High energy neutrino lines induced by DM: search and possible links with the seesaw

Thomas Hambye ULB-Brussels

Based on: R. Coy, A. Gupta, TH, arXiv:2104:00042

R. Coy, TH, arXiv:2012.05272

C. El Aisati, C. Garcia-Cely, TH, L. Vanderheyden, arXiv: 1706.06600

C. El Aisati, M. Gustafsson, TH, arXiv: 1506.02657

C. El Aisati, M. Gustafsson, TH, T. Scarna, arXiv: 1510.05008

C. El Aisati, TH, T. Scarna, arXiv:1403.1280

M. Gustafsson, TH, T. Scarna, arXiv: I 303.4423

NuT Madrid, 17/05/2022

Outline

 ν - line search: motivations and new IceCube results

determination of minimal DM models leading to observable u-lines from DM annihilation

✓ links with seesaw???

> 2 examples of DM setups predicting seesaw induced ν -lines from DM decay

Neutrino line search: new IceCube results

Probing DM with neutrinos: neutrino telescopes

DM annihilation or decay in the galactic center and halo can produce neutrinos

The 5 motivations for the search of ν -lines

 \longrightarrow DM $DM o
u ar{
u}$ or DM o
u + X : monochromatic flux of u: "u-line"

no astrophysical background: DM smoking gun!

 \rightarrow ν -channel: most sensitive channel for ν -telescopes

(primary neutrinos)

for the ν -channel: neutrino telescopes have better sensitivity than γ -telescopes

 \hookrightarrow unlike for other channels: $DMDM \to \tau^+\tau^-, \, \mu^+\mu^-, \, e^+e^-, \, W^+W^-, \, q\bar{q}, \dots$

(secondary neutrinos)

The 5 motivations for the search of ν -lines

 \sim a $\nu\text{-line}$ can be produced from a tree level annihilation unlike a $\gamma\text{-line}$

a line can be very well distinguished from background: in neutrino energy spectrum

 \hookrightarrow well known for γ -rays

from γ telescopes the limit on γ -line channel is 2-3 orders of magnitude better than on channels with secondary photons

but so far all neutrino telescope limits on channel were not exploiting the energy information of the neutrino events!!!

First spectrum based search of a " ν -line" from IceCube data

using a 2010-2012 public IceCube data sample: for DM decay: $\Gamma_{DM \to \nu + X}$

Lifetime lower limit exploiting the sharp spectral feature property:

El Aisati, Gustafsson, TH 15'

 an order of magnitude improvement from few TeV to 100 TeV

Above 100 TeV there are other limits: Rott, Kohri, Park, 14' Esmaili, Kang, Serpico 14'

Monochromatic flux of ν from DM annihilation: experimental limits

Observational situation for an annihilation: $\langle \sigma v \rangle_{DMDM \to \nu\nu}$

Annihilation cross section upper limit:

El Aisati, Garcia-Cely, T.H., Vanderheyden 17

from line dedicated search using same I-year data sample than for the decay

decay: $n_{\nu} \propto \rho_{DM}$

 \Rightarrow only illustrative: based on sample of only one year and with no angular information: \uparrow crucial for annihilation: $n_
u \propto
ho_{DM}^2$

>> annihilation signal largely peaked on galactic center unlike for a decay

⇒ need also to see the galactic center with good angular resolution

First neutrino telescope dedicated search for neutrino lines

IceCube collaboration + C. El Aisati, M. Gustafsson, T.H.: to appear

using the energy information of the neutrino events on top of angular information to look for a sharp spectral feature

5-years data sample

Double binning likelihood method

Background pdf obtained from scrambling data (in right ascension)

Signal Substraction Likelihood: to correct for signal contamination in the background pdf

Irregular binning

First neutrino telescope dedicated search for neutrino lines

Results annihilation: $\chi\chi\to\nu\bar{\nu}$ channel:

First neutrino telescope dedicated search for neutrino lines

Results decay: $\chi \to \nu \bar{\nu}$ channel:

Results: other channels: annihilation and decay

IceCube Preliminary

IceCube Preliminary

Given this exciting experimental situation:

could we expect on the theoretical side signals at the level of present and future sensitivities??

Minimal models leading to observable γ -line from DM annihilation

Determination of minimal models leading to observable ν -line from DM annihilation

El Aisati, Garcia-Cely, TH, Vanderheyden 17

with DM out of single multiplet of $SU(3)_c \times SU(2)_L \times U(1)_Y$

 \blacktriangleright with $DM\ DM o
u
u$ mediated by single mediator multiplet

- ⇒ systematic study of these minimal models
- \Rightarrow which ones of these models can lead to an observable u-line???

