{d}^{*}\epsilon_{L})_{ab}\boldsymbol{P} \end{array}$
c _{ab} ^{eB}	$-rac{g_1}{24}(\epsilon_N^{\dagger}\epsilon_N y_e^{\dagger})_{ab}P$	$-rac{g_1}{8}(\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma}y_e^{\dagger})_{ab}P$	$-\frac{g_1}{3}(\epsilon_{\delta}^{\dagger}\epsilon_{\delta}y_e^{\dagger})_{ab}P$ + $\frac{5g_1}{48}(\epsilon_{2}^{\dagger}\epsilon_{2}y_e^{\dagger})_{ab}P$ + $\frac{g_1}{24}(y_e^{\dagger}\epsilon_{2}\epsilon_{2})_{ab}P$	$-\frac{5g_1}{4}(\epsilon_L^{\dagger}y_u^{T}\epsilon_R)_{ab}\boldsymbol{L}$
c _{ab} ^{eW}	$-rac{5g_2}{24}(\epsilon_N^{\dagger}\epsilon_N y_e^{\dagger})_{ab}P$	$-rac{3g_2}{8}(\epsilon^{\dagger}_{\Sigma}\epsilon_{\Sigma}y^{\dagger}_{e})_{ab}P$	$-\frac{\frac{24}{6}}{\frac{6}{6}}(\epsilon_{\delta}^{\dagger}\epsilon_{\delta}y_{e}^{\dagger})_{ab}P$ $+\frac{\frac{82}{48}}{\frac{48}{62}}(\epsilon_{2}^{\dagger}\epsilon_{2}y_{e}^{\dagger})_{ab}P$	$\frac{3g_2}{4} (\epsilon_L^{\dagger} y_u^T \epsilon_R)_{ab} \boldsymbol{L}$
c _{ab} ^{HI(1)}	$rac{1}{4}(\epsilon_N^\dagger\epsilon_N)_{ab}$	$rac{3}{4}(\epsilon^{\dagger}_{\Sigma}\epsilon_{\Sigma})_{ab}$	$\frac{\frac{2g_1^2}{3}}{-\frac{g_1^2}{3}}(\epsilon_{\delta}^{\dagger}\epsilon_{\delta})_{ab}\boldsymbol{L}\\-\frac{g_1^2}{3}(\epsilon_2^{\dagger}\epsilon_2)_{ab}\boldsymbol{L}$	$-\frac{g_1^2}{3}(\epsilon_D^{\dagger}\epsilon_D)_{ab}\boldsymbol{L} \\ -\frac{g_1^2}{6}(\epsilon_L^{\dagger}\epsilon_L)_{ab}\boldsymbol{L} \\ -\frac{3}{2}(\epsilon_L^{\dagger}\boldsymbol{y}_u^T\boldsymbol{y}_u^*\epsilon_L)_{ab}\boldsymbol{L}$
c _{ab} ^{HI(3)}	$-rac{1}{4}(\epsilon_N^\dagger\epsilon_N)_{ab}$	$\frac{1}{4} (\epsilon_{\Sigma}^{\dagger} \epsilon_{\Sigma})_{ab}$	$rac{2g_2^2}{3}(\epsilon_{\delta}^{\dagger}\epsilon_{\delta})_{ab}L$	$\frac{\frac{1}{2}g_2^2(\epsilon_L^{\dagger}\epsilon_L)_{ab}\boldsymbol{L}}{-\frac{3}{2}(\epsilon_L^{\dagger}y_u^Ty_u^*\epsilon_L)_{ab}\boldsymbol{L}}$
c _{ab} He	$\frac{\frac{1}{2}(y_e\epsilon_N^{\dagger}\epsilon_N y_e^{\dagger})_{ab}\boldsymbol{L}}{-\frac{g_1^2}{3}\mathrm{tr}[\epsilon_N^{\dagger}\epsilon_N]\delta_{ab}\boldsymbol{L}}$	$\frac{\frac{3}{2}(y_e\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma}y_e^{\dagger})_{ab}\boldsymbol{L}}{-g_1^2tr[\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma}]\delta_{ab}\boldsymbol{L}}$	$-rac{g_1^2}{3}(\epsilon_2\epsilon_2^\dagger)_{ab} L$	$3(\epsilon_{R}^{\dagger}y_{u}^{*}y_{u}^{T}\epsilon_{R})_{ab}\boldsymbol{L} -\frac{g_{1}^{2}}{6}(\epsilon_{R}^{\dagger}\epsilon_{R})_{ab}\boldsymbol{L}$
c _{ab} eH	$2\lambda(\epsilon_N^{\dagger}\epsilon_N y_e^{\dagger})_{ab}L$ $+\frac{g_2^2}{3} tr[\epsilon_N^{\dagger}\epsilon_N](y_e^{\dagger})_{ab}L$ $-6(c^{W\dagger}c^W y_e)_{ab}L$ $+8tr[c^{W\dagger}c^W](y_e^{\dagger})_{ab}L$	$(\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma}y_{e}^{\dagger})_{ab}$	$\epsilon^*_\lambda (\epsilon^\dagger_2)_{ab}$	$6(\epsilon_{L}^{\dagger}y_{u}^{T}y_{u}^{*}y_{u}^{T}\epsilon_{R})_{ab}\boldsymbol{L} -6\lambda(\epsilon_{L}^{\dagger}y_{u}^{T}\epsilon_{R})_{ab}\boldsymbol{L}$

