Everybody's going NuTs 2022 Institute for Theoretical Physics, UAM - CSIC 16 May - 17 June, Madrid

Dark Matter from sterile-sterile neutrino mixing

Pasquale Di Bari (University of Southampton)

Cecar Vera Tole

Dark Matter

At the present time dark matter acts as a cosmic glue keeping together

Stars in galaxies.... and galaxies in clusters of galaxies (such as in Coma cluster)

...but it also has to be primordial and non-baryonic to understand structure formation and CMB anisotropies

(Hu, Dodelson, astro-ph/0110414)

(Planck 2018, 1807.06209)

Beyond the WIMP paradigm (from Baer et al.1407.0017)

The more we know the less we understand?

Right-handed neutrino laboratory searches (SHIP proposal, 1504.04855)

strength>	Known physics	Energy Frontier SUSY, extra dim. Composite Higgs → LHC, FHC
Interaction s	Intensity Frontier Hidden Sector → Fixed target facility	Unknown physics
	Energy	scale>

Dark matter from active-sterile neutrino mixing

(Dodelson Widrow '94; Shi, Fuller '99; Dolgov and Hansen '00; Asaka, Blanchet, Shaposhnikov '05)

- Type-I seesaw $-\mathcal{L}_{mass}^{v} = \overline{v}_{L} m_{D} v_{R} + \frac{1}{2} \overline{v_{R}^{c}} \mathcal{M} v_{R} + h.c. = -\frac{1}{2} (\overline{v_{L}} \overline{v_{R}^{c}}) \begin{pmatrix} 0 & m_{D}^{T} \\ m_{D} & \mathcal{M} \end{pmatrix} \begin{pmatrix} v_{L} \\ v_{R}^{c} \end{pmatrix} + h.c.$ $v_{1L} \simeq U_{1\alpha}^{\dagger} \left(v_{L\alpha} - \frac{m_{D\alpha 1}}{M_{1}} v_{R1}^{c} \right)$
- LH-RH neutrino mixing $N_{1R} \simeq v_{1R} + \frac{m_{D\alpha 1}}{M_1} v_{L\alpha}^c$

• For
$$M_1 << m_e \implies \tau_1 = 5 \times 10^{26} s \left(\frac{M_1}{keV}\right)^{-5} \left(\frac{10^{-8}}{\theta^2}\right) \gg t_0 \qquad \theta^2 \equiv \frac{\sum_{\alpha} |m_{D\alpha 1}|^2}{M_1^2}$$

• Solving Boltzmann equations an abundance is produced at T~100 MeV:

$$\Omega_{_{N_1}}h^2 \sim 0.1 \frac{\theta^2}{10^{-8}} \left(\frac{M_1}{\text{keV}}\right)^2 \sim \Omega_{_{DM,0}}h^2$$

- The lightest neutrino mass $m_1 \lesssim 10^{-5} \, eV \Rightarrow$ hierarchical limit
- The N₁'s also radiatively decay and this produces constraints from X-rays (or opportunities to observe it).
- Considering also structure formation constraints, one is forced to consider a resonant production induced by a large lepton asymmetry
- L ~10⁻⁴ (3.5 keV line?). (Horiuchi et al. '14; Bulbul at al. '14; Abazajian '14)

Heavy RH neutrino as dark matter? (Anisimov, PDB '08)

What production mechanism? For high masses just a tiny abundance is needed:

$$N_{DM} \simeq 10^{-9} (\Omega_{DM,0} h^2) N_{\gamma}(t_{prod}) \frac{\text{TeV}}{M_{DM}}$$