List of simple candidate models for an observable u flux

20 models: surviving direct detection, s-wave annihil., ...

DM and mediator up to triplets

	Annihilation Channel	DM		Mediator		m_{ν} OK at 1-loop?	Suppressed by $v_{\rm EW}/m_{\rm DM}$?	$\ell^+\ell^-$	Model
only Dirac DM for $\nu\bar{\nu}$ channel	$\overline{\mathrm{DM}}\mathrm{DM} o \overline{ u} u$	Dirac	T_0	t-chann. scalar s-chann. vector	S	Yes	No	=	F_1
			T_0		D				F_2
			S		S				F_3
			S	t-chann. scalar	D				F_4
			D	s-chann. scalar	T_2	士	No		S_1^r
	$ ext{DMDM} o u u$	Real Scalar	S	t-chann. Majorana	D	No	Yes		S_2^r
			D		\overline{S}		No		S_3^r
			D		T_0		No		S_4^r
			D		T_2		Yes		S_5^r
			T_0		D		Yes		S_6^r
			T_2		D		Yes		S_7^r
			D	s-chann. scalar	T_2	±	No		
		Majorana	S	t-chann. scalar	D	No	Yes		F_2^m
$ u u$ channel \longrightarrow			$D \over D$		\overline{S}		No		F_3^m
					T_0		No		F_4^m
			D		T_2		Yes		F_5^m
			T_0		D		Yes		F_6^m
			T_2		D		Yes		F_7^m
		C 1 - C - 1		, 1 D.C.	D	V	37		S_1
		Complex Scalar	T_0	t-chann. Majorana		Yes	Yes		S_2
			S		D	37	3.7		F_4
		Dirac	T_0	t-chann. scalar		Yes	Yes		F_2

El Aisati, Garcia-Cely, T.H., Vanderheyden '17 See also related table in Lindner, Merle, Niro '10

u mass constraint: kills many u u channel possibilities

example: inert doublet DM:

u mass constraint: kills many u u channel possibilities

example: inert doublet DM:

too large neutrino masses! $m_{\nu} \gtrsim 100 \ \mathrm{keV}$

El Aisati, Garcia-Cely, T.H., Vanderheyden '17

7 simple models leading to observable ν flux at ν telescopes

>> surviving neutrino mass constraint, other indirect detection limits, perturbativity....

Annihilation Channel	DM Mediator		Mediator		m_{ν} OK Suppressed at 1-loop? by $v_{\rm EW}/m_{\rm DM}$?		$\ell^+\ell^-$	Model	' '
$\overline{ m DM} { m DM} ightarrow \overline{ u} u$	Dirac		s-chann. vector t-chann. scalar s-chann. vector t-chann. scalar	S D S D	Yes	No	=	F_1 F_2 F_3 F_4	for $m_{DM} \gtrsim \text{TeV}$ not to induce too large l^+l^- flux because
$\mathrm{DMDM} o \nu u$	Real Scalar	D S D D T O	s-chann. scalar	T_2 D T_0 D	± No	No Tes Tes Yes Yes		S_1^r S_2^r S_3^r S_4^r S_5^r S_6^r	these models predict $\Phi_{ uar{ u}}=\Phi_{l^+l^-}$
	Majorana		s-chann. scalar	T_2 T_0 T_0 T_0	± No	No No No No No		F_1^m F_2^m F_3^m F_4^m F_5^m F_6^m	excluded: give too many diffuse W^+W^- or too intense γ -line
	Complex Scalar	$egin{array}{c} T_2 \ S \ T_2 \ \end{array}$	t-chann. Majorana	<i>D D D</i>	Yes	res Yes		F_7^m S_1	possible only for $m_{DM} \lesssim { m TeV}$
	Dirac	$\frac{S}{T_0}$	t-chann. scalar	D	Yes	Yes		F_4 F_2	due to perturbativity:

El Aisati, Garcia-Cely, T.H., Vanderheyden '17

there exist simple models leading to observable neutrino flux at neutrino telescopes

u-line cross section results including Sommerfeld effect

present ν -line sensitivity $\langle \sigma v \rangle_{DM\;DM \to \nu\nu} \sim \text{few}\, 10^{-25}~$ doesn't reach the thermal freeze out total cross section value $\langle \sigma v \rangle_{Tot} \sim 3 \cdot 10^{-26}$