• Sample of WCs: light (dark) grey for 1-loop leading-log (finite)

• L
$$\equiv \log(M/v)/(16\pi^2)$$
, P $\equiv 1/(16\pi^2)$

A brief introduction to spurion analysis

 SM has a U(3)_I × U(3)_e × U(3)_q × U(3)_u × U(3)_d symmetry, broken by Yukawas but restored if they are 'spurious' fields

• If
$$I_L o V_I I_L$$
, $e_R o V_e e_R$ and $y_e o V_e y_e V_I^\dagger$, then

$$\mathcal{L} \supset -\overline{e_R} y_e H^{\dagger} I_L + h.c. \tag{1}$$

remains invariant under the flavour symmetry

• Treat all new couplings and mass terms this way, enforce that EFT Lagrangian,

$$\mathcal{L} = \sum_{i} (\sqrt{2}/\nu)^{d_i - 4} c^i Q_i \tag{2}$$

is invariant under symmetry (which may be extended by NP)

 Know how each operator transforms under each symmetry ⇒ know how each WC should transform

Spurion analysis in the type-I and type-III seesaw

Initial spurion analysis is very illuminating

• First consider the seesaw mechanisms, with

$$\mathcal{L}_{N} = \overline{N}_{R} i \partial \!\!\!/ N_{R} - \left(\overline{N_{R}} Y_{N} \tilde{H}^{\dagger} I_{L} + \frac{1}{2} \overline{N_{R}} M_{N} N_{R}^{c} + h.c. \right) , \quad (3)$$

for type-I and $N_R
ightarrow \Sigma^A_R$ for type-III

• Under $U(3)_I \times U(n)_N$ symmetry, have

$$Y_N \to V_N Y_N V_I^{\dagger}, \qquad M_N \to V_N M_N V_N^{T},$$
(4)

• Define dimensionless parameters

$$\epsilon_N \equiv \frac{v}{\sqrt{2}} M_N^{-1} Y_N , \qquad \mu_N \equiv \frac{\sqrt{2}}{v} M_N , \qquad (5)$$

_

Spurion analysis in the type-I and type-III seesaw

- All SMEFT operators Q_i are invariant under $U(n)_N$
- The only U(n)_N-invariant combinations at lowest orders in the EFT are

$$\mathcal{O}(M^{-1}): (\epsilon_N^T \mu_N \epsilon_N)_{\alpha\beta} \,, \quad \mathcal{O}(M^{-2}): (\epsilon_N^\dagger \epsilon_N)_{\alpha\beta} \,, \, \, [\mathcal{O}(M^{-1})]^2$$

- So $m_{\nu} \propto \epsilon_N^T \mu_N \epsilon_N$ and all dim-6 WCs are $c \propto (\epsilon_N^{\dagger} \epsilon_N)$ or $c \propto m_{\nu}^2$
- Then setting $m_{\nu} \propto \epsilon_N^T \mu_N \epsilon_N \rightarrow 0$ implies (for n = 2, 3)

$$(\epsilon_N^{\dagger}\epsilon_N)_{\alpha\beta} \propto \lambda_{\alpha}\lambda_{\beta}, \qquad (6)$$

 $\lambda_{\alpha} \in \mathbb{R}, \, \alpha = e, \mu, \tau, \, \text{i.e.}$ all dim-6 pheno fixed by three parameters

Spurion analysis in the type-I and type-III seesaw

- One-loop dipole WCs are $c_{\alpha\beta}^{eB,eW} \propto (\epsilon_N^{\dagger} \epsilon_N y_e^{\dagger})_{\alpha\beta}$, so $c_{\alpha\alpha}^{eB,eW} \in \mathbb{R} \Rightarrow \text{EDM } d_e = 0$ at leading order
- From spurion analysis, find largest imaginary part arises at two-loops,

$$\begin{aligned} |d_e| &\sim \frac{4em_e}{(16\pi^2)^2 v^2} \operatorname{Im}\{[\epsilon_N^{\dagger} \epsilon_N y_e^{\dagger} y_e \epsilon_N^{\dagger} \epsilon_N, \epsilon_N^{\dagger} \epsilon_N]_{ee}\} \\ &= \frac{em_e(m_{\tau}^2 - m_{\mu}^2)}{16\pi^4 v^4} \operatorname{Im}\{(\epsilon_N^{\dagger} \epsilon_N)_{e\tau}(\epsilon_N^{\dagger} \epsilon_N)_{\tau\mu}(\epsilon_N^{\dagger} \epsilon_N)_{\mu e}\} \\ &\lesssim 10^{-37} \ e \ \mathrm{cm} \end{aligned}$$
(7)

• The Zee Lagrangian is

$$\mathcal{L}_{\text{Zee}} = |D_{\mu}\delta|^{2} + |D_{\mu}H_{2}|^{2} - M_{\delta}^{2}\delta^{\dagger}\delta - M_{2}^{2}H_{2}^{\dagger}H_{2} - M_{\delta2}\tilde{H}^{\dagger}H_{2}\delta^{\dagger} - \lambda_{2}(H^{\dagger}H)(H^{\dagger}H_{2}) - \overline{I_{L}^{c}}Y_{\delta}i\sigma_{2}I_{L}\delta - \overline{e_{R}}Y_{2}H_{2}^{\dagger}e_{R} + h.c. + \dots$$
(8)

