Novel ways to probe effective neutrino interactions

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

June 6th 2022 NuTs workshop | IFT seminar

Julia Harz

Technische Universität München

Outline

Motivation

- Neutrinos the missing piece in the puzzle
- A tight link to the matter-antimatter asymmetry?

Dim-5 neutrino magnetic moment

- Coherent elastic neutrino nucleus scattering
- Photon emission off Primakoff up-scattering
- Implications on Majorana vs. Dirac neutrinos

Dim-7 and 9 lepton number violating interactions

- Constraining LNV with kaon decays
- Complementarity of neutrinoless double beta decay and LHC
- Implications for baryogenesis

Julia Harz

Neutrinos – the standard model misfits

Julia Harz

Neutrino **oscillations** require **massive** neutrinos.

Julia Harz

Neutrinos – what do we know?

- Neutrinos in the Standard Model are **massless**
- Neutrino oscillations require massive neutrinos

 $\Delta m_{12}^2 \sim 7.59 \times 10^{-5} \text{eV}^2$ $\Delta m_{23}^2 \sim \Delta m_{31}^2 \sim 2.3 \times 10^{-3} \text{eV}^2$

- Normal vs. inverted hierarchy
- Neutrino **mixing**

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\\\nu_\tau\end{array}\right) = U_{PMNS} \left(\begin{array}{c}\nu_1\\\nu_2\\\nu_3\end{array}\right)$$

NEUTRINO OSCILLATIONS The discovery of these oscillations shows that neutrinos have mass.

How do neutrinos get their masses? What nature do neutrinos have? Are they their own anti-particles?

Julia Harz

Right-handed Neutrinos (RHNs)

Right-handed neutrinos could explain the neutrino masses.

Julia Harz

Neutrinos - Dirac or Majorana?

Julia Harz

Novel ways to probe effective neutrino interactions

Technische Universität München

$$\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$$

Why is there more matter than anti-matter?

Julia Harz

How big is the baryon asymmetry?

Julia Harz

Why do we need new physics?

Theoretical conditions that have to be fulfilled (Sakharov conditions):

Julia Harz

Basic principle of standard baryogenesis

Basic principle of standard leptogenesis

Julia Harz

Basic principle of standard leptogenesis

Julia Harz

Effective field theory for neutrinos

 Above the EW scale, interactions can be described by the Standard model effective field theory (SMEFT)

$$\mathcal{L}_{\text{SMNEFT}} = \mathcal{L}_{\text{SM+N}} + \sum_{i} \sum_{d \ge 5} C_i^{(d)} \mathcal{O}_i^{(d)}$$

 Below the EW scale, interactions can be described by the low-energy effective field theory (LEFT)

$$\mathcal{L}_{\text{LNEFT}} = \mathcal{L}_{d \le 4} + \sum_{i} \sum_{d \ge 5} C_{i,L}^{(d)} \mathcal{O}_{i,L}^{(d)}$$

$$\mathcal{O}_{q\nu N1}^{V} = (\overline{q_L}\gamma_{\mu}q_L)(\overline{\nu^C}\gamma^{\mu}N) + h.c. ,$$

$$\mathcal{O}_{q\nu 1}^{S} = (\overline{q_R}q_L)(\overline{\nu^C}\nu) + h.c. ,$$

$$\mathcal{O}_{qN1}^{S} = (\overline{q_R}q_L)(\overline{N^C}N) + h.c. ,$$

$$\mathcal{O}_{q\nu}^{T} = (\overline{q_R}\sigma^{\mu\nu}q_L)(\overline{\nu^C}\sigma_{\mu\nu}\nu) + h.c. ,$$

$$\mathcal{O}_{q\nu N2}^{T} = (\overline{q_R}\gamma_{\mu}q_R)(\overline{\nu^C}\gamma^{\mu}N) + h.c. ,$$

$$\mathcal{O}_{q\nu 2}^{S} = (\overline{q_L}q_R)(\overline{\nu^C}\nu) + h.c. ,$$

$$\mathcal{O}_{qN2}^{S} = (\overline{q_L}q_R)(\overline{N^C}N) + h.c. ,$$

$$\mathcal{O}_{qN2}^{T} = (\overline{q_L}\sigma^{\mu\nu}q_R)(\overline{N^C}\sigma_{\mu\nu}N) + h.c. ,$$

 $\mathcal{O}_{\mu\nu F} = (\overline{\nu^C} \sigma_{\mu\nu} \nu) F^{\mu\nu} + h.c. ,$

Lepton number violating (LNV)

$$\begin{split} \mathcal{O}_{\nu NF} &= (\overline{\nu} \sigma_{\mu\nu} N) F^{\mu\nu} + h.c. , \\ \mathcal{O}_{q\nu1}^{V} &= (\overline{q_L} \gamma_{\mu} q_L) (\overline{\nu} \gamma^{\mu} \nu) , \\ \mathcal{O}_{qN1}^{V} &= (\overline{q_L} \gamma_{\mu} q_L) (\overline{N} \gamma^{\mu} N) , \\ \mathcal{O}_{q\nuN1}^{S} &= (\overline{q_L} q_R) (\overline{\nu} N) + h.c. , \\ \mathcal{O}_{q\nuN}^{T} &= (\overline{q_L} \sigma^{\mu\nu} q_R) (\overline{\nu} \sigma_{\mu\nu} N) + h.c. , \\ \mathcal{O}_{q\nu2}^{V} &= (\overline{q_R} \gamma_{\mu} q_R) (\overline{\nu} \gamma^{\mu} \nu) , \\ \mathcal{O}_{qN2}^{V} &= (\overline{q_R} \gamma_{\mu} q_R) (\overline{N} \gamma^{\mu} N) , \\ \mathcal{O}_{q\nuN2}^{S} &= (\overline{q_R} q_L) (\overline{\nu} N) + h.c. , \end{split}$$

Lepton number conserving (LNC)

See e.g. Li, Ma, Schmidt (2020)

14

Julia Harz

Novel ways to probe effective neutrino interactions

Technische Universität München

Outline

Motivation

- Neutrinos the missing piece in the puzzle
- A tight link to the matter-antimatter asymmetry?