> need for a boost of the cross section from freeze out epoch to today

astrophysical boost particle physics boost: Sommerfeld effect

non relativistic DM particles today can exchange many lighter mediators before annihilating

DM

as models

example: model F_2 : a Y=0 fermion DM triplet $\ +\$ a scalar doublet mediator

DM

Sommerfeld for free and known: E-W interactions F_1, S_1^r, F_1^m

u-line is predicted as a function of m_{DM} and $_{DM}-_{Med}-_{
u}$ coupling g

u-line cross section results including Sommerfeld effect

 \Longrightarrow example: model F_2 : a Y=0 fermion DM triplet + a scalar doublet mediator

 \Rightarrow all fluxes predicted: ν -line and associated charged lepton flux around the corner discrimination of the models

u-line cross section results including Sommerfeld effect

example: model F_2 : a Y=0 fermion DM triplet + a scalar doublet mediator

> various multi-TeV models with electroweak interactions are in fact already excluded: give a too large Sommerfeld boost > neutrino telescopes are already excluding thermal scenarios! but still allowed at lower scale or if annihilation channel to neutrinos subleading in freeze-out

Probing the seesaw???

model S_1^r : real scalar DM from doublet + scalar Y=2 triplet mediator

a type-II seesaw state Δ_L

El Aisati, Garcia-Cely, T.H., Vanderheyden '17

> one surviving model involve the type-II seesaw scalar triplet state

model S_1^r : real scalar DM from doublet + scalar Y=2 triplet mediator

flavour flux composition outside oscillation region

Garcia-Cely, Heeck 'I 6 El Aisati, Garcia-Cely, TH, Vanderheyden 'I 7

Probing the seesaw???

one surviving model involve the type-II seesaw scalar triplet state

model S_1^r : real scalar DM from doublet + scalar Y=2 triplet mediator

but some tuning is necessary between tree level and loop contribution not to induce not to induce too large neutrino masses:

Seesaw induced ν -line from DM decay

DM slow decay?

$$\tau_{DM} > \tau_U \sim 10^{18} \text{ sec}$$

$$au_{DM} > 10^{24-29} \; {
m sec}$$

 $\tau_{DM} > 10^{24-29} {
m sec}$ \leftarrow not to produce too large fluxes of $e^+, \bar{p}, \gamma, \nu, ...$

2 main options

suppressed by powers of a very heavy scale

suppressed by very tiny couplings

DM slow decay from heavy scale suppression

dimension 5 operator suppression:
$$\tau_{DM} \sim \frac{1}{8\pi} \frac{m_{DM}^3}{\Lambda_{UV}^2}$$
 $\Rightarrow \Lambda_{UV} \sim 10^{29} \text{ GeV}$

$$\tau_{DM} \sim 10^{27} \ {\rm sec} \ m_{DM} \sim {\rm TeV}$$

dimension 6 operator suppression:
$$\tau_{DM} \sim \frac{1}{8\pi} \frac{m_{DM}^5}{\Lambda_{UV}^4} \implies \Lambda_{UV} \sim 10^{16} \text{ GeV}$$

opportunity to probe the GUT scale!!

and seesaw physics!

A simple DM setup leading to dim-6 seesaw induced ν -line

Coy, TH, '20

a massive QED structure on top of the SM: $U(1)_X$ gauge structure with SSB

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - \frac{1}{4} F_{\mu\nu}^X F^{X\mu\nu} + \bar{\chi} (i D - m_\chi) \chi + D_\mu \phi^\dagger D^\mu \phi - \lambda_m \phi^\dagger \phi H^\dagger H - V(\phi)$$
 TH '08 + χ

the χ fermion is stable, as well as the $U(1)_X$ gauge boson if $m_A < 2m_\chi$

+ seesaw type-I interactions:

$$\mathcal{L}_{\text{seesaw}} = i\overline{N_R} \partial N_R - \frac{1}{2} m_N \left(\overline{N_R} N_R^c + \overline{N_R^c} N_R \right) - \left(Y_{\nu} \overline{N_R} \tilde{H}^{\dagger} L + h.c. \right) .$$

 \Rightarrow possibility a neutrino portal: $\delta \mathcal{L} = -\left(Y_L \overline{N_R} \phi \chi_L + Y_R \overline{N_R^c} \phi \chi_R + h.c.\right)$