• Here we have a $U(3)_I \times U(3)_e \times U(1)_{\delta} \times U(1)_{H_2}$ symmetry, with dimensionless parameters

$$\mu_{Z} \equiv \frac{\sqrt{2}M_{\delta 2}}{v} \to \mu_{Z} e^{i(\phi_{\delta} - \phi_{2})}, \quad \epsilon_{\lambda} \equiv \frac{v\lambda_{2}}{\sqrt{2}M_{2}} \to \epsilon_{\lambda} e^{-i\phi_{2}},$$
$$\epsilon_{\delta} \equiv \frac{vY_{\delta}}{\sqrt{2}M_{\delta}} \to V_{I}^{*}\epsilon_{\delta}V_{I}^{\dagger}e^{-i\phi_{\delta}}, \quad \epsilon_{2} \equiv \frac{vY_{2}}{\sqrt{2}M_{2}} \to V_{e}\epsilon_{2}V_{I}^{\dagger}e^{i\phi_{2}}$$

Spurion analysis in the Zee model

• Again, we can classify $U(1)_{\delta} \times U(1)_{H_2}$ -invariant combinations at lowest order

$$\begin{split} \mathcal{O}(M^{-1}) &: \mu_{Z}(\epsilon_{\delta})_{\alpha\beta}(\epsilon_{2})_{\gamma\delta} , \ \mu_{Z}\epsilon_{\lambda}^{*}(\epsilon_{\delta})_{\alpha\beta} , \\ \mathcal{O}(M^{-2}) &: (\epsilon_{\delta}^{*})_{\alpha\beta}(\epsilon_{\delta})_{\gamma\delta} , \ (\epsilon_{2}^{*})_{\alpha\beta}(\epsilon_{2})_{\gamma\delta} , \ \epsilon_{\lambda}^{*}\epsilon_{\lambda} , \ (\epsilon_{2})_{\alpha\beta}\epsilon_{\lambda} , \ [\mathcal{O}(M^{-1})]^{2} \end{split}$$

- Neutrino mass $m_{\nu} \propto \mu_Z (\epsilon_{\delta} y_e^{\dagger} \epsilon_2)_{\alpha\beta} + ()^T$ since ϵ_{δ} anti-symmetric
- Small m_{ν} achieved by $\mu_Z \rightarrow 0$, $\epsilon_{\delta} \rightarrow 0$, $\epsilon_2 \rightarrow 0$ (all limits conserve lepton number), or by fine-tuning if all non-zero
- See that a) dim-6 WCs can be large while m_{ν} small, and b) pheno of δ and H_2 are seperate: no $\epsilon_{\delta}\epsilon_2$ terms at dim-6

- 2 The models, their EFTs and spurion analysis
- Individual phenomenology
- 4 Effective comparison of models

EFT phenomenology

Placed bounds on WCs from various observables (these plus others)

Observable	Bound	C.L.
m _W	$0.23c^G - 0.77c^{HD} \in [-0.6, 13] imes 10^{-4}$	anom
s_w^2	$c^{HD} - c^{G} - 1.40c^{HI(1+3)} - 1.62c^{He} \in [-6.1, 9.1] imes 10^{-4}$	2σ
$G_F^{\mu au}/G_F^{e au}$	$c_{ au e e au}^{\prime \prime} + c_{e au au e}^{\prime \prime} - c_{ au \mu \mu au}^{\prime \prime} - c_{\mu au au \mu}^{\prime \prime} + 2c_{\mu \mu}^{\prime \prime \prime (3)} - 2c_{ee}^{\prime \prime \prime \prime (3)} \in [-1.0, 4.6] imes 10^{-3}$	2σ
$G_F^{e\tau}/G_F$	$c_{e\mu\mu e}^{II} + c_{\mu e e \mu}^{II} - c_{e au au e}^{II} - c_{ au e e au}^{II} + 2c_{ au au}^{HI(3)} - 2c_{\mu\mu}^{HI(3)} \in [-1.9, 4.1] imes 10^{-3}$	2σ
$G_F^{\mu\tau}/G_F$	$c_{\mu e e \mu}^{\prime \prime} + c_{e \mu \mu e}^{\prime \prime} - c_{\mu \tau \tau \mu}^{\prime \prime} - c_{\tau \mu \mu \tau}^{\prime \prime} + 2c_{\tau \tau}^{H \prime (3)} - 2c_{e e}^{H \prime (3)} \in [-1.5, 6.0] \times 10^{-3}$	anom
$Z ightarrow e \mu$	$\sqrt{ c_{e\mu}^{HI(1)} + c_{e\mu}^{HI(3)} ^2 + c_{e\mu}^{He} ^2 + \frac{1}{2} \left s_w c_{e\mu}^{eB} + c_w c_{e\mu}^{eW} \right ^2 + \frac{1}{2} \left s_w c_{\mu e}^{eB} + c_w c_{\mu e}^{eW} \right ^2} \lesssim 1.2 \times 10^{-3}$	95%
Z ightarrow e au	$\sqrt{ c_{e\tau}^{HI(1)} + c_{e\tau}^{HI(3)} ^2 + c_{e\tau}^{He} ^2 + \frac{1}{2} s_w c_{e\tau}^{eB} + c_w c_{e\tau}^{eW} ^2 + \frac{1}{2} s_w c_{\tau e}^{eB} + c_w c_{\tau e}^{eW} ^2} \lesssim 3.1 \times 10^{-3}$	95%
$Z ightarrow \mu au$	$\sqrt{ c_{\mu\tau}^{HI(1)} + c_{\mu\tau}^{HI(3)} ^2 + c_{\mu\tau}^{He} ^2 + \frac{1}{2} \left s_w c_{\mu\tau}^{eB} + c_w c_{\mu\tau}^{eW} \right ^2 + \frac{1}{2} \left s_w c_{\tau\mu}^{eB} + c_w c_{\tau\mu}^{eW} \right ^2} \lesssim 3.5 \times 10^{-3}$	95%
$Z \rightarrow e^+ e^-$	$1.19(c^{G} - c^{HD}) + 4.27(c_{ee}^{HI(1)} + c_{ee}^{HI(3)}) - 3.68c_{ee}^{He} \in [-4.2, 2.0] \times 10^{-3}$	2σ
$Z \rightarrow \mu^+ \mu^-$	$1.19(c^{\textit{G}}-c^{\textit{HD}})+4.27(c^{\textit{HI}(1)}_{\mu\mu}+c^{\textit{HI}(3)}_{\mu\mu})-3.68c^{\textit{He}}_{\mu\mu}\in[-4.7,4.3] imes10^{-3}$	2σ
$Z \rightarrow \tau^+ \tau^-$	$1.19(c^{G}-c^{HD})+4.27(c_{\tau\tau}^{HI(1)}+c_{\tau\tau}^{HI(3)})-3.68c_{\tau\tau}^{He}\in [-2.2,8.2] imes 10^{-3}$	2σ
N _ν	$0.58(c^{HD} - c^{G}) + 11.1c^{He} - 24.8c^{HI(1)} - 0.82c^{HI(3)} \in [-0.019, 0.011]$	2σ
a _e	$ { m Re}\; c_{ee}^{e\gamma,obs} \lesssim 3 imes 10^{-8}$	anom
a _µ	$Re[c^{e\gamma,obs}_{\mu\mu}+4.3 imes10^{-7}(c^{G}-c^{HD})]\in[-0.5,4.6] imes10^{-7}$	anom