Dim-5 neutrino magnetic moment

- Coherent elastic neutrino nucleus scattering
- Photon emission off Primakoff upscattering
- Implications on Majorana vs. Dirac neutrinos

Dim-7 and 9 lepton number violating interactions

- Constraining LNV with kaon decays
- Complementary of neutrinoless double beta decay and LHC
- Implications for baryogenesis

Julia Harz

Dim-5 transition magnetic moments

 $\mathcal{L} \supset \mu_{\nu N}^{\alpha} \bar{\nu}_{\alpha L} \sigma_{\mu \nu} P_R N F^{\mu \nu} + \text{h.c.}$

Julia Harz

Dim-5 transition magnetic moments

 $\mathcal{L} \supset \mu_{\nu N}^{\alpha} \bar{\nu}_{\alpha L} \sigma_{\mu \nu} P_R N F^{\mu \nu} + \text{h.c.}$

What can we learn from coherent elastic neutrino nucleus scattering?

Julia Harz

Window to new physics: CEvNS

Coherent elastic neutrino-nucleus scattering:

$$\nu A \to \nu A$$

Postulated in the standard model in 1974 by D. Freedman

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10^{-38} cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

Julia Harz

Window to new physics: CEvNS

Neutrino energy for coherence:

$$\begin{array}{ll} \Delta q \cdot \Delta R_N \leq 1 \\ \text{nomentum extension of nucleus} \\ E_{\nu} \leq \frac{hc}{R_N} \approx O(50 \mathrm{MeV}) \end{array}$$

Cross-section of CEvNS in the Standard Model:

$$\begin{split} \frac{d\sigma}{d\Omega} = & \frac{G_F}{16\pi} \cdot \overset{\text{v kin. energy recoil angle}}{\cdot E_{\nu}^2 \cdot (1 + \cos \theta)} \\ & \cdot (N - Z(1 - 4\sin^2 \theta_W))^2 \cdot F(Q^2) \\ & \text{neutron \# proton \#} & ~1 \text{ for full coherence} \end{split}$$

Maximal nucleus recoil energy:

$$E_r^{\rm max} = \frac{2E_\nu^2}{M_A} \approx O({\rm keV}) \label{eq:Er}$$
 mass nucleus

Julia Harz

Novel ways to probe effective neutrino interactions

Technische Universität München

19

Window to new physics: CEvNS

Neutrino energy for coherence:

 $\begin{array}{l} \Delta q \cdot \Delta R_N \leq 1 \\ \text{momentum} & \text{extension of} \\ \text{transfer} & \text{nucleus} \end{array} \\ E_{\nu} \leq \frac{hc}{R_N} \approx O(50 \text{MeV}) \end{array}$

Cross-section of CEvNS in the Standard Model:

Julia Harz

2017: First observation of CEvNS

COHERENT Experiment @ Spallation Neutron Source (SNS)

Accelerator neutrinos:

 $E_r < O(10) \mathrm{keV}$ $E_{\nu} < 50 \mathrm{MeV}$

e- and µ-flavor (anti-)neutrinos close to decoherence

Dinosaur heretic looks

SPOTTING A

A compact detector spies

pp. 1098 & 1123

Increase inclusion to increase

STEM diversity p. 110

Fluorescent or magnetic

\$15 15 SEPTEMBER 2017

Reactor neutrinos:

$$E_r < O(100) eV$$

single e-flavor antineutrinos full coherence

Next Hubris to challenge! **nu**/cleus

Julia Harz

Novel ways to probe effective neutrino interactions

EXPERIMEN

Landscape of new experiments

Julia Harz

Landscape of new experiments

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030's
Reactor Neutrino Sources														
Hartlepool Site				BG studie	8									
Angra Site				location &	shielding	upgrades								
CHOOZ Site		BG studies	5	Site	Prep	Operation	5							
CONNIE	40 g	g			10 g skipp 100g skipper			1 kg skipper		10kg skipper				
CONUS														-
MINER														
RED-100														
TEXONO			PIRI	R&D										
NUCLEUS						10g CaW	04 & Al2O	kg-scale11	kg: Ge+ Si					
XENON														
NEWSG	Feasability Studies													
RICOCHET														
LAr			D	etector R&	D									
Spallation Neutrino S	ources													
SNS FTS	1.1 MW	1.4	4 MW upg	rade		1.7 MW u	pgrade	Ep=1.3 G	eV Upgrad	e		2.0 MW u	pgrade	
SNS STS														
Lujan Center							30 ns Upg	rade						
ESS														
COHERENT - CsI	X-	Observatio.	n!											
- LAr	20 keV threshold					75	0 kg			10	T			
- Ge				16 kg	3			100 kg						
- NaI					3.3 T				Cryo NaI					
XENON@SNS			_				100 kg							
CCM - 1st detector														
- 2nd detector														
8B Solar Neutrinos														
Xenon N1														
SuperCDMS Depletide LM							_		_					
Atmospheric and Diff	ing Superior	ong Neutrie	a Rackan	wind										
DAPWIN	use supern	ova veulrii	io backgra	huha										
Galactic Supernova N	leutrinor (buly												
Darkside-20k	earmos O	may 1												
ARGO														
anou														

Figure: Phil Barbeau

Landscape of new physics

Plethora of theoretical efforts to identify new physics with CevNS:

McLaughlin, K. Patton et al. (2012)

Light mediators, Billard et al. (2019)

Neutrino non-standard interactions, Lindner et al. (2017), Bischer et al. (2019)

Supernovae dynamics, Wilson et al.

References exemplary, non-exhaustive

active neutrino magnetic moment

Active-sterile transition neutrino magnetic moment

sterile neutrino magnetic moment

Julia Harz

active neutrino magnetic moment

Active-sterile transition neutrino magnetic moment $\mu_{N'N}$ N

sterile neutrino magnetic moment

$$\mathcal{L} \supset \mu^{\alpha}_{\nu N} \bar{\nu}_{\alpha L} \sigma_{\mu \nu} P_R N F^{\mu \nu} + \mu^{\alpha}_{N' N} \bar{N'} \sigma_{\mu \nu} P_R N F^{\mu \nu} + \text{h.c}$$

Julia Harz

For scales much larger than the light active neutrinos $m_{\nu} \ll E_{\nu}$, rates are identical for Dirac and Majorana active neutrinos \rightarrow agreement with Dirac-Majorana confusion theorem

→ How can we distinguish Dirac vs. Majorana right-handed neutrinos (RHNs)?