Destabilization of the fermion DM component by the neutrino portal interactions Coy,TH, '20

$$\chi$$
 decays: $\chi \to \nu \phi$ $\chi \to \nu h$ $\chi \to W^{\pm} l^{\mp}$ $\chi \to Z \nu$ $\chi \to A' \nu$

all suppressed by 2 powers of m_N : χ fastly decays \Rightarrow no χ DM anymore (before BBN)

Seesaw induced slow decay of the gauge boson DM component

Coy, TH, '20

A' decays: $A' \to \nu \bar{\nu}$

$$\Gamma(A' \to \nu \bar{\nu})_{\text{tree}} \simeq \frac{g_X^2 Y_\nu^4 (Y_L^2 - Y_R^2)^2 v^4 v_\phi^4 m_{A'}}{96\pi m_\chi^4 m_N^4}$$

All one-loop induced decays also suppressed by 4 powers of m_N ! (unlike Majoron DM)

Seesaw induced slow decay of the gauge boson DM component

Coy, TH, '20

lower bound on m_N for all couplings of order unity

also includes 3 and 4 body tree level decays

+ related emission of charged lepton: to be seen soon too if a neutrino line is observed!!

A low scale seesaw induced decaying DM setup

a simple question: could the seesaw interactions set the DM relic density, even though DM is not a sterile neutrino??

from a thermal bath the 2 most straightforward ways to account for the observed DM relic density are the freeze-out and freeze-in

a framework which involve small couplings is the low scale seesaw: could low scale seesaw be responsible for DM relic density through freeze-in???

A simple DM setup whose relic density is determined by seesaw interactions

Coy, Gupta, TH, '2 I

seesaw type-l:
$$\mathcal{L}_{\mathrm{seesaw}} = i \overline{N_R} \partial N_R - \frac{1}{2} m_N (\overline{N_R} N_R^c + \overline{N_R^c} N_R) - (Y_{\nu} \overline{N_R} \tilde{H}^{\dagger} L + h.c.)$$

neutrino portal: $\delta \mathcal{L} = -Y_{\chi} \overline{N} \phi \chi + h.c.$

 \searrow DM is χ and/or ϕ (\mathcal{Z}_2 symmetry or extra $U(1)_X$, ...)

first step: if $m_N < m_{W,Z,h}$ freeze-in production of N's from seesaw Yukawa induced decays of W, Z, h

$$\begin{split} &\Gamma_{W^{\pm} \to N \, l_{i}^{\pm}} \; = \; \frac{1}{48\pi} m_{W} |Y_{\nu i}|^{2} \, f(m_{N}^{2}/m_{W}^{2}) \,, \\ &\Gamma_{Z \to \overline{N} \, \nu_{i} + N \bar{\nu}_{i}} \; = \; \frac{1}{48\pi} m_{Z} |Y_{\nu i}|^{2} \, f(m_{N}^{2}/m_{Z}^{2}) \,, \\ &\Gamma_{h \to \overline{N} \, \nu_{i} + N \bar{\nu}_{i}} = \frac{1}{16\pi} m_{h} |Y_{\nu i}|^{2} \Big(1 - \frac{m_{N}^{2}}{m_{h}^{2}}\Big)^{2} \\ & \qquad \qquad \text{not in thermal equilibrium if} \; \sum_{i} |Y_{\nu i}|^{2} \lesssim 1 \cdot 10^{-16} \cdot \Big(\frac{m_{N}}{10 \, \mathrm{GeV}}\Big)^{2} \end{split}$$

A simple DM setup whose relic density is determined by seesaw interactions

Coy, Gupta, TH, '2 I

second step: decay of N's through the neutrino portal: $N \to \chi \phi$

easily dominant because 2-body decay

 $Y_{\chi} = Y_{\phi} = Y_{N}|_{\text{before N decay}}$

$$\Omega_{DM} h^2 \simeq 10^{23} \sum_{i} |Y_{\nu i}|^2 \left(\frac{m_{\chi} + m_{\phi}}{1 \,\text{GeV}}\right) \left(\frac{10 \,\text{GeV}}{m_N}\right)^2$$

from Yukawa couplings leading to lightest neutrino mass

$$m_{\nu_1} < \tilde{m}_1 = 4 \cdot 10^{-12} \,\text{eV} \cdot \frac{10 \,\text{GeV}}{m_N} \cdot \left(\frac{1 \,\text{GeV}}{m_\chi + m_\phi}\right)$$