Bounds derived using LEP, ATLAS, CMS, CDF II, Muon G-2, PDG, Hanneke+ '08, Pich '13, Parker+ '18, Morel+ '20, Aoyama+ '20, de Blas+ '22

Rupert Coy

∃ ► < ∃ ►</p>

- Having done this once, only have to change it when there's improved experimental data
- Don't include all WCs, but all those obtained at tree or one-loop leading-log in any of the four models
- How to deal with ≥ 2σ anomalies when imposing 2σ limits?
 For a nσ anomaly, we allowed a shift of [n]σ, so as not to rule out NP which negligibly modifies the observable

ightarrow For 4.2 σ in a_{μ} , allowed $a_{\mu}^{\exp} - 5\sigma \leq a_{\mu}^{SM} + \Delta a_{\mu} \leq a_{\mu}^{\exp} + 2\sigma$

• Now applied these to each model: looked at two flavours at a time and set couplings to the third to zero

Type-I and type-III seesaw, $\mu - \tau$ sector

• Recall $\epsilon_{N,\Sigma} = (v/\sqrt{2})Y_{N,\Sigma}/M_{N,\Sigma}$, took M = 10 TeV for logs

- Have correlated predictions for n ≤ 3. Flavour conservation (violation) strongest in type-I (type-III) since CLFV induced at loop (tree)
- Type-I gives $\Delta m_W > 0$ but too small, type-III gives $\Delta m_W < 0$

Zee model, $e - \mu$ sector

• ϵ_{δ} fully determined, for ϵ_2 took $|(\epsilon_2)_{\alpha\beta}| = \sqrt{|(\epsilon_2)_{\alpha\alpha}(\epsilon_2)_{\beta\beta}|}$

- δ interferes with muon decay (thus G_F , m_W ,...), H_2 does not
- Large $\mu \rightarrow e\gamma$ induced by H_2 from 2-loop Barr-Zee
- Can explain $(g-2)_{\mu}$ for $|(\epsilon_2)_{ee}| \lesssim 10^{-10}$

LQ model

LQ model Lagrangian is

$$\mathcal{L}_{LQ} = |D_{\mu}S|^{2} + |D_{\mu}D|^{2} - V(D,S)$$

$$- (\overline{q_{L}^{c}}Y_{L}i\sigma_{2}l_{L}S^{\dagger} + \overline{u_{R}^{c}}Y_{R}e_{R}S^{\dagger} + \overline{d_{R}}Y_{D}D^{T}i\sigma_{2}l_{L} + h.c.)$$
(9)

- Assume LQ couples to only 3rd family quarks in m_d basis:
 - $\rightarrow\,$ Avoid bounds from pions, kaons etc., focus on lepton sector
 - ightarrow Captures relevant loops $\propto y_t$
- Y_L is most interesting coupling since
 - $\rightarrow~$ It generates interference with muon decay
 - $\rightarrow~$ Couples to light quarks via CKM, so induces e.g. $b \rightarrow c \ell \nu$
 - → Combination of Y_L and Y_R gives top-enhanced loops, ~ $N_C y_t^2 \gg g_{1,2}^2$