Coherent elastic neutrino-nucleus scattering:

$$\mathcal{L} \supset \mu_{\nu N}^{\alpha} \bar{\nu}_{\alpha L} \sigma_{\mu \nu} P_R N F^{\mu \nu} + \mu_{N'N}^{\alpha} \bar{N'} \sigma_{\mu \nu} P_R N F^{\mu \nu} + \text{h.c.}$$

Primakoff-upscattering

Julia Harz

Novel ways to probe effective neutrino interactions

e.g. Magill, Plestid, Pospelov, Tsai (2018)

Primakoff-upscattering

Miranda, Papoulias, Sanders, Tortola, Valle (2021)

Julia Harz

CEvNS with Photon Emission

Primakoff-upscattering

Primakoff-upscattering with photon emission

Suppressed, but new smoking gun signal!

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Novel ways to probe effective neutrino interactions

Technische Universität München

CEvNS with Photon Emission

$$i\mathcal{M}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{D}} = \mu_{\nu N}^{\alpha}\mu_{\nu N}^{\beta}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}P_{\mathbf{R}}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$
$$i\mathcal{M}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{M}} = \mu_{\nu N}^{\alpha}\mu_{\nu N}^{\beta}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$

Electron-recoil distribution:

$$\frac{d\sigma_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{D}(\mathbf{M})}}{dE_{R}}\Big|_{\mathrm{NWA}} = \frac{d\sigma_{\nu_{\alpha}A\to NA}}{dE_{R}}\frac{\Gamma_{N\to\nu_{\beta}\gamma}^{\mathbf{D}(\mathbf{M})}}{\Gamma_{N}}$$

Novel ways to probe effective neutrino interactions

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

CEvNS with Photon Emission

$$i\mathcal{M}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{D}} = \mu_{\nu N}^{\alpha}\mu_{\nu N}^{\beta}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}P_{\mathbf{R}}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$
$$i\mathcal{M}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{M}} = \mu_{\nu N}^{\alpha}\mu_{\nu N}^{\beta}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$

Electron-recoil distribution:

$$\frac{d\sigma_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{D}(\mathbf{M})}}{dE_{R}}\Big|_{\mathrm{NWA}} = \frac{d\sigma_{\nu_{\alpha}A\to NA}}{dE_{R}}\frac{\Gamma_{N\to\nu_{\beta}\gamma}^{\mathbf{D}(\mathbf{M})}}{\Gamma_{N}}$$

Energy and angular distribution of the photon:

$$\frac{d^2 \sigma_{\nu_{\alpha} A \to \nu_{\beta} A \gamma}^{\mathbf{D}(\mathbf{M})}}{dE_{\gamma} d\theta_{\gamma}} \bigg|_{\mathrm{NWA}} = |\mu_{\nu N}^{\alpha} \mu_{\nu N}^{\beta}|^2 \frac{\alpha Z^2 E_{\gamma} \sin \theta_{\gamma}}{128\pi^2 m_A E_{\nu} m_N \Gamma_N} \int_{t_1^-}^{t_1^+} dt_1 \frac{L_{\mu\nu}^{\gamma, \mathbf{D}(\mathbf{M})} H^{\mu\nu} \mathcal{F}^2(t_1)}{t_1^2 \sqrt{-\Delta_4}} \bigg|_{s_1 = m_N^2}$$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

CEvNS with Photon Emission – Majorana vs Dirac

 $E_{\nu} = 3 \text{MeV}, m_N = 1 \text{MeV}, \mu_{\nu N}^{\alpha} = 3 \times 10^{-8} \mu_B, \Gamma_N = 10^{-11} \text{MeV}$

- Clear difference for larger photon energies / smaller angles
- Different reactor neutrino energy → access to different sterile neutrino masses

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Experimental realisation: NUCLEUS experiment

- At Double-Chooz site
- NUCLEUS-phase 1: 10g Al₂O₃/CaWO₄
- NUCLEUS-phase 2: 1kg ⁷³Ge upgrade
- Distance to cryogenic outer veto < 5cm for phase 1
- Energy threshold: 10 eV
- Sensitivity to photon energy: 1keV to 10 MeV
- Ionisation resolution: 50-100 keV

T. Lasserre

10 cm

$$\frac{dR_{\bar{\nu}_e A \to \bar{\nu}_e A \gamma}^{\mathbf{D}(\mathbf{M})}}{dE_{\gamma}} = \frac{1}{m_A} \int_{E_{\nu}^{\min}(E_{\gamma})}^{E_{\nu}^{\max}} dE_{\nu} \frac{d\phi_{\bar{\nu}_e}}{dE_{\nu}} \frac{d\sigma_{\bar{\nu}_e A \to \bar{\nu}_e A \gamma}^{\mathbf{D}(\mathbf{M})}}{dE_{\gamma}}$$

Julia Harz

Novel ways to probe effective neutrino interactions

Outer

cryo-/ veto

RHN neutrino decay width

Example scenario: neutrino decays within the detector (NUCLEUS: 5cm):

$$\Gamma_N = \frac{\beta \gamma}{l_0} \approx 4 \times 10^{-12} \text{ MeV} \frac{5 \text{ cm}}{l_0} \beta \gamma$$
$$\Gamma_N > 10^{-11} \text{ MeV}$$

Decay width of N limited by Borexino limits to: $\Gamma(N \to \nu \gamma) = \frac{(\mu_{\nu N}^e)^2 m_N^3}{4\pi} \lesssim 10^{-15} \text{ MeV}$

Case 1: • There are other light RHNs states $\Gamma_{N \to X\gamma}^{D(M)} = \Gamma_{N \to \nu_{\beta}\gamma}^{D(M)} + \Gamma_{N \to N'\gamma}^{D(M)}$ $\Gamma(N \to N'\gamma) = \frac{(\mu_{N'N}^e)^2 m_N^3}{4\pi} \gtrsim 10^{-11} \text{ MeV} \quad \text{for} \quad \mu_{N'N}^e \gtrsim 10^{-4} \mu_B$

Case 2: • RHN decays in other non-radiative modes such as light dark states

$$\Gamma_{N \to X\gamma}^{\mathrm{D}(\mathrm{M})} = \Gamma_{N \to \nu_{\beta}\gamma}^{\mathrm{D}(\mathrm{M})} + \Gamma_{N \to \mathrm{dark}}^{\mathrm{D}(\mathrm{M})}$$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Sensitivity to CEvNS with Photon Emission

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Technische Universität München

39

Radiative up-scattering has the potential to out-perform standard up-scattering mode!