⇒ the seesaw has the flexibility to produce DM in such a simple way from decays of SM bosons

Testability of the framework

Coy, Gupta, TH, '21

lightest neutrino mass prediction: cannot be established but can be falsified

$$m_{\nu_1} < \tilde{m}_1 = 4 \cdot 10^{-12} \,\text{eV} \cdot \frac{10 \,\text{GeV}}{m_N} \cdot \left(\frac{1 \,\text{GeV}}{m_\chi + m_\phi}\right)$$

observable neutrino line prediction:

for instance if $m_\chi > m_\phi$ DM is dominated by χ component:

 $\chi \to \phi \nu$ induced by neutrinos portal and N- ν seesaw mixing

$$\Gamma_{\chi \to \phi \nu} = \frac{1}{32\pi} |Y_{\chi}|^2 \frac{\sum_{i} |Y_{\nu i}|^2 v^2}{m_N^2} m_{\chi} \left(1 - \frac{m_{\phi}^2}{m_{\chi}^2}\right)^2$$

u-line if on top of tiny $Y_{
u}$ coupling, the Y_{χ} coupling is also tiny

upper bound to have 1-to-1 correspondance between Ω_{DM} and seesaw parameters (2-body N decay dominance)

upper bound from large scale structure formation $au_\chi \lesssim 10^{28} \sec \left(\frac{m_{DM}}{m_N}\right)^2 \left(\frac{m_N}{10 \, {\rm GeV}}\right)$

Other option leading to 1-to-1 Ω_{DM} -seesaw correspondance

Coy, Gupta, TH, '21

relativistic decoupling of DM in the hidden sector thermal bath

if neutrino portal Y_{χ} large, χ disappears quickly: ϕ is the DM

$$\chi \to \phi \nu$$

 N, χ, ϕ forms a thermalized (from Y_{χ}) hidden sector which does not thermalize with SM thermal bath $(Y_{\nu} \text{small})$

SM sector thermal bath: T hidden sector thermal bath: T'

in the hidden sector the ϕ DM particle decouples relativistically: $m_{\phi} < m_{\chi} << m_N$ $\phi\phi\leftrightarrow\chi\chi$

doesn't depend on annihilation cross section but only on T'/T:

TH, Lucca, Vanderheyden, '20

">relativistic floor hidden sector DM scenario"

T'/T is set by seesaw parameters \Rightarrow 1-to-1 Ω_{DM} -seesaw correspondence!

Short Summary

high energy u-line search : - large recent improvements

- more in near future

u-line from DM annihilation: - several possibilities at level of present sensitivity - possible links with seesaw

even if neutrino masses constraints kill in many cases the possibility of an intense ν -line

V-line from DM decay: - many possibilities at level of present sensitivity

- can be induced by seesaw interactions

high seesaw scale option (order unity couplings): allow to test GUT scale

low seesaw scale option (tiny couplings)

First spectrum based search of a " ν -line" from IceCube data

using a 2010-2012 public IceCube data sample: for DM decay: $\Gamma_{DM \to \nu + X}$

Lifetime lower limit exploiting the sharp spectral feature property:

El Aisati, Gustafsson, TH 15'

between few TeV and 50 TeV, γ and ν line sensitivities are similar! \leftarrow within a factor 1 to 20

IceCube new analysis: Most significant result

Determination of minimal models leading to observable *V*-line from DM annihilation many constraints:

• constraint I: annihilation must proceed through s-wave velocity powers today

ightharpoonup for the $DM\,DM
ightharpoonup
u\,ar{
u}$ channel this excludes all scalar and Majorana DM models

but leaves open many possibilities in the $DM \, DM \to \nu \, \nu$ channel

Determination of minimal models leading to observable \mathcal{V} -line from DM annihilation

many constraints:

• constraint 2: direct detection constraint:

>> example: DM is neutral component of scalar doublet: ``inert'' doublet

 \blacktriangleright similarly $Y \neq 0$ DM Dirac fermion must be split into Majorana fermions

u-line cross section results including Sommerfeld effect

other example: model F_4 : a Y=0 fermion DM singlet + a scalar doublet med.

Sommerfeld requires extra light BSM mediator

u-line is predicted as a function of of m_{DM} and $DM-Med-\nu$ coupling g and Som. mediator mass and coupling

El Aisati, Garcia-Cely, T.H., Vanderheyden 'I 7