LQ model, $e - \mu$ sector

- ${f \bullet}\,$ Correlated observables, $\mu \to e$ strongest by far, others weak but complementary
- Solutions to m_W and $R_{K^{(*)}}$ anomalies ruled out, but can explain $(g-2)_\mu$ for $|(\epsilon_{L,R})_{ee}| \lesssim 10^{-7}$
- Changing ϵ_R relative to ϵ_L modifies observables depending on dipole

LQ model, $\mu- au$ sector

• With only ϵ_L , LFC and LFV bounds similar, y_t -enhancement for $\epsilon_L = \epsilon_R$ makes LFV much stronger

• Solution to $R_{D^{(*)}}$ also ruled-out, $(g-2)_{\mu}$ explanation persists, even d_{μ} relevant

- 2 The models, their EFTs and spurion analysis
- Individual phenomenology
- 4 Effective comparison of models

Comparison: all $\epsilon_{\alpha\beta}$ equal

• $\mu \rightarrow e$ always wins: strongest in LQ since no y_{μ}

- Future $\mu \rightarrow e$ bounds has clear order
- Flavour-conserving bounds more discriminatory

Comparison: no NP coupling to electrons

• $(\epsilon_{\delta})_{\mu\tau}$ only \Rightarrow no flavour violation at dim-6

- \bullet Bounds from $\tau \to \mu$ competitive with flavour-conserving ones
- Strong potential to distinguish between models

Comparison: NP couples only to muons

• No ϵ_{δ} column since $(\epsilon_{\delta})_{\mu\mu} = 0$ by antisymmetry

- Can explain $(g-2)_{\mu}$ anomalies in Zee and LQ models
- Mainly expect shift in s_w , G_F before m_W , but not in type-III

- 1. Precision low-energy and EW-scale observables are excellent places to look for evidence of the neutrino mass mechanism
- 2. EFT is a useful framework: spurion analysis and power-counting is powerful, systematic pheno analysis
 - $\rightarrow\,$ Strength of bounds obtained reinforces that EFT approach is valid
- 3. Looking at correlations **within and between models** could be key to discovering mass mechanism if no direct discoveries

Back-up slides

Rupert Coy

э.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Name	Operator
$Q_{W,ab}$	$(\overline{I_{La}^c}\tilde{H}^*)(\tilde{H}^\dagger I_{Lb})$
$Q_{eB,ab}$	$(\overline{I_{La}}\sigma_{\mu u}e_{Rb})HB^{\mu u}$
$Q_{eW,ab}$	$(\overline{I_{La}}\sigma_{\mu\nu}e_{Rb})\sigma^{A}HW^{A\mu\nu}$
$Q_{HI,ab}^{(1)}$	$(\overline{I_{La}}\gamma_{\mu}I_{Lb})(H^{\dagger}i\overleftrightarrow{D^{\mu}}H)$
$Q_{HI,ab}^{(3)}$	$(\overline{I_{La}}\gamma_{\mu}\sigma^{A}I_{Lb})(H^{\dagger}i\overleftrightarrow{D^{\mu}}\sigma^{A}H)$
Q _{He,ab}	$(\overline{e_{Ra}}\gamma_{\mu}e_{Rb})(H^{\dagger}i\overleftrightarrow{D^{\mu}}H)$
$Q_{eH,ab}$	$(\overline{I_{La}}He_{Rb})(H^{\dagger}H)$
Q _H	$(H^{\dagger}H)^3$
Q _{HD}	$(H^\dagger D_\mu H)^* (H^\dagger D^\mu H)$
$Q_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$

Name	Operator
$Q_{II,ab}$	$(\overline{I_{La}}\gamma_{\mu}I_{Lb})(\overline{I_{Lc}}\gamma^{\mu}I_{Ld})$
$Q_{le,ab}$	$(\overline{I_{La}}\gamma_{\mu}I_{Lb})(\overline{e_{Rc}}\gamma^{\mu}e_{Rd})$
$Q_{ee,ab}$	$(\overline{e_{Ra}}\gamma_{\mu}e_{Rb})(\overline{e_{Rc}}\gamma^{\mu}e_{Rd})$
$Q_{lq,abcd}^{(1)}$	$(\overline{I_{La}}\gamma_{\mu}I_{Lb})(\overline{q_{Lc}}\gamma^{\mu}q_{Ld})$
$Q_{lq,abcd}^{(3)}$	$(\overline{I_{La}}\gamma_{\mu}\sigma^{A}I_{Lb})(\overline{q_{Lc}}\gamma^{\mu}\sigma^{A}q_{Ld})$
$Q_{qe,abcd}$	$(\overline{q_{La}}\gamma_{\mu}q_{Lb})(\overline{e_{Rc}}\gamma^{\mu}e_{Rd})$
$Q_{lu,abcd}$	$(\overline{I_{La}}\gamma_{\mu}I_{Lb})(\overline{u_{Rc}}\gamma^{\mu}u_{Rd})$
$Q_{ld,abcd}$	$(\overline{I_{La}}\gamma_{\mu}I_{Lb})(\overline{d_{Rc}}\gamma^{\mu}d_{Rd})$
$Q_{eu,abcd}$	$(\overline{e_{Ra}}\gamma_{\mu}e_{Rb})(\overline{u_{Rc}}\gamma^{\mu}u_{Rd})$
$Q_{ed,abcd}$	$(\overline{e_{Ra}}\gamma_{\mu}e_{Rb})(\overline{d_{Rc}}\gamma^{\mu}d_{Rd})$
$Q^{(1)}_{lequ,abcd}$	$(\overline{I_{La}}e_{Rb}) \epsilon (\overline{q_{Lc}}u_{Rd})$
$Q_{lequ,abcd}^{(3)}$	$(\overline{I_{La}}\sigma_{\mu\nu}e_{Rb})\epsilon(\overline{q_{Lc}}\sigma^{\mu\nu}u_{Rd})$
Q _{ledq,abcd}	$(\overline{I_{La}}e_{Rb})(\overline{d_{Rc}}q_{Ld})$