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Majorana vs Dirac RHN – nuclear recoil

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Majorana vs Dirac RHN – photon spectrum

→ Different photon distributions for Dirac vs. Majorana RHNs

42

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Novel ways to probe effective neutrino interactions

Technische Universität München

Insight in the nature of active neutrinos?

• In case of contribution consistent to Dirac RHN:

- \rightarrow no conclusive statement possible
- In case of contribution consistent to Majorana RHN:

$$m_{\nu} \sim \frac{1}{16\pi^2} \mu_{\nu N}^2 m_N \Lambda^2$$
$$\sim \left(\frac{\mu_{\nu N}}{\mu_B}\right)^2 \frac{\alpha}{16\pi} \frac{m_N \Lambda^2}{m_e^2}$$

→ implies lepton-number violation and a Majorana mass term for active neutrinos

→ complementary probe to LNV at LHC or neutrinoless double beta decay

For example, m_N ~ 1 MeV,
$$\Lambda$$
 ~ 1 TeV and m_v < 1 eV $\rightarrow \frac{|\mu_{\nu N}|}{\mu_B} < 10^{-8}$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Hint towards the neutrino mass mechanism?

Majorana mass term

if transition magnetic moment gets loop induced via heavy NP

active-to-sterile mixing

×

For example, see-saw type I with $m_N \sim 50$ MeV, $\Lambda \sim 1$ TeV and $m_{vN}^D \sim 1$ keV $\rightarrow m_v \sim 0.2$ eV

A sign for radiative CEvNS would imply a neutrino mass mechanism beyond see-saw type I!

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

How magnetic can the neutrino be?

$$\mathcal{L}_{\text{eff}} = \sum_{n,j} \frac{C_j^n(\mu)}{\Lambda^{n-4}} \mathcal{O}_j^{(n)}(\mu) + \text{h.c.}$$

$$\delta m_{\nu N} = \frac{v^2}{16m_e} \frac{C_3^{(6)}(v)}{C_1^{(6)}(v) + C_2^{(6)}(v)} \frac{\mu_{\nu N}}{\mu_B}$$

$$\frac{|\mu_{\nu N}|}{\mu_B} \sim 10^{-15} \left(\frac{\delta m_{\nu N}}{1 \text{ eV}}\right)$$

Bell, Cirigliano, Ramsey-Musolf, Vogel, Wise (2005)

Discrepancies would help to disentangle mass mechanism!

Julia Harz

Summary: dim-5 neutrino magnetic moment

- Photon emission off Primakoff-upscattering as new smoking gun signature for the detection of neutrino magnetic moments
- Photon detection allows for identifying Majorana vs Dirac nature of RHNs
 - Identification of RHN give hints towards the Majorana vs Dirac nature 10 of active neutrinos ---- NUCLEUS 1kg $N \rightarrow ry$

NUCLEUS 1kg

- **- - NUCLEUS** 10g $N \rightarrow N'\gamma$
- Parameter space constrained but rich decay possibilities and subtle
 flavour interactions require full exploration

 m_N [MeV]

Julia Harz

Novel ways to probe effective neutrino interactions

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Outline

Motivation

- Neutrinos the missing piece in the puzzle
- A tight link to the matter-antimatter asymmetry?

Dim-5 neutrino magnetic moment

- Coherent elastic neutrino nucleus scattering
- Photon emission off Primakoff upscattering
- Implications on Majorana vs. Dirac neutrinos

Dim-7 and 9 lepton number violating interactions

- Constraining LNV with kaon decays
- Complementary of neutrinoless double beta decay and LHC
- Implications for baryogenesis

Julia Harz

Lepton number violating neutrino interactions

LNV occurs only at odd mass dimension beyond dim-4:

See surveys of all LNV operators up to dim-11 e.g. in

Babu, Leung (2001), Gouvea, Jenkins (2008), Graf, JH, Deppisch, Huang (2018)

Julia Harz

Probing LNV interactions

Julia Harz

Probing LNV interactions – Meson decays

Technische Universität München

Probing LNV interactions – Meson decays

$K^* \rightarrow \pi^* vv$ and $K_L \rightarrow \pi^0 vv$ in the Standard Model

Branching Ratios:

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa^{+} (1 + \Delta_{EM}) \left[\left(\frac{Im(V_{ts}^{*} V_{td} X_{t})}{\lambda^{5}} \right)^{2} + \left(\frac{Re(V_{cs}^{*} V_{cd})}{\lambda} P_{c} + \frac{Re(V_{ts}^{*} V_{td} X_{t})}{\lambda^{5}} \right)^{2} \right]$$

$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{Im(V_{ts}^{*} V_{td} X_{t})}{\lambda^{5}} \right)^{2} \qquad \text{GIM suppression!}$$

$$Buchalla, Buras (1999)$$

Small hadronic uncertainty!

Mescia, Smith (2007)

 $\kappa^+ = (0.5173 \pm 0.025) \times 10^{-10} (|V_{us}|/0.0225)^8$

 $\kappa_L = (2.231 \pm 0.013) \times 10^{-10} (|V_{us}|/0.0225)^8$

Due to relation to more frequent decay $K \to \pi \ell^+ \nu_\ell$

Julia Harz

Theoretical and experimental status

Theoretical prediction Experimental measurements BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu})_{SM} = (8.5^{+1.0}_{-1.2}) \times 10^{-11}$ BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu})_{E949} = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$ BR(K_L $\rightarrow \pi^0 \nu \bar{\nu})_{SM} = (3.4 \pm 0.6) \times 10^{-111}$ BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu})_{NA62} = (10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-111}$ Buras, Buttazzo, Girrbach-Noe, Knegjens (2015) BR(K_L $\rightarrow \pi^0 \nu \bar{\nu})_{KOTO} = (2.1^{+2.0(+4.1)}_{-1.1(-1.7)}) \times 10^{-9}$ KOTO collaboration (2019) KOTO collaboration (2019)

→ NA62 aims to reach SM sensitivity in the future!

What would a deviation of the SM expectation imply for new physics?

Constraining new physics in rare kaon decays

As neutrinos are not explicitly measured, a new physics contribution could be also lepton number violating!