Suppose a RH neutrino has tiny Yukawa couplings (e.g., proportional to a small symmetry breaking parameter):

$$m_{D} \simeq \begin{pmatrix} \varepsilon_{e_{1}} & m_{De_{2}} & m_{De_{3}} \\ \varepsilon_{\mu_{1}} & m_{D\mu_{2}} & m_{D\mu_{3}} \\ \varepsilon_{\tau_{1}} & m_{D\tau_{2}} & m_{D\tau_{3}} \end{pmatrix} \text{ or } m_{D} \simeq \begin{pmatrix} m_{De_{1}} & \varepsilon_{e_{2}} & m_{De_{3}} \\ m_{D\mu_{1}} & \varepsilon_{\mu_{2}} & m_{D\mu_{3}} \\ m_{D\tau_{1}} & \varepsilon_{\tau_{2}} & m_{D\tau_{3}} \end{pmatrix} \text{ or } m_{D} \simeq \begin{pmatrix} m_{De_{1}} & m_{De_{2}} & \varepsilon_{e_{3}} \\ m_{D\mu_{1}} & m_{D\mu_{2}} & \varepsilon_{\mu_{3}} \\ m_{D\tau_{1}} & m_{D\tau_{2}} & \varepsilon_{\tau_{3}} \end{pmatrix}$$

$$m_D = V_L^{\dagger} D_{m_D} U_R$$
 $D_{m_D} \equiv v \operatorname{diag}(h_A, h_B, h_C)$ with $h_A \leq h_B \leq h_C$

$$\tau_{DM} = \frac{4\pi}{h_A^2 M_{DM}} = 0.87 h_A^2 10^{-26} \frac{\text{TeV}}{M_{DM}} s \implies \tau_{DM} > \tau_{DM}^{\min} \simeq 10^{28} s \Rightarrow h_A < 10^{-27} \sqrt{\frac{\text{TeV}}{M_{DM}}} \times \frac{10^{28} \text{s}}{\tau_{DM}^{\min}} s$$

Too small to reproduce the correct abundance with any production mechanism within a minimal type-I seesaw extension

Many proposed production mechanisms

- Recently many production mechanisms have been proposed especially to address IceCube initially seemingly anomalous PeV neutrino events:
- •from SU(2)_R extra-gauge interactions (LRSM) (Fornengo, Niro, Fiorentin);
- •from inflaton decays (Anisimov,PDB'08; Higaki, Kitano, Sato '14);
- from resonant annihilations through SU(2)' extra-gauge interactions (Dev, Kazanas, Mohapatra, Teplitz, Zhang '16);
- •From new U(1), interactions connecting DM to SM (Dev, Mohapatra, Zhang '16);
- •From U(1)_{B-L} interactions (Okada, Orikasa '12);

•.....

In all these models IceCube data are fitted through fine tuning of parameters responsible for decays (they are post-dictive)

DM from Higgs induced neutrino mixing (Anisimov '06, Anisimov, PDB '08)

Assume new (5-dim) interactions with the standard Higgs:

Resonant production described by Landau-Zener?

If $\Delta M^2 < 0$ (

$$\mathcal{L}_{A} = \frac{\lambda_{IJ}}{\Lambda} \phi^{\dagger} \phi \, \overline{N_{I}^{c}} N_{J}$$

In general they are non-diagonal in the Yukawa basis: this generates a RH neutrino mixing. Consider a 2 RH neutrino mixing for simplicity. Interactions generate effective potentials:

$$\Delta \mathcal{H} \simeq \begin{pmatrix} -\frac{\Delta \mathcal{M}^2}{4p} - \frac{T^2}{16p} h_s^2 & \frac{T^2}{12\tilde{\Lambda}} \\ \frac{T^2}{12\tilde{\Lambda}} & \frac{\Delta \mathcal{M}^2}{4p} + \frac{T^2}{16p} h_s^2 \end{pmatrix} \qquad \Delta \mathcal{M}^2 \equiv \mathcal{M}_s^2 - \mathcal{M}_{\mathcal{D}\mathcal{M}}^2 \\ \mathcal{M}_{\mathsf{D}\mathcal{M}} > \mathcal{M}_s) \text{ there is a resonance at: } z_{res} \equiv \frac{\mathcal{M}_{\mathcal{D}\mathcal{M}}}{T_{res}} = \frac{h_s \mathcal{M}_{\mathcal{D}\mathcal{M}}}{2\sqrt{\mathcal{M}_{\mathcal{D}\mathcal{M}}^2 - \mathcal{M}_s^2}} \end{pmatrix}$$