イロト イヨト イヨト イヨト

Wilson Coefficients 2

WCs	Seesaw I	Seesaw III	Zee	Leptoquarks
c ^H	$\frac{\frac{4}{3}\lambda g_2^2 \text{tr}[\epsilon_N^{\dagger} \epsilon_N] \text{L}}{-32\lambda \text{tr}[c^{W\dagger} c^W] \text{L}}$	$-\frac{4}{3}\lambda g_2^2 tr[\epsilon_{\Sigma}^{\dagger} \epsilon_{\Sigma}]L \\ -32\lambda tr[c^{W\dagger} c^W]L$	$\epsilon^*_\lambda \epsilon_\lambda$	—
c ^{H□}	$\frac{\frac{g_1^2+3g_2^2}{6}\text{tr}[\epsilon_N^\dagger\epsilon_N]\text{L}}{+2\text{tr}[c^{W\dagger}c^W]\text{L}}$	$\frac{\frac{g_1^2 - g_2^2}{2} \operatorname{tr}[\epsilon_N^{\dagger} \epsilon_N] L}{+ 2 \operatorname{tr}[c^{W\dagger} c^W] L}$	_	—
c ^{HD}	$\frac{\frac{2g_2^2}{3}}{+16 \mathrm{tr}[\epsilon_N^{\dagger} \epsilon_N] L}$	$2g_2^2 \operatorname{tr}[\epsilon_{\mathcal{N}}^{\dagger} \epsilon_N] L \\ +16 \operatorname{tr}[c^{W \dagger} c^W] L$	—	—
c ^{ll} _{abcd}	$\begin{array}{c} \frac{g_1^2 - g_2^2}{2^4} (\epsilon_N^{\dagger} \epsilon_N)_{ab} \delta_{cd} L \\ + \frac{g_1^2 - g_2^2}{2g_2} \delta_{ab} (\epsilon_N^{\dagger} \epsilon_N)_{cd} L \\ + \frac{g_1^2}{12} (\epsilon_N^{\dagger} \epsilon_N)_{ad} \delta_{cb} L \\ + \frac{g_2^2}{12} \delta_{ad} (\epsilon_N^{\dagger} \epsilon_N)_{cb} L \\ + 2 (c^{W^{\dagger}})_{ac} (c^W)_{bd} L \end{array}$	$\begin{array}{c} \frac{3g_1^2+g_2^2}{24}(\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma})_{ab}\delta_{cd}L\\ +\frac{3g_1^2+g_2^2}{24}\delta_{ab}(\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma})_{cd}L\\ -\frac{g_2^2}{12}(\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma})_{ad}\delta_{cb}L\\ -\frac{g_2^2}{12}\delta_{ad}(\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma})_{cb}L\\ +2(c^{W\dagger})_{ac}(c^{W})_{bd}L \end{array}$	$(\epsilon^{\dagger}_{\delta})_{sc}(\epsilon_{\delta})_{db}$	$\begin{array}{c} \frac{s_{1}^{2}}{6}(\epsilon_{D}^{\dagger}\epsilon_{D})_{ab}\delta_{cd}L \\ +\frac{s_{1}^{2}}{6}\delta_{ab}(\epsilon_{D}^{\dagger}\epsilon_{D})_{cd}L \\ +\frac{s_{2}^{2}}{2}(\epsilon_{L}^{\dagger}\epsilon_{L})_{ad}\delta_{bc}L \\ +\frac{s_{2}^{2}}{2}\delta_{ad}(\epsilon_{L}^{\dagger}\epsilon_{L})_{cb}L \\ +\frac{s_{1}^{2}-3g_{2}}{12}(\epsilon_{L}^{\dagger}\epsilon_{L})_{ab}\delta_{cd}L \\ +\frac{s_{1}^{2}-3g_{2}}{12}\delta_{ab}(\epsilon_{L}^{\dagger}\epsilon_{L})_{cd}L \end{array}$
c ^{le} abcd	$rac{g_1^2}{6} (\epsilon_N^\dagger \epsilon_N)_{ab} \delta_{cd} L$	$rac{g_1^2}{2} (\epsilon_{\Sigma}^{\dagger} \epsilon_{\Sigma})_{ab} \delta_{cd} L$	$-rac{1}{2}(\epsilon_2^{\dagger})_{sd}(\epsilon_2)_{cb}$	$ \begin{array}{c} \frac{3}{2} (\epsilon_{L}^{\dagger} y_{u} \epsilon_{R})_{ad} (y_{e})_{cb} L \\ + \frac{3}{2} (y_{e}^{\dagger} (\xi_{R})_{ad} (\epsilon_{R}^{\dagger} y_{u}^{*} \epsilon_{L})_{cb} L \\ + \frac{3}{2} (y_{e}^{\dagger})_{ad} (\epsilon_{R}^{\dagger} y_{u}^{*} \epsilon_{L})_{cb} L \\ + \frac{4 g_{1}^{2}}{3} (\epsilon_{L}^{\dagger} \epsilon_{L})_{ab} \delta_{cd} L \\ + \frac{2 g_{1}^{2}}{3} (\epsilon_{D}^{\dagger} \epsilon_{D})_{ab} \delta_{cd} L \\ + \frac{2 g_{1}^{2}}{3} \delta_{ab} (\epsilon_{R}^{\dagger} \epsilon_{R})_{cd} L \end{array} $
c ^{ee} abcd	—	—	$\frac{\frac{g_1^2}{3}(\epsilon_2\epsilon_2^{\dagger})_{ab}\delta_{cd}L}{+\frac{g_1^2}{3}\delta_{ab}(\epsilon_2\epsilon_2^{\dagger})_{cd}L}$	$\frac{\frac{2g_1^2}{3}(\epsilon_R^{\dagger}\epsilon_R)_{ab}\delta_{cd}L}{+\frac{2g_1^2}{3}\delta_{ab}(\epsilon_R^{\dagger}\epsilon_R)_{cd}L}$

