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Dark Matter 

(Hu, Dodelson, astro-ph/0110414 ) (Planck 2018, 1807.06209 )

!!
ΩCDM ,0h

2 =0.11933±0.0009~5ΩB ,0h
2

At the present time dark matter acts as a cosmic glue keeping together

Stars in galaxies….               … and galaxies in clusters of galaxies (such as in Coma cluster)

…but it also has to be primordial and non-baryonic to understand structure formation and CMB anisotropies

(CMB + BAO)



Beyond the WIMP paradigm  
(from Baer et al.1407.0017)

heavy RH
neutrino (PDB, Anisimov ‘08)

The more we know the less we understand?



Right-handed neutrino laboratory searches   
(SHIP proposal, 1504.04855)



Dark matter from active-sterile neutrino mixing
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• Solving Boltzmann equations an abundance is produced at T~100 MeV:

• Considering also structure  formation constraints, one is forced to consider a resonant 
production induced by a large lepton asymmetry 

(Dodelson Widrow ’94; Shi, Fuller ’99; Dolgov and Hansen ’00; Asaka, Blanchet,Shaposhnikov ‘05)

(Horiuchi et al. ‘14; Bulbul at al. ‘14; Abazajian ‘14)
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• The lightest neutrino mass m1 ≲ 10-5 eV ⟹ hierarchical limit
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Lagrangian

• The N1’s also radiatively decay and this produces constraints from X-rays (or 
opportunities to observe it). 

• L ~10-4  (3.5 keV line?). 



Heavy RH neutrino as dark matter ?

Suppose a RH neutrino has tiny Yukawa couplings (e.g., proportional to a small symmetry
breaking parameter): 
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1Too small to reproduce the correct abundance with any production mechanism 
within a minimal type-I seesaw extension
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1What production mechanism? For high masses just a tiny abundance is needed: 

mD =VL
†DmDUR DmD ≡ v diag(hA,hB ,hC ) with hA ≤ hB ≤ hC



Many proposed production mechanisms

Recently many production mechanisms have been proposed especially to 
address IceCube initially seemingly anomalous PeV neutrino events:

•from SU(2)R extra-gauge interactions (LRSM)  (Fornengo,Niro, Fiorentin);

•from inflaton decays (Anisimov,PDB’08; Higaki, Kitano, Sato ‘14);

•from resonant annihilations through SU(2)’ extra-gauge interactions
(Dev, Kazanas,Mohapatra,Teplitz, Zhang ‘16);

•From new U(1)Y interactions connecting DM to SM (Dev, Mohapatra,Zhang ‘16);

•From U(1)B-L  interactions (Okada, Orikasa ‘12);

•…………………

In all these models IceCube data are fitted through fine tuning of parameters 
responsible for decays (they are post-dictive)



DM from Higgs induced neutrino mixing
(Anisimov ‘06, Anisimov,PDB ‘08)

Assume new (5-dim) interactions with the standard Higgs:

In general they are non-diagonal in the Yukawa basis: this generates a RH neutrino mixing. 
Consider a 2 RH neutrino mixing for simplicity. Interactions generate effective potentials:

From the Yukawa 
interactions:
From the new
interactions:

Effective mixing Hamiltonian (monocromatic approximation p~3T):
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Resonant production described by Landau-Zener?



Density matrix calculation of the relic abundance
(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

Density matrix equation for the DM-source RH neutrino system

A numerical solution shows that a simple calculation based on the Landau-Zener 
approximation overestimates the relic  abundance by a few orders of magnitude 
(especially in the hierarchical case)
The resonance occurs before oscillations develop ⇒ the production is non-resonant
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Constraints from decays
(Anisimov,PDB ’08; Anisimov,PDB’10; P.Ludl.PDB,S.Palomarez-Ruiz’16)

DM neutrinos unavoidably decay today into A+leptons (A=H,Z,W) through the same 
mixing that produced them in the very early Universe

2 body decays (MS>MW)

mixing angle 
today

Lower bound on MDM (𝜏28≣ 𝜏DM
min/1028s) 

4 body decays

Upper bound on MDM (𝜏28≣ 𝜏DM
min/1028s) 