Density matrix calculation of the relic abundance

(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

initial

Density matrix equation for the DM-source RH neutrino system

$$\frac{dN_{IJ}}{dt} = -i \left[\Delta \mathcal{H}, \mathcal{N} \right]_{IJ} - \begin{pmatrix} 0 & \frac{1}{2} (\Gamma_{D} + \Gamma_{S}) \mathcal{N}_{DM-S} \\ \frac{1}{2} (\Gamma_{D} + \Gamma_{S}) \mathcal{N}_{S-DM} & (\Gamma_{D} + \Gamma_{S}) (\mathcal{N}_{N_{S}} - \mathcal{N}_{N_{S}}^{eq}) \end{pmatrix}$$

A numerical solution shows that a simple calculation based on the Landau-Zener approximation overestimates the relic abundance by a few orders of magnitude (especially in the hierarchical case)

The resonance occurs before oscillations develop \Rightarrow the production is non-resonant

Constraints from decays

(Anisimov, PDB '08; Anisimov, PDB'10; P.Ludl. PDB, S.Palomarez-Ruiz'16)

Lov

<u>2 body decays (M_S>M_W)</u>

DM neutrinos unavoidably decay today into A+leptons (A=H,Z,W) through the same mixing that produced them in the very early Universe

$$\theta_{\Lambda 0} = \frac{2 v^2 / \tilde{\Lambda}}{M_{\rm DM} (1 - M_{\rm S} / M_{\rm DM})} \cdot \begin{array}{c} \text{mixing} \\ \text{today} \\ \text{today} \end{array}$$
wer bound on $M_{\rm DM} (\tau_{28} \equiv \tau_{\rm DM}^{\rm min} / \tau_{\rm DM})$

$$M_{\rm DM} \ge M_{\rm DM}^{\rm min} \simeq 54 \,{\rm TeV} \,\alpha_{\rm S} \,\tau_{28} \,\left(\frac{M_{\rm S}}{M_{\rm DM}}\right)$$

$$N_{\rm DM} \rightarrow 2A + N_{\rm S} \rightarrow 3A + \nu_{\rm S} \ (A = W^{\pm}, Z, H).$$

Upper bound on
$$M_{DM}$$
 ($\tau_{28} \equiv \tau_{DM}^{min}/10^{28}$ s)

angle

 $(10^{28}s)$

$$M_{\rm DM} \lesssim 5.3 \,{\rm TeV} \,\alpha_{\rm S}^{-\frac{2}{3}} \, z_{\rm res}^{-\frac{1}{3}} \, \tau_{28}^{-\frac{1}{3}} \, \left(\frac{N_{N_{\rm S}}}{N_{\gamma}}\right)_{\rm res}^{\frac{1}{3}} \, \left(\frac{M_{\rm DM}}{M_{\rm S}}\right)^{\frac{2}{3}}$$

3 body decays and annihilations also can occur but yield weaker constraints

Failure of Landau-Zener approximation in the hierarchical case

initial thermal N_S-abundance

initial vanishing Ns-abundance

DM lifetime vs. mass plane: allowed regions

(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

Solutions only for initial thermal N_S abundance, unless $M_S \sim 1 \text{ GeV}$

Unifying Leptogenesis and Dark Matter

(PDB, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

A solution for initial thermal N_S abundance:

Very high energy neutrinos from decays

(Anisimov,PDB,0812.5085;PDB, P.Ludl,S. Palomarez-Ruiz 1606.06238)

- DM neutrinos unavoidably decay today into A+leptons (A=H,Z,W) through the same mixing that produced them in the very early Universe
- > Potentially testable high energy neutrino contribution

Energy neutrino flux

Flavour composition at the detector

Neutrino events at IceCube: 2 examples

10

Deposited EM-Equivalent Energy in Detector [TeV]

M_{DM} =8 PeV

DM lifetime vs. mass plane: allowed regions

(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

Solutions only for initial thermal N_S abundance, unless $M_S \sim 1 \text{ GeV}$

Higgs portal interactions of the source RH neutrinos

(PDB, A. Murphy, in preparation)

$$\mathcal{L}_{A} = \frac{\lambda_{DM-S}}{\Lambda} \phi^{\dagger} \phi \overline{N_{DM}^{c}} N_{S} + \frac{\lambda_{S-S}}{\Lambda} \phi^{\dagger} \phi \overline{N_{S}^{c}} N_{S}$$

Can these interactions thermalise the source RH neutrinos?