Wilson Coefficients 3

WCs	Seesaw I	Seesaw III	Zee	Leptoquarks
$c_{abcd}^{lq(1)}$	$-\frac{1}{4}(\epsilon_N^{\dagger}\epsilon_N)_{ab}(y_u^{\dagger}y_u)_{cd}L$ $-\frac{g_1^2}{2}(\epsilon_N^{\dagger}\epsilon_N)_{ab}(y_u^{\dagger}y_u)_{cd}L$	$-\frac{3}{4} (\epsilon_{\Sigma}^{\dagger} \epsilon_{\Sigma})_{ab} (y_{u}^{\dagger} y_{u})_{cd} L$ $-\frac{g_{L}^{2}}{2} (\epsilon^{\dagger} \epsilon_{\Sigma})_{ab} (y_{u}^{\dagger} y_{u})_{cd} L$	$\frac{2g_1^2}{9} (\epsilon_{\delta}^{\dagger} \epsilon_{\delta})_{ab} \delta_{cd} L$	$\frac{1}{4}(\epsilon_L^{\dagger})_{ac}(\epsilon_L)_{db}$
c ^{lq(3)} abcd	$\frac{-\frac{1}{36}(e_N e_N)_{ab} o_{cd} L}{-\frac{1}{4}(e_N^{\dagger} e_N)_{ab}(y_u^{\dagger} y_u)_{cd} L}$	$\frac{-\frac{1}{12}(\epsilon_{\Sigma}\epsilon_{\Sigma})_{ab}(\epsilon_{cd}L)}{\frac{1}{4}(\epsilon_{\Sigma}^{\dagger}\epsilon_{\Sigma})_{ab}(y_{u}^{\dagger}y_{u})_{cd}L}$ $-\frac{g_{\Sigma}^{2}}{2}(\epsilon_{L}^{\dagger}\epsilon_{\Sigma})_{ab}(\delta_{cd}L)$	$\frac{-\frac{3}{9}(\epsilon_{2}^{t}\epsilon_{2})_{ab}\delta_{cd}L}{\frac{2g_{2}^{2}}{3}(\epsilon_{\delta}^{\dagger}\epsilon_{\delta})_{ab}\delta_{cd}L}$	$-rac{1}{4}(\epsilon_L^\dagger)_{ac}(\epsilon_L)_{db}$
c ^{qe} abcd	— —		$-rac{g_1^2}{9}\delta_{ab}(\epsilon_2\epsilon_2^\dagger)_{cd}L$	$ \begin{array}{l} \frac{1}{2} (\epsilon_{L}^{*} y_{e}^{T})_{ac} (y_{u}^{T} \epsilon_{R})_{bd} L \\ + \frac{1}{2} (y_{u}^{\dagger} \epsilon_{R}^{*})_{ac} (\epsilon_{L} y_{e}^{\dagger})_{bd} L \\ + \frac{1}{2} (y_{u}^{\dagger} \epsilon_{R}^{*})_{ac} (y_{u}^{T} \epsilon_{R})_{wd} L \end{array} $
				$-\frac{g_1^2}{3}(\epsilon_L^*\epsilon_L^T)_{ab}\delta_{cd}L \\ -\frac{2g_1^2}{9}\delta_{ab}(\epsilon_R^\dagger\epsilon_R)_{cd}L$
c ^{lu} c _{abcd}	$ \frac{\frac{1}{2} (\epsilon_N^{\dagger} \epsilon_N)_{ab} (y_u y_u^{\dagger})_{cd} L }{-\frac{g_1^2}{9} (\epsilon_N^{\dagger} \epsilon_N)_{ab} \delta_{cd} L } $	$ \frac{\frac{3}{2}}{\frac{2}{2}} (\epsilon_{\Sigma}^{\dagger} \epsilon_{\Sigma})_{ab} (y_{u} y_{u}^{\dagger})_{cd} L - \frac{\frac{g_{1}^{2}}{3}}{\frac{2}{3}} (\epsilon_{\Sigma}^{\dagger} \epsilon_{\Sigma})_{ab} \delta_{cd} L $	$ \frac{\frac{8g_1^2}{9}(\epsilon_{\delta}^{\dagger}\epsilon_{\delta})_{ab}\delta_{cd}L}{-\frac{4g_1^2}{9}(\epsilon_2^{\dagger}\epsilon_2)_{ab}\delta_{cd}L} $	$\frac{\frac{1}{2}(\epsilon_{L}^{\top}y_{u}^{T})_{ac}(\epsilon_{R}y_{e})_{db}L}{+\frac{1}{2}(\epsilon_{L}^{\top}y_{u}^{T})_{ac}(y_{u}^{*}\epsilon_{L})_{db}L}$ $+\frac{1}{2}(y_{e}^{\dagger}\epsilon_{R}^{\dagger})_{ac}(y_{u}^{*}\epsilon_{L})_{db}L$ $\frac{2g_{1}^{2}(\epsilon_{L}^{\dagger}\epsilon_{R})_{ac}(s_{u}^{*}\epsilon_{L})_{db}L}{2g_{1}^{2}(\epsilon_{L}^{\dagger}\epsilon_{R})_{ac}(s_{u}^{*}\epsilon_{L})_{b}L}$
				$-\frac{g_1^2}{g} (\epsilon_L \epsilon_L)_{ab} \delta_{cd} L$ $-\frac{4g_1^2}{g} (\epsilon_D^{\dagger} \epsilon_D)_{ab} \delta_{cd} L$ $-\frac{g_1^2}{3} \delta_{ab} (\epsilon_R^* \epsilon_R^T)_{cd} L$
c ^{ld} abcd	$rac{g_1^2}{18}(\epsilon_N^\dagger\epsilon_N)_{ab}\delta_{cd}$ L	$\frac{g_1^2}{6} (\epsilon_{\Sigma}^{\dagger} \epsilon_{\Sigma})_{ab} \delta_{cd} L$	$-\frac{4g_1^2}{9}(\epsilon_{\delta}^{\dagger}\epsilon_{\delta})_{ab}\delta_{cd}L$ $+\frac{2g_1^2}{9}(\epsilon_2^{\dagger}\epsilon_2)_{ab}\delta_{cd}L$	$-rac{1}{2}(\epsilon_D^\dagger)_{ad}(\epsilon_D)_{cb}$