3 body decays and annihilations also can occur but yield weaker constraints 



Failure of Landau-Zener approximation in the hierarchical case

initial thermal NS-abundance initial vanishing NS-abundance



DM lifetime vs. mass plane: allowed regions
(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

Solutions only for initial thermal NS abundance, unless MS~ 1 GeV



Unifying Leptogenesis and Dark Matter

A solution for initial thermal NS abundance:

(PDB, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)



Very high energy neutrinos from decays

h

(Anisimov,PDB,0812.5085;PDB, P.Ludl,S. Palomarez-Ruiz 1606.06238)

Ø DM neutrinos unavoidably decay today into A+leptons (A=H,Z,W) through the 
same mixing that produced them in the very early Universe

Ø Potentially testable high energy neutrino contribution
Energy neutrino flux

Hard component

Flavour composition at the detector

Neutrino events at IceCube: 2 examples

MDM=300TeV MDM=8 PeV



DM lifetime vs. mass plane: allowed regions
(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

Solutions only for initial thermal NS abundance, unless MS~ 1 GeV



Higgs portal interactions of the source RH neutrinos
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Can these interactions thermalise the source RH neutrinos?
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Below the lines there is a fast thermalization 



DM lifetime vs. mass plane: allowed regions
(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

Solutions only for initial thermal NS abundance, unless MS~ 1 GeV



Mass varying source right-handed neutrino

The scalar field 𝜂 acquires a vev v𝜂 during a first order phase transition and 
accordingly NS acquires a space-time dependent mass:

M
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The bubble wall profile is well described by a kink solution found in the 
thin wall approximation:

(PDB, D. Marfatia, YL. Zhou 2001.07637)



Thermal effects and density matrix equation
Also this time we need to account for thermal masses from both interactions:

We get then the following effective Hamiltonian:
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And again we can write a density matrix equation (I,J = D,S):
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Resonance condition
(PDB, D. Marfatia, YL. Zhou 2001.07637)

⟺

⟺

Landau-
Zener 
holds in 
this
vertical
band



Constraints from dark matter decays

Since the DM mass is below the Higgs and gauge boson mass the
dominant decaying mode is  DM ➝ 𝝂e+e-

One has constraints both from CMB anisotropies (decays affect 
reionization history) and from X and 𝜸-ray diffuse backgrounds (EGRET, 
FERMI, INTEGRAL) placing a lower bound 𝜏DM ≳ 1025 s

(PDB, D. Marfatia, YL. Zhou 2001.07637)



Searching for solutions
(PDB, D. Marfatia, YL. Zhou 2001.07637)



GWs from SFOPTs
ΩGW
PT h2( f ) !ω ( f ; fpeak )

T* = 3.3TeV 60 TeV 500 TeV

7 PeV 40 PeV

(from PDB, D. Marfatia, YL. Zhou 2001.07637)

((How to calculate ΩGW ?  Which scale and what new physics ? 



First order phase transition associated to 
Majorana mass generation in the Majoron model
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At the moment let us assume T* > vew (high scale scenarios) 

After both symmetry breakings:    

Dirac neutrino mass matrix mD=vew h/ 2 generated after EWSB

Given the measured values of the neutrino oscillation mass scales, RH neutrinos
thermalise prior to the phase transition and contribute to the thermal potential 

DARK SECTOR ≡ NI ‘s + J + S       VISIBLE SECTOR ≡ SM particles

(PDB, D. Marfatia, YL. Zhou 2106.00025)



The minimal model
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For the one-loop finite temperature effective potential 
one finds a polynomial



The minimal model



Adding an auxiliary scalar



Adding an auxiliary scalar: GW spectrum



SUMMARY  
• Within the current phenomenological results DM puzzle might have a solution at 

higher scales than those usually explored

• Neutrino physics is a good place where to look for such a solution. A high scale 
DM requires to extend the usual type-I seesaw Lagrangian (able to explain 
neutrino masses and mixing and the matter-antmatter asymmetry via 
leptogenesis). 

• Higgs induced RH-RH neutrino mixing provides a way to produce dark neutrinos
with the right abundance and….also to make them shining. 

• Density matrix calculations are crucial and seem to suggest new possibilities 
such as production during a phase transition, interplay with Higgs portal 
interactions, …..



A possible GUT origin ?
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