Below the lines there is a fast thermalization

DM lifetime vs. mass plane: allowed regions

(P.Di Bari, K. Farrag, R. Samanta, Y. Zhou, 1908.00521)

Solutions only for initial thermal N_S abundance, unless $M_S \sim 1 \text{ GeV}$

Mass varying source right-handed neutrino

(PDB, D. Marfatia, YL. Zhou 2001.07637)

$$-\mathcal{L}_{\lambda} = \frac{1}{2} M_{\rm DM} \overline{N_{\rm DM}^c} N_{\rm DM} + \frac{1}{2} M_{\rm D} \overline{N_{\rm D}^c} N_{\rm D} + \frac{\lambda_{\rm S}}{2} \eta \overline{N_{\rm S}^c} N_{\rm S} + \frac{1}{\widetilde{\Lambda}} \Phi^{\dagger} \Phi \overline{N_{\rm D}^c} N_{\rm S} + \frac{1}{\widetilde{\Lambda}} \Phi^{\dagger} \Phi \overline{N_{\rm DM}^c} N_{\rm D} + \text{h.c.} \qquad (1)$$

The scalar field η acquires a vev v_{η} during a first order phase transition and accordingly N_S acquires a space-time dependent mass:

$$M_{S}(x,t) = \lambda_{S} v_{\eta}(x,t)$$

The bubble wall profile is well described by a kink solution found in the thin wall approximation:

$$v_{\eta}(r,t) = \frac{1}{2} \bar{v}_{\eta} \left[1 - \tanh\left(\frac{r - v_{w} \left(t - t_{\star}\right)}{\Delta_{w}}\right) \right] \,,$$

Thermal effects and density matrix equation

(PDB, D. Marfatia, YL. Zhou 2001.07637)

Also this time we need to account for thermal masses from both interactions:

$$\widetilde{M}_{\rm S}^2(x,t) = M_{\rm S}^2(x,t) + \frac{T^2}{4}h_{\rm S}^2 + \frac{T^2}{8}\lambda_{\rm S}^2 N_{N_{\rm S}} N_{\eta}$$

We get then the following effective Hamiltonian:

$$\Delta \mathcal{H}_{IJ} \simeq \begin{pmatrix} -\frac{\Delta \widetilde{M}^2}{4 p} & \Delta H_{\rm mix} \\ \Delta H_{\rm mix} & \frac{\Delta \widetilde{M}^2}{4 p} \end{pmatrix}$$

$$\Delta H_{\rm mix} \equiv T^2/(12\,\widetilde{\Lambda})$$

$$\widetilde{\Delta M^2}(x,t) = M_S^2(x,t) - M_S^2(x,t)$$

 N_{D}^{2}

And again we can write a density matrix equation (I, J = D, S):

$$\frac{dN_{IJ}}{dt} = -i \left[\Delta \mathcal{H}, N \right]_{IJ} - \begin{pmatrix} 0 & \Gamma_{\text{dec}} \\ \Gamma_{\text{dec}} & \Gamma_{\text{prod}} \end{pmatrix}$$

$$\frac{dN_{N_{s}}}{dt} = -\Gamma_{prod}(N_{N_{s}} - N_{N_{s}}^{eq}) \quad with \ \Gamma_{prod} \simeq 2 \ \Gamma_{\eta \to N_{s}N_{s}} \Longrightarrow N_{N_{s}} \simeq N_{N_{s}}^{eq}$$

Resonance condition

(PDB, D. Marfatia, YL. Zhou 2001.07637)

$$\Delta \widetilde{M}^2(r, t_{\rm res}) = 0, \qquad \widetilde{M}^2_{\rm S}(r, t_{\rm res}) = M_{\rm D}^2$$
$$\frac{M_{\rm D}^2}{M_{\rm S}^2} \simeq \left[\frac{1}{2} - \frac{1}{2} \tanh\left(\frac{r - v_{\rm w} \left(t_{\rm res} - t_{\star}\right)}{\Delta_{\rm w}}\right)\right]^2 + \frac{T_{\star}^2}{6\bar{v}_{\eta}^2},$$