Julia Harz

Constraining LNV interactions with rare kaon decays

• GIM suppressed

Not explicit LNV!

- No GIM suppression
- Includes first and second generation

Footprints of lepton number violation in rare meson decays?

Julia Harz

Lepton number violating vs conserving current

$$\frac{\Gamma\left(K \to \pi \nu_i \nu_j\right)}{ds \, dt} = \frac{1}{1 + \delta_{ij}} \frac{1}{(2\pi)^3} \frac{1}{32m_K^3} |\overline{\mathcal{M}}|^2$$

• SM, lepton number conserving vector current

$$\mathcal{L}_{\mathrm{SM}}^{K \to \pi \nu \bar{\nu}} = \frac{1}{\Lambda_{\mathrm{SM}}^2} \left(\bar{\nu}_i \gamma^{\mu} \nu_i \right) \left(\bar{d} \gamma_{\mu} s \right)$$
$$|\mathcal{M}|^2 = \frac{6}{\Lambda_{\mathrm{SM}}^4} \left[m_K^2 \left(t - m_\pi^2 \right) - t \left(s + t - m_\pi^2 \right) \right] f_+^K(s)^2$$

$$\mathcal{L}_{\text{BSM}}^{K \to \pi \nu \nu} = \frac{v}{\Lambda_{\text{BSM}}^3} \left(\nu_i \nu_j \right) \left(\bar{ds} \right)$$
$$|\mathcal{M}|^2 = \frac{v^2}{\Lambda_{\text{BSM}}^6} \left(\frac{m_K^2 - m_\pi^2}{m_s - m_d} f_0^K(s) \right)^2 s$$

Li, Ma, Schmidt (2019) Deppisch, JH, Fridell (2020)

Emmy Noether-

DFG

Julia Harz

Novel ways to probe effective neutrino interactions

Technische Universität München

Constraining LNV with Kaon decays: NA62

$$BR_{LNV}(K^+ \to \pi^+ \nu_i \nu_j) = 10^{-10} \left(\frac{19.2 \text{ TeV}}{\Lambda_{ijsd}}\right)^6$$
$$BR_{LNV}(K_L \to \pi^0 \nu_i \nu_j) = 10^{-10} \left(\frac{24.9 \text{ TeV}}{\Lambda_{ijsd}}\right)^6$$

Process	Experimental limit	\mathcal{O}	$\Lambda_{ijkn}^{\rm NP}$ [TeV]
$K^+ \to \pi^+ \nu \nu$	$BR_{future}^{NA62} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$
$K^+ \to \pi^+ \nu \nu$	$\mathrm{BR}_{\mathrm{current}}^{\mathrm{NA62}} < 1.78 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$
$K_L \to \pi^0 \nu \nu$	$\mathrm{BR}_{\mathrm{current}}^{\mathrm{KOTO}} < 3.0 \times 10^{-9}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$

Rare kaon decays as window to constrain lepton number violation!

Deppisch, Fridell, JH (2020)

Julia Harz

Limits from KOTO

$$\langle \pi^{0} | \, \bar{ds} \, | \bar{K}^{0} \rangle = \langle \pi^{0} | \, \bar{s}d \, | K^{0} \rangle$$
$$\langle \pi^{0} | \, \bar{d}\gamma^{\mu}s \, | \bar{K}^{0} \rangle = - \langle \pi^{0} | \, \bar{s}\gamma^{\mu}d \, | K^{0} \rangle$$

$$i\mathcal{M}\left(K_L \to \pi^0 \nu \nu\right) = \frac{1}{\sqrt{2+2|\epsilon|^2}} \left(F(1+\epsilon) \langle \pi^0 | C | K^0 \rangle + F^*(1-\epsilon) \langle \pi^0 | C | \bar{K}^0 \rangle\right) \nu \nu$$

LNV mode \rightarrow scalar current \rightarrow real part LNC mode \rightarrow vector current \rightarrow imaginary part

- → no CP phase needed in the LNV case
- → different phase space distribution
- → current signal region more sensitive to SM current