∃ →

Image: A match a ma

WCs	Seesaw I	Seesaw III	Zee	Leptoquarks
c ^{eu} abcd	—	—	$-rac{4g_1^2}{9}(\epsilon_2\epsilon_2^\dagger)_{ab}\delta_{cd}L$	$\frac{1}{2}(\epsilon_R^{\dagger})_{ac}(\epsilon_R)_{db}$
c ^{ed} abcd	_	_	$\frac{2g_1^2}{9} (\epsilon_2 \epsilon_2^{\dagger})_{ab} \delta_{cd} L$	$\frac{2g_1^2}{3}\delta_{ab}(\epsilon_D\epsilon_D^{\dagger})_{cd}L$
				$+\frac{4g_1^2}{9}(\epsilon_R^{\dagger}\epsilon_R)_{ab}\delta_{cd}L$
c ^{lequ(1)} abcd	—	—	$2 \mathrm{tr}[y_e^{\dagger} \epsilon_2](\epsilon_2^{\dagger})_{ab}(y_u^{\dagger})_{cd} \mathrm{L}$	$-\frac{1}{2}(\epsilon_L^{\dagger})_{ac}(\epsilon_R)_{db}$
c ^{lequ(3)} cabcd	—	—	—	$\frac{1}{8}(\epsilon_L^{\dagger})_{ac}(\epsilon_R)_{db}$
ledq			$2 + \pi [u^{\dagger} - 1(z^{\dagger}) + (u^{\dagger}) + 1$	$-3(\epsilon_{L}^{\dagger}y_{u}^{T}\epsilon_{R})_{ab}(y_{d})_{cd}L$
Cabcd			Zu[y _e ∈2](∈2)ab(yd)cd ⊏	$-(\epsilon_D y_d)_{ad}(\epsilon_D y_e^{\dagger})_{cb} \perp$ $+(\epsilon_D^{\dagger} y_d^{T})_{ad}(\epsilon_U y_e^{\dagger})_{cb} \parallel$
				$+(\epsilon_L^T y_d^T)_{ac}(y_u^T \epsilon_R)_{db}L$

∃ →

• • • • • • • • • • • •

- Important effect is NP interference with muon decay, since this affects measured G_F which is used as an EW input parameter
 Fernandez-Martinez+Hernandez-Garcia+Lopez-Pavon '16, Jenkins+Manohar+Stoffer '17,...
- In EFT at leading-order, the Fermi constant is

$$G_F \simeq rac{1}{\sqrt{2}v^2} (1 - c^G), \ c^G \equiv c_{e\mu\mu e}^{\prime\prime} + c_{\mu e e\mu}^{\prime\prime} - 2c_{ee}^{\prime\prime\prime} - 2c_{\mu\mu}^{\prime\prime\prime} (10)$$

• This (and other effects) enters into EW observables:

$$m_W^2 = \frac{m_Z^2}{2} \left[1 + \left(1 - \frac{2\sqrt{2}\pi\alpha}{G_F m_Z^2} \right)^{1/2} \right], \quad \sin^2 2\theta_w = \frac{2\sqrt{2}\pi\alpha}{G_F m_Z^2}.$$
(11)

Type-I and type-III seesaw, $e - \mu$ sector

Type-I and type-III seesaw, $e - \tau$ sector

Zee model, $e - \tau$ sector

Zee model, $\mu - \tau$ sector

LQ model, $e - \tau$ sector

A (1) > A (2) > A