

UNIVERSITY OF MINNESOTA

New limits on dark sectors in neutrino upscattering Matheus Hostert — Perimeter Institute and University of Minnesota

Motivation for heavy neutrinos w/ additional forces : 1. Portal interactions and N lifetime 2. MiniBooNE low-energy excess New forces: 1. Transition Magnetic Moments 2. Dark Neutrino Sectors

The Outline

Motivation for heavy neutrinos w/ additional forces : **1. Portal interactions and N lifetime** 2. MiniBooNE low-energy excess New forces: 1. Transition Magnetic Moments 2. Dark Neutrino Sectors

The Outline

Type-I seesaw:

This is a matrix problem:

 $\mathscr{M} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix}$

 $M_{
u} \sim M_D M_N^{-1} M_D^T$ (3x3) (3x?) (?x?) (?x3)

PI M. Hostert

The seesaw mechanism

$$\mathscr{L} \supset -y^{\nu} \left(\overline{L} \widetilde{H} \right) N - \frac{M_N}{2} \overline{N^c} N + \text{h.c.}$$
$$\mathscr{M} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix} \text{ where } M_D = \frac{Y v_{EW}}{\sqrt{2}}$$
$$M_{\nu} \sim M_D M_N^{-1} M_D^T$$

We know nothing about M_N . How many states? Does it carry new symmetries? New dynamics?

Laboratory searches

Production and decay proceed via "weaker-than-weak" interactions.

Laboratory searches

Production and decay proceed via "weaker-than-weak" interactions.

Missing mass in pion or kaon decays

$$\pi/K \to \ell N \longrightarrow (p_{\pi,K} - p_\ell)^2 \stackrel{?}{=} M_N^2$$

Laboratory searches

Production and decay proceed via "weaker-than-weak" interactions.

PI M. Hostert

Decay-in-flight signatures in neutrino experiments

 $\pi/K \to \ell N \longrightarrow N$ propagates $\longrightarrow N$ decays visibly

Limits on heavy neutrinos

Limits on heavy neutrinos

Interactions can be comparable to Weak rates.

1. Portal interactions and N lifetime 2. MiniBooNE low-energy excess New forces: 1. Transition Magnetic Moments 2. Dark Neutrino Sectors

The Outline

Motivation for heavy neutrinos w/ additional forces :

The MiniBooNE excess

PI M. Hostert

638 ± 52 (stat.) ± 122.2 (sys.)

4.8σ significance

MiniBooNE is a very "inclusive" experiment:

NF02 White Paper: <u>arXiv:2203.07323</u>. Questions (and complaints) \rightarrow mhostert@pitp.com

Table of explanations of							1	
Table of explanations of	Category	Model	Signature	Anomalies				Reference
the short-baseline anomalies				LSND	MiniBooNE	Reactors	Sources	
See K. Kelly's talk tomorrow	Flavor transitions Secs. 3.1.1-3.1.3, 3.1.5	(3+1) oscillations	oscillations	~				Reviews an global fits [103, 105, 10
		(3+1) w/ invisible sterile decay	oscillations w/ $ u_4$ invisible decay	~		 Image: A start of the start of	 ✓ 	[151, 155
		(3+1) w/ sterile decay	$ u_4 \to \phi \nu_e $					[159–162, 2
	Matter effects Secs. 3.1.4, 3.1.7	(3+1) w/ anomalous matter effects	$ u_{\mu} ightarrow u_{e}$ via matter effects			×	×	[143, 147 271–273
		(3+1) w/ quasi-sterile neutrinos	$ u_{\mu} ightarrow u_{e} { m w}/ $ resonant $ u_{s}$ matter effects					[148]
	Flavor violation Sec. 3.1.6	Lepton-flavor-violating μ decays	$\mu^+ \to e^+ \nu_\alpha \overline{\nu_e}$	√	×	×	×	[174,175,2
		neutrino-flavor- changing bremsstrahlung	$ u_{\mu}A \to e\phi A $			×	×	[275]
	Decays in flight	Transition magnetic mom., heavy ν decay	$N \rightarrow \nu \gamma$	×		×	×	[207]
To be tested	Sec. 3.2.3	Dark sector heavy neutrino decay	$\begin{array}{c} N \rightarrow \nu(X \rightarrow \\ e^+e^-) \text{ or } \\ N \rightarrow \nu(X \rightarrow \gamma \gamma) \end{array}$	×		×	×	[208]
These mostly involve production of new particles in the detector.	Neutrino Scattering Secs. 3.2.1, 3.2.2	neutrino-induced upscattering	$ \begin{array}{c} \nu A \rightarrow N A, \\ N \rightarrow \nu e^+ e^- \text{ or } \\ N \rightarrow \nu \gamma \gamma \end{array} $	-		×	×	[205, 206 209–216
		neutrino dipole upscattering	$\nu A \to N A,$ $N \to \nu \gamma$	•		×	×	[40, 185, 1 188, 190, 1 233, 276]
	Dark Matter Scattering Sec. 3.2.4	dark particle-induced upscattering	γ or e^+e^-	×		×	×	[217]
		dark particle-induced inverse Primakoff	γ	~		×	×	[217]