Constraints from dark matter decays

(PDB, D. Marfatia, YL. Zhou 2001.07637)

Since the DM mass is below the Higgs and gauge boson mass the dominant decaying mode is $DM \rightarrow ve^+e^-$

$$\begin{split} \Gamma_{N_{\rm DM} \to \nu \, \ell_{\alpha}^+ \ell_{\alpha}^-} &= \frac{(\theta_{\Lambda 0}^{\rm D-S} \, \theta_{\Lambda 0}^{\rm DM-D})^2}{96 \, \pi^3} \, \frac{\not\sim 0.1 \, M_{\rm Sol} \, \gamma \, {\rm Jmel}}{M_{\rm S}} \, G_{\rm F}^2 \, M_{\rm DM}^5 \, , \\ \theta_{\Lambda 0}^{\rm D-S(\rm DM-D)} &= \frac{2v^2}{(\tilde{\Lambda} \left(M_{\rm S(D)} - M_{\rm D(DM)}\right))} \end{split}$$

One has constraints both from CMB anisotropies (decays affect reionization history) and from X and γ -ray diffuse backgrounds (EGRET, FERMI, INTEGRAL) placing a lower bound $\tau_{DM} \gtrsim 10^{25} \text{ s}$

THE DIVINI

Searching for solutions

(PDB, D. Marfatia, YL. Zhou 2001.07637)

The scan is done over DM4 All points reproduce $^{2} \sim 0.12$ \int

	$\frac{T_{\star}}{\text{PeV}}$	$\frac{\tau_{\rm DM}}{10^{26}\rm s}$	$\frac{M_{\rm S}}{{\rm TeV}}$	$\frac{M_{\rm D}}{{ m TeV}}$	$\frac{M_{\rm DM}}{{\rm GeV}}$	$v_{\rm w}$	α	$\frac{\beta}{H_{\star}}$
B1	$3 \cdot 10^{-3}$	1.219	1.57	0.567	$7 \cdot 10^{-3}$	0.90	0.10	10
B2	0.016	21.26	12.9	7.72	0.077	0.90	0.10	10
B3	0.106	$9.25{\cdot}10^4$	93.3	72.6	2.92	0.90	0.10	10
B4	1.052	$4.24 \cdot 10^{5}$	666	666	46.69	0.95	0.15	5
B5	10.75	$4.69\!\cdot\!10^{17}$	$8.7\!\cdot\!10^3$	$5.3\!\cdot\!10^3$	175.8	0.95	0.15	5

TABLE I: Benchmark points obtained for $v_w/\Delta_w = T_\star/50$.

GWs from SFOPTs

 $\Omega_{\rm GW}^{\rm PT} h^2(f) \simeq \omega(f; f_{\rm peak})$

(from PDB, D. Marfatia, YL. Zhou 2001.07637)

How to calculate Ω_{GW} ? Which scale and what new physics?

First order phase transition associated to Majorana mass generation in the Majoron model

(PDB, D. Marfatia, YL. Zhou 2106.00025)

 $-\mathcal{L}_{N_{I}+\sigma} = \overline{L_{\alpha}} h_{\alpha I} N_{I} \Phi + \frac{\lambda_{I}}{2} \sigma \overline{N_{I}^{c}} N_{I} + V_{0}(\sigma) + h.c. \quad (respecting U_{L}(1) symmetry)$ $\sigma = \frac{1}{\sqrt{2}} (\sigma_1 + i\sigma_2), \qquad <\sigma > = \frac{v_T}{\sqrt{2}}$

At the end of the σ -phase transition, after SB, L is violated and

$$\sigma = \frac{e^{i\theta}}{\sqrt{2}}(v_0 + S + iJ) \qquad \qquad M_I = \lambda_I \frac{v_0}{\sqrt{2}} \sim M \text{ (seesaw scale)}$$