Julia Harz

Probing LNV interactions

Julia Harz

Probing higher-dimensional LNV interactions

Julia Harz

Survey of higher dimensional LNV operators

0	Operator	0	Operator	0	Operator		Operator	
1	$L^{i}L^{j}H^{k}H^{l}\epsilon_{ijk}\epsilon_{ijl}$	316	$L^i L^j \overline{Q}_m d^c \overline{Q}_n \bar{u^c} H^k H^l \epsilon_{ik} \epsilon_{jl} \epsilon^{mn}$	470	$L^{i}L^{j}Q^{k}Q^{l}\overline{Q}_{i}\overline{Q}_{k}H^{m}H^{n}\epsilon_{jm}\epsilon_{ln}$	70	Lieonede HjOrde H.c.	<u></u>
2	$L^{i}L^{j}L^{k}e^{c}H^{i}\epsilon_{ij}\epsilon_{kl}$	32	$L^{\dagger}L^{j}\overline{O}, \overline{u^{c}}\overline{O}, \overline{u^{c}}H^{k}\overline{H}$	47e	$L^{i}L^{j}Q^{k}Q^{l}\overline{Q}_{k}\overline{Q}_{l}H^{m}H^{n}\epsilon_{im}\epsilon_{jn}$			
3a	$L^{t}L^{j}Q^{k}d^{c}H^{l}\epsilon_{ij}\epsilon_{kl}$	20.	$L^{i}L^{j}\overline{O}$ $u^{c}\overline{O}$ $u^{c}H^{k}\overline{H}$ $c = c^{mn}$	47a	$L^{i}L^{j}Q^{k}Q^{l}\overline{Q}_{i}\overline{Q}_{m}H^{m}H^{n}\epsilon_{jk}\epsilon_{in}$		$L^{*}L^{*}H^{*}H^{*}Q^{*}u^{*}H^{*}\epsilon_{rs}\epsilon_{ik}\epsilon_{jl}$	
•0	ritick will um TI	326	at of I i I joe of Uk Ul	47e	$L^{i}L^{j}Q^{k}Q^{l}\overline{Q}_{i}\overline{Q}_{m}H^{m}H^{n}\epsilon_{jn}\epsilon_{kl}$	72	$L^{i}L^{j}L^{\kappa}e^{c}H^{i}Q^{r}u^{c}H^{s}\epsilon_{rs}\epsilon_{ij}\epsilon_{kl}$	
	$L^{i}L^{j}Q^{a}d^{c}H^{i}H^{m}H_{1}\epsilon_{jl}\epsilon_{km}$	33		475	$L^{i}L^{j}Q^{k}Q^{l}\overline{Q}_{k}\overline{Q}_{m}H^{m}H^{n}\epsilon_{ij}\epsilon_{in}$	73 _a	$L^i L^j Q^k d^c H^l Q^r u^c H^s \epsilon_{rs} \epsilon_{ij} \epsilon_{kl}$	
7		34	$e^e e^e L^* Q^j e^s d^s H^* H^* \epsilon_{ik} \epsilon_{jl}$	47g	$L^{i}L^{j}Q^{k}Q^{l}\overline{Q}_{k}\overline{Q}_{m}H^{m}H^{n}\epsilon_{tt}\epsilon_{jn}$	736	$L^i L^j Q^k d^c H^l Q^r u^c H^s \epsilon_{rs} \epsilon_{ik} \epsilon_{jl}$	
	Liderede Hice	35	$e^{c}e^{c}L^{*}e^{c}Q_{j}u^{c}H^{j}H^{\kappa}\epsilon_{ik}$	47n	$L^{i}L^{j}Q^{k}Q^{l}\overline{Q}_{p}\overline{Q}_{q}H^{m}H^{n}\epsilon_{ij}\epsilon_{km}\epsilon_{ln}\epsilon^{pq}$	74.	$L^{i}L^{j}\overline{O}, \bar{u^{c}}H^{k}O^{r}u^{c}H^{s}\epsilon_{rs}\epsilon_{ik}$	
	IIIIk cliccus	36	$\bar{e}^c \bar{e}^c Q^i d^c Q^j d^c H^k \Pi^l \epsilon_{ik} \epsilon_{jl}$	471	$L^i L^j Q^k Q^i \overline{Q}_p \overline{Q}_q H^m H^n \epsilon_{ik} \epsilon_{jm} \epsilon_{in} \epsilon^{pq}$	74	Lilio wukor sus	
10	L ⁱ L ^j L ^k e ^c O ⁱ d ^c futbu	37	$ar{e^c} e^{ar{c}} Q^i d^c \overline{Q}_j ar{u^c} H^j H^k \epsilon_{ik}$	471	$L^{i}L^{j}Q^{k}Q^{i}Q_{p}Q_{q}H^{m}H^{n}\epsilon_{im}\epsilon_{jn}\epsilon_{kl}\epsilon^{pq}$	146	$L L Q_k u H Q u H \epsilon_{rs} \epsilon_{ij}$	
11.	L'L'OkdCO'dCenter	38	$e^{\overline{c}}e^{\overline{c}}\overline{Q}_{i}\overline{u^{c}}\overline{Q}_{j}\overline{u^{c}}H^{i}H^{j}$	48	$L^*L^{j}d^cd^cd^cd^cH^*H^*\epsilon_{ik}\epsilon_{ji}$	75	$L^{\epsilon}e^{c}u^{c}d^{c}H^{j}Q^{r}u^{c}H^{s}\epsilon_{rs}\epsilon_{ij}$	
11.	L'L'Okd'O'd' ener	39a	$L^{i}L^{j}L^{k}L^{l}\overline{L}_{i}\overline{L}_{j}H^{m}H^{n}\epsilon_{km}\epsilon_{ln}^{\dagger}$	49	$L^*L^Jd^cu^cd^cu^cH^*H^*\epsilon_{ik}\epsilon_{ji}$			
12a	$L^{t}L^{j}\overline{Q}, \overline{u^{c}Q_{1}u^{c}}$	396	$L^i L^j L^k L^l \overline{L}_m \overline{L}_n H^m H^n \epsilon_{ij} \epsilon_{kl}$	50	L'L'd'd'deue II "Hitik			
20	$L^{i}L^{j}\overline{Q}_{k}\overline{u^{c}}\overline{Q}_{l}\overline{u^{c}}\epsilon_{ij}\epsilon^{kl}$	39	$L^{i}L^{j}L^{k}L^{l}\overline{L}_{i}\overline{L}_{m}H^{m}H^{n}\epsilon_{ik}\epsilon_{ln}$	51	L'L'u'u'u'u'u'H"H'Ette fi			
3	$L^{i}L^{j}\overline{Q}_{i}\overline{u^{c}}L^{i}e^{c}\epsilon_{ji}$	39.	$L^i L^j L^k L^l \overline{L}_n \overline{L}_a H^m H^n \epsilon_{ii} \epsilon_{lm} \epsilon_m e^{pq}$	52				
14a	$L^i L^j \overline{Q}_k \overline{u^c} Q^k d^c \epsilon_{ij}$	40.	$L^{i}L^{j}L^{k}O^{l}\overline{L}_{i}\overline{O}_{i}H^{m}H^{n}\epsilon_{lm}\epsilon_{lm}$	53	L'L'd'd'ucucHiHj			
140	$L^{t}L^{j}\overline{Q}_{i}u^{c}Q^{l}d^{c}\epsilon_{jl}$	40.	$L^{i}L^{j}L^{k}O^{l}\overline{L}.\overline{O}, H^{m}H^{n}c$	54a	$L^{*}Q^{*}Q^{*}d^{*}Q_{4}e^{e}H^{*}H^{**}\epsilon_{jl}\epsilon_{km}$			
15	$L^{i}L^{j}L^{k}d^{c}\overline{L}_{i}\overline{u^{c}}\epsilon_{jk}$	406	$L^{i}L^{j}L^{k}O^{l}\overline{L}\overline{O} U^{m}U^{n}$	540	$L^{0}Q^{*}a^{*}Q_{j}e^{e}H^{*}H^{**}\epsilon_{ll}\epsilon_{km}$			