The MiniBooNE Low-Energy Excess Particle production inside the detector

PI M. Hostert

Heavy neutrino decays:

- Single photons via transition magnetic moment ($X = \gamma$)
 - Di-leptons from dark photons or scalars ($X = e^+e^-$)
 - Di-photons from dark scalars ($X = \gamma \gamma$)

1. Portal interactions and N lifetime 2. MiniBooNE low-energy excess New forces:

1. Transition Magnetic Moments 2. Dark Neutrino Sectors

The Outline

Motivation for heavy neutrinos w/ additional forces :

 ν_{α}

PI M. Hostert

Dimension-5 operator

 $\mathscr{L} \supset d_{\alpha N} \overline{\nu_{\alpha}} \sigma_{\mu \nu} F^{\mu \nu} N_R$

Transition magnetic moment == Dipole portal

$$\mathscr{L} \supset \frac{1}{\Lambda^2} \overline{L} \widetilde{H} \sigma^{\mu\nu} N_R \left(C^{\alpha}_B B_{\mu\nu} + C^{\alpha}_W W^a_{\mu\nu} \sigma_a \right)$$

Points to keep in mind:

1) large transition magnetic moments generically lead to large Dirac masses.

One has to do extra work to avoid mixing between ν_{α} and HNLs.

Can decouple the two with Horizontal symmetries, Voloshin, M. B., Sov. J. Nucl. Phys. 48, 512 (1988).

Dimension-5 operator

$$\mathscr{L} \supset d_{\alpha N} \overline{\nu_{\alpha}} \sigma_{\mu \nu} F^{\mu \nu} N_R$$

$$U_{\alpha N} \sim \frac{m_D}{M_N}$$

EWSB

Transition magnetic moment — Parenthesis. Decay-in-flight signatures due to mass mixing (@ T2K)

PI M. Hostert

$$\mathscr{L} \supset \frac{1}{\Lambda^2} \overline{L} \widetilde{H} \sigma^{\mu\nu} N_R \left(C^{\alpha}_B B_{\mu\nu} + C^{\alpha}_W W^a_{\mu\nu} \sigma_a \right)$$

Points to keep in mind:

1) Large transition magnetic moments generically lead to large Dirac masses.

EWSB

One has to do extra work to avoid mixing between ν_{α} and HNLs.

Can decouple the two with Horizontal symmetries, Voloshin, M. B., Sov. J. Nucl. Phys. 48, 512 (1988).

Dimension-5 operator

 $\mathscr{L} \supset d_{\alpha N} \overline{\nu_{\alpha}} \sigma_{\mu \nu} F^{\mu \nu} N_R$

 $\longrightarrow \quad U_{\alpha N} \sim \frac{m_D}{M_N} \quad \longrightarrow \quad$ 0

Points to keep in mind:

2) For values of interest, probably need some heavy particle inside the loop. May be τ or something else completely.

See also Brdar et al 2007.15563 for an interesting leptoquark model with a b-quarks in the loop.

PI M. Hostert

Points to keep in mind:

 $\frac{d_{eN}}{\sim}$ M_e

3) τ flavor seems like an interesting possibility to consider.

PI M. Hostert

For flavor-blind and flavor-conserving ($\alpha = \beta$) new physics, we expect:

$$\frac{d_{\mu N}}{m_{\mu}} \simeq \frac{d_{\tau N}}{m_{\tau}}$$

Transition magnetic moment MiniBooNE region of interest

Performed a fit to the MiniBooNE low-energy excess.

Updates previous fit in Vergani et al <u>arXiv:2105.06470</u> with a detector simulation in **LeptonInjector** and coherent upscattering cross-sections from **DarkNews** with improved nuclear form factors (see later).

PI M. Hostert

N. Kamp, M. Hostert, A. Schneider, S. Vergani, C. A. Argüelles, J. M. Conrad, M. H. Shaevitz, and M. Uchida, arXiv:2206.xxxxx

Transition magnetic moment MINERvA limits from $\nu - e$ scattering measurement

MINERvA was located in the NuMI beam — larger energy and more neutrinos, but no dedicated search.

Transition magnetic moment MINERvA limits from $\nu - e$ scattering measurement

Neutrino-electron scattering

PI M. Hostert

Transition magnetic moment MINERVA limits from $\nu - e$ scattering measurement

PI M. Hostert

Using photon-like sample of the **MINERvA** antineutrino-electron scattering analysis.