Dirac neutrino mass matrix $m_D = v_{ew} h/\sqrt{2}$ generated after EWSB

At the moment let us assume $T_* > v_{ew}$ (high scale scenarios)

After both symmetry breakings: $m_v = -\frac{v_{ew}^2}{2} \frac{n_{\alpha I} n_{\beta I}}{M}$

Given the measured values of the neutrino oscillation mass scales, RH neutrinos thermalise prior to the phase transition and contribute to the thermal potential

DARK SECTOR \equiv N_I's + J + S VISIBLE SECTOR \equiv SM particles

The minimal model

$$V_{0}(\sigma) = -\mu^{2} |\sigma|^{2} + \lambda |\sigma|^{4} \implies V_{0} = \sqrt{\mu^{2} / \lambda} \quad (\lambda, \mu^{2} > 0)$$

In the broken phase: •

$$\sigma = \frac{e^{i\theta}}{\sqrt{2}} (v_0 + S + iJ)$$

J is a massless Majoron and S has a mass $m_S = (2\lambda)^{1/2} v_0$ For the one-loop finite temperature effective potential one finds a polynomial

$$V_{\text{eff}}^T(\sigma_1) \simeq D \left(T^2 - T_0^2\right) \sigma_1^2 - A T \sigma_1^3 + \frac{1}{4} \lambda_T \sigma_1^4,$$

The minimal model

(Bspinose, Ruitoson Adding an auxiliary scalar (teheyes, Projumo's Very heavy A Leal Scolot $V_0(\overline{C}, \underline{N}) = V_0(\underline{C}) + V_{\underline{M}}(\underline{C}, \underline{M}) + V_{\underline{M}}(\underline{M})$ new terms the most important lerun is contained in Vyr: $V_{\eta \sigma}(\eta, \overline{\eta}) = \frac{S_1}{2} |\sigma|^2 \eta + \frac{S_2}{2} |\sigma|^2 \eta^2$ n undurgoes a PT setteing to its true Jacuum prior to the J-PT $\Rightarrow V_{ij}(\sigma_1, \tilde{u}) = \frac{1}{2} \tilde{M}_{+}^2 \sigma_1^2 - (AT + \tilde{M}) \sigma_1^3 + \frac{1}{4} \lambda_{+} \sigma_1^4$ $\tilde{u}_{\times} S_2$

Adding an auxiliary scalar: GW spectrum

	Inputs			Predictions				
	$m_S/{ m GeV}$	$\tilde{\mu}/{ m GeV}$	$M/{\rm GeV}$	$v_0/{ m GeV}$	$T_{\star}/{ m GeV}$	α	eta/H_{\star}	a_0
A1	0.06190	0.0005857	0.5361	3.5873	0.6504	0.1248	2966	0.05951
A2	156.2	13.15	465.6	1014	721	0.04139	754.8	0.3886
A3	1036	13.72	7977	44424	9180	0.08012	1975	0.06268
A4	43874	1856	181099	567378	247807	0.05611	809.7	0.1944

SUMMARY

- Within the current phenomenological results DM puzzle might have a solution at higher scales than those usually explored
- Neutrino physics is a good place where to look for such a solution. A high scale DM requires to extend the usual type-I seesaw Lagrangian (able to explain neutrino masses and mixing and the matter-antmatter asymmetry via leptogenesis).
- Higgs induced RH-RH neutrino mixing provides a way to produce dark neutrinos with the right abundance and....also to make them shining.
- Density matrix calculations are crucial and seem to suggest new possibilities such as production during a phase transition, interplay with Higgs portal interactions,

A possible GUT origin?

(Anisimov, PDB, 2010, unpublished)

hμ $M_{\rm GUT}^2$ $\Lambda_{
m eff}$ Φ $\Lambda_{\rm eff} >> M_{\rm GUT}$! $N_{\scriptscriptstyle \mathrm{B}}$ N alo: 01 Ð => /~ y MF $\left| \bigvee \right|_{\tilde{J}}$ $N_{\tilde{o}}$ Ц my some heavy formion My ~ Mguil

.

.