16	$L^{i}L^{j}e^{c}d^{c}e^{c}u^{c}\epsilon_{ij}$	400	$L L L Q L Q_i H H c_{jm} c_{kn}$	54c	$L^{Q}Q^{a}d^{b}Q_{l}e^{c}H^{a}H^{m}\epsilon_{lm}\epsilon_{jk}$			
17	$L^i L^j d^c d^c d^c u^c \epsilon_{ij}$	40 _d	$L^{*}L^{*}Q^{*}L_{i}Q_{m}H^{**}H^{**}\epsilon_{jk}\epsilon_{ln}$	544	$L^{Q}Q^{a}d^{b}Q_{l}e^{c}\Pi^{c}\Pi^{m}\epsilon_{ij}\epsilon_{km}$			
18	$L^i L^j d^c u^c \bar{u}^c \bar{u}^c \epsilon_{ij}$	40 _e	$L^{*}L^{*}Q^{*}L_{i}Q_{m}H^{m}H^{*}\epsilon_{jl}\epsilon_{kn}$	DOg EF.	LOQ Q Q REAL H H EN			
19	$L^i Q^j d^c d^c e^c u^c \epsilon_{ij}$	40 _f	$L^{i}L^{j}L^{k}Q^{i}L_{m}Q_{i}H^{m}H^{n}\epsilon_{jk}\epsilon_{ln}$	200	11010 O dest Uk Ul			
20	$L^i d^c Q_i u^c e^c u^c$	40_g	$L^i L^j L^k Q^l \overline{L}_m \overline{Q}_i H^m H^n \epsilon_{jl} \epsilon_{kn}$	50e Ee	I'Oldede cede Uk Ul			
21 _a	$L^{i}L^{j}L^{k}e^{c}Q^{i}u^{c}H^{m}H^{n}\epsilon_{ij}\epsilon_{km}\epsilon_{in}$	40_h	$L^i L^j L^k Q^l \overline{L}_m \overline{Q}_n H^m H^n \epsilon_{ij} \epsilon_{kl}$	57	I'den werden Heren			
21.	$L^{i}L^{j}L^{k}e^{c}Q^{i}u^{c}H^{m}H^{n}\epsilon_{il}\epsilon_{jm}\epsilon_{kn}$	40 _i	$L^i L^j L^k Q^l \overline{L}_m \overline{Q}_n H^p H^q \epsilon_{ip} \epsilon_{jq} \epsilon_{kl} \epsilon^{mn}$	58	It a Garea H-H Cik			
22	$L^{i}L^{j}L^{k}e^{c}L_{k}e^{c}H^{i}H^{m}\epsilon_{il}\epsilon_{jm}$	40 _j	$L^{i}L^{j}L^{k}Q^{l}\overline{L}_{m}\overline{Q}_{n}H^{p}H^{q}\epsilon_{ip}\epsilon_{lq}\epsilon_{jk}\epsilon^{mn}$	50	L'OJE E CER HER.			
23	$L^{*}L^{j}L^{\kappa}e^{e}Q_{k}d^{e}H^{i}H^{m}\epsilon_{il}\epsilon_{jm}$	41a	$L^{i}L^{j}L^{k}d^{c}\overline{L}_{i}d^{c}H^{l}H^{m}\epsilon_{jl}\epsilon_{km}$	20	11 Concertuit			
24a	$L^{i}L^{j}Q^{k}d^{c}Q^{l}d^{c}H^{m}H_{i}\epsilon_{jk}\epsilon_{lm}$	416	$L^i L^j L^k d^c \overline{L}_l \overline{d}^c H^l H^m \epsilon_{ij} \epsilon_{km}$	00 01				
240	$L^{i}L^{j}Q^{k}d^{c}Q^{l}d^{c}H^{m}H_{i}\epsilon_{jm}\epsilon_{kl}$	420	$L^{i}L^{j}L^{k}u^{c}\overline{L}_{i}u^{c}H^{l}H^{m}\epsilon_{il}\epsilon_{km}$	01				
25	$L^{i}L^{j}Q^{k}d^{c}Q^{i}u^{c}H^{m}H^{n}\epsilon_{im}\epsilon_{jn}\epsilon_{kl}$	42	$L^i L^j L^k u^c \overline{L}_i \overline{u^c} H^l H^m \epsilon_{ii} \epsilon_{km}$	62	$L^*L^*L^*e^*H^*L^*e^*H_{\tau}\epsilon_{ij}\epsilon_{kl}$			
26a	$L^{i}L^{j}Q^{k}d^{c}L_{1}e^{c}H^{i}H^{m}\epsilon_{jl}\epsilon_{km}$	43	LiLILkdeLaveHIH:64	63a	$L^*L^jQ^*d^*H^*L^*e^*H_{\tau}\epsilon_{ij}\epsilon_{kl}$			
260	L'L'Q" d'LkecH'H''' EuEjm	12.	LiljIkdeT ve HITTer	630	L'L'Q' d'H'L' e'Hreikeji			
274	$L^*L^jQ^*d^eQ_id^eH^iH^m\epsilon_{jl}\epsilon_{km}$	406	I I I I I I I I I I I I I I I I I I I	64a	L'L'Q ₁ u ^c H ^k L ^r e ^c H _r ε _{jk}			
276	$L^{*}L^{*}Q^{*}d^{*}Q_{k}d^{e}H^{*}H^{**}\epsilon_{il}\epsilon_{jm}$	43c	$L L L a L u H H_n \epsilon_{ij} \epsilon_{km} \epsilon^m$	640	L'L'Q _k u ^c H ^R L'e ^c H _r e _{ij}			
20a 28.	L ¹ L ¹ O ^k d ^c O, u ^c H ¹ H ₄ C	44_a	$L^{\prime}L^{\prime}Q^{\prime}e^{c}Q_{i}e^{c}H^{\prime}H^{\prime\prime\prime}\epsilon_{jl}\epsilon_{km}$	65	L'ecucdeH L'ecHreij			
28	L'L'QkdCQ,ucH'Heese	446	$L^{*}L^{j}Q^{\kappa}e^{c}Q_{k}e^{c}H^{*}H^{m}\epsilon_{il}\epsilon_{jm}$	66	$L^*L^{j}H^{\kappa}H^{\iota}\epsilon_{ik}Q^{r}d^{c}H_{r}\epsilon_{jl}$			
29.	L ¹ L ^j Q ^k u ^c Q _k u ^c H ¹ H ^m e _{il} eom	44 _c	$L^{i}L^{j}Q^{k}e^{\epsilon}Q_{l}\bar{e}^{\epsilon}H^{i}H^{m}\epsilon_{ij}\epsilon_{km}$	67	$L^{i}L^{j}L^{k}e^{c}H^{l}Q^{r}d^{c}\overline{H}_{r}\epsilon_{ij}\epsilon_{kl}$			
29	$L^{i}L^{j}O^{k}u^{c}\overline{O}_{i}u^{c}\Pi^{l}\Pi^{m}\epsilon_{i}\epsilon_{i}$	44 _d	$L^i L^j Q^k e^c \overline{Q}_l \overline{e^c} H^l H^m \epsilon_{ik} \epsilon_{jm}$	68a	$L^{i}L^{j}Q^{k}d^{c}H^{l}Q^{r}d^{c}\overline{H}_{r}\epsilon_{ij}\epsilon_{kl}$			
30 _a	L'L'LiecQ,ucHkHlen	45	$L^i L^j e^c d^c \bar{e^c} \bar{d^c} H^k H^l \epsilon_{ik} \epsilon_{jl}$	68,	$L^i L^j Q^k d^c H^i Q^r d^c \overline{H}_r \epsilon_{ik} \epsilon_{ji}$		E	Babu, Leung (2001)
30.	$L^{i}L^{j}\overline{L}_{m}e^{e}\overline{Q}_{n}u^{e}H^{k}H^{l}\epsilon_{ik}\epsilon_{il}\epsilon^{mn}$	46	$L^i L^j e^c u^c e^c u^c H^k H^l \epsilon_{ik} \epsilon_{jl}$	69a	LILJQ, ucHkQrdeHreik		C	Couver Lenking (20
31.	LILIQ, deQ, we Hk HI en	47a	$L^i L^j Q^k Q^l \overline{Q}_i \overline{Q}_i H^m H^n \epsilon_{km} \epsilon_{ln}$	69.	LILO, ueHkOrdeH.eu		C	
	of ok of the					l l	(Inst IH Depoisch