Transition magnetic moment MINERVA limits from $\nu - e$ scattering measurement

PI M. Hostert

N. Kamp, M. Hostert, A. Schneider, S. Vergani, C. A. Argüelles, J. M. Conrad, M. H. Shaevitz, and M. Uchida, arXiv:2206.xxxxx

Transition magnetic moment MINERvA limits from $\nu - e$ scattering measurement

Similar story for cases with tau-dipoles

N. Kamp, M. Hostert, A. Schneider, S. Vergani, C. A. Argüelles, J. M. Conrad, M. H. Shaevitz, and M. Uchida, arXiv:2206.xxxxx

 $d_{\tau} \neq 0$

Motivation for heavy neutrinos w/ additional forces : 1. Portal interactions and N lifetime 2. MiniBooNE low-energy excess New forces: 1. Transition Magnetic Moments

2. Dark Neutrino Sectors

The Outline

Dark Neutrino Sectors Amodel

1) A minimal renormalizable model:

	$SU(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_X$
$ u_N $	1	0	0
v_{D_L}	1	0	Q
v_{D_R}	1	0	Q
Φ	1	0	Q

$$\begin{pmatrix} 0\\ M_D^T\\ 0 \end{pmatrix}$$

Heavy neutrinos charged under a dark U(1)' symmetry, broken at the GeV

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sin \chi}{2} X_{\mu\nu} B^{\mu\nu} + (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - V(\Phi) - \lambda_{\Phi H} |H|^{2} |\Phi|^{2} + \overline{\hat{\nu}_{N}} i \partial\!\!\!\!/ \widehat{\nu}_{N} + \overline{\hat{\nu}_{D}} i D\!\!\!/_{X} \widehat{\nu}_{D} - \left[(\overline{L} \widetilde{H}) Y \widehat{\nu}_{N}^{c} + \frac{1}{2} \overline{\hat{\nu}_{N}} M_{N} \widehat{\nu}_{N}^{c} + \overline{\hat{\nu}_{N}} \left(Y_{L} \widehat{\nu}_{D_{L}}^{c} \Phi + Y_{R} \widehat{\nu}_{D_{R}} \Phi^{*} \right) + \overline{\hat{\nu}_{D}} M_{X} \widehat{\nu}_{D} + \text{h.c.} \right]$$

See also B. Batell et al, JHEP 1608 (2016) 052, Bertuzzo et al, PLB 791 (2019) 210-214 + others

)

Dark Neutrino Sectors Parametrizing several models — now phenomenologically friendly

Dark photon coupled to heavy neutral leptons and neutrinos via mixing.

$$\mathscr{L} \supset \mathscr{L}_{\nu}-\textit{mass} + \frac{m_{Z'}^2}{2} Z'^{\mu} Z'_{\mu} + Z'_{\mu} \left(e \epsilon J^{\mu}_{\rm EM} + g_D J^{\mu}_D \right), \qquad J^{\mu}_D = \sum_{i,j}^{n+3} V_{ij} \overline{\nu}_i \gamma^{\mu} \nu_j,$$

$$\widehat{\nu}_{\mu} |V_{\mu N}|^{2} N$$

$$\underbrace{A \quad Z' \quad A}{(e \, \varepsilon \, Z)^{2}}$$

$$V_{\alpha N} \equiv \frac{\sum_{i \le 3} U_{\alpha i}^* V_{iN}}{\left(\sum_{k \le 3} |U_{ki}|^2\right)^{1/2}}.$$

$$|V_N|^2 = \sum_{i < N} |V_{iN}|^2$$

J-PARC beam is more intense and peaks in a similar energy range to the Booster Beam.

Ratio of upscattering events in T2K similar to that in MiniBooNE. Should see hundreds of HNLs or more.

PI M. Hostert

M. Hostert

- **Benefit of this detector:**
- Heavy **lead** plates
- + Gaseous Argon modules
- + Magnetic field to separate e^+e^-

See also, Vedran Brdar et al, arXiv:2007.14411

C. Arguelles, MH, N. Foppiani, <u>arXiv:2205.12273</u>

T2K Collaboration, Phys. Rev. D 100, 052006 (2019)

See also, Vedran Brdar et al, arXiv:2007.14411

C. Arguelles, MH, N. Foppiani, <u>arXiv:2205.12273</u>

DarkNews-Generator

A. Abdullahi, J. Hoefken, MH, D. Massaro, S. Pascoli, in progress

DarkNews is a fast MC generator for new physics in neutrino-nucleus scattering. Including vector, scalar, and dipole mediators. Models with up to 3 HNLs.

Modeling several processes for GeV-scale accelerator experiments:

Scattering:

 $\nu A \rightarrow NA$ (Coherent & QE peak)

HNL decay:

 $N \to \nu \ell^+ \ell^-$

or $N \rightarrow \nu \gamma$

Helicity conserving or flipping $\nu \to N$

N may be Majorana or Dirac, with either helicity states.

Conclusions:

The existence of heavy neutral leptons could open a door into dark sectors.

Neutrino experiments are probing new forces that are much weaker-than-Weak

The MiniBooNE puzzle remains unsolved.

New-physics ideas with light particles are on the market. They are all testable.

Transition magnetic moment: Not dead yet. MINERvA could show more slices of their data which will probe all parameter space.

Dark Neutrino Sectors:

New limits from T2K were studied in detail. Not MiniBooNE fit to compare to, but naively, all explanations without prompt decays are likely excluded.