Julia Harz

Novel ways to probe effective neutrino interactions

Technische Universität München

61

Contributions to different observables

Contributions to different observables

Topologies | Interplay between LHC & 0νββ decay

		Long	Mediator $(U(1)_{\rm em}, SU(3)_c)$			
#	Decomposition	Range?	$S \text{ or } V_{\rho}$	ψ	S' or V'_{ρ}	Models/Refs./Comments
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV 58-60,
						LR-symmetric models <u>39</u> ,
						Mass mechanism with ν_S [61],
						TeV scale seesaw, e.g., 62,63
			(+1, 8)	(0, 8)	(-1, 8)	64
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	
			(+1, 8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	$(+4/3, \bar{3})$	(+2, 1)	
			(+1, 8)	$(+4/3, \bar{3})$	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	$(+4/3, \bar{3})$	$(+1/3, \bar{3})$	
			(+1, 8)	$(+4/3, \bar{3})$	$(+1/3, \bar{3})$	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	$(+1/3, \bar{3})$	RPV <u>58</u> 60, LQ <u>65</u> 66
			(+1, 8)	(0, 8)	$(+1/3, \overline{3})$	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1)	(+5/3, 3)	(+2/3, 3)	
			(+1, 8)	(+5/3, 3)	(+2/3, 3)	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	(+2/3, 3)	RPV <u>58</u> 60, LQ <u>65</u> 66
			(+1, 8)	(0, 8)	(+2/3, 3)	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	$(-2/3, \bar{3})$	(0, 1)	$(+1/3, \bar{3})$	RPV 58-60
			$(-2/3, \bar{3})$	(0, 8)	$(+1/3, \bar{3})$	RPV 58-60

$$S_{4/3}^{DQ}; S_{1/3}^{LQ}; S_{+1}; S_{2/3}^{LQ}; S_{2/3}^{DQ}$$

Bonnet, Hirsch, Ota, Winter (2014)

0vββ decay

Helo, Kovalenko, Hirsch, Päs (2013) Bonnet, Hirsch, Ota, Winter (2013) Hirsch, Klapdor-Kleingrothhaus, Kovalenko (1995) Mohapatra (1986)

Julia Harz

Novel ways to probe effective neutrino interactions

 $\bar{\mathbf{e}}$

d

Implications of TeV-scale LNV interactions

Observation of any LNV washout process at the LHC would falsify high-scale baryogenesis

Observation of neutrinoless double beta decay with new physics from > dim-5 LNV operators would falsify high-scale baryogenesis

Deppisch, Graf, JH, Huang (2018) Deppisch, JH, Huang, Hirsch, Päs (2015)

Caveats might apply, e.g.:

- Flavor specific leptogenesis
- Dark U(1) symmetries

Aristizabal Sierra, Fong, Nardi, Peinado (2014) Frandsen, Hagedorn, Huang, Molinaro, Päs (2018)

Baryogenesis & Leptogenesis

Basic principles of leptogenesis mechanisms:

Julia Harz

Baryogenesis & Leptogenesis

Basic principles of leptogenesis mechanisms:

Strategy: Search for washout processes with the potential to falsify baryogenesis models!

Julia Harz

A simplified model study of TeV scale LNV

Can TeV-scale LNV destroy the generated asymmetry from standard thermal LG?

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Julia Harz

Implications for Leptogenesis

Julia Harz

Novel ways to probe effective neutrino interactions

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Implications for Leptogenesis

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Julia Harz

Implications for Leptogenesis

Low-scale LNV destroys lepton asymmetry previously generated by standard LG scenario.

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Julia Harz

Combined results: Leptogenesis, LHC & 0vββ decay

 \rightarrow Important complementarity between collider and 0v $\beta\beta$ decay reach

→ Observation of TeV LNV would render standard thermal LG unviable!

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Julia Harz

Novel ways to probe effective neutrino interactions

72
Conclusions

- Neutrinos point towards new physics and might have tight interconnection with the mechanism behind the baryon asymmetry
- CEvNS is a great probe for neutrino magnetic moments and has potential to disentangle the Majorana vs Dirac nature in case of observation
- Meson decays, neutrinoless double beta decay and colliders are complementary probes for lepton-number violation
- An observation of LNV around the TeV-scale would render standard thermal leptogenesis & baryogenesis scenarios invalid

Great future ahead to (hopefully) nail down the nature and mass mechanism of neutrinos!

Julia Harz

COSMOLOGY MARCHES ON

Thank you for your attention!

Julia Harz

Novel ways to probe effective neutrino interactions

Novel ways to probe effective neutrino interactions

