Neutrinos, reactors & anomalies

Patrick Huber

Center for Neutrino Physics – Virginia Tech

NuTs Extended Workshop, IFT Madrid May 16 – June 17, 2022

P. Huber – p. 1/42

Why reactors?

- 3% of the energy release in fission is in neutrinos -100 MW for a power reactor or about $\nu 10^{21}$ s⁻¹
- Built for weapons, energy, ...
 not paid from physics budget
- Flavor pure source with well understood flux and energy spectrum
- Inverse beta decay provides a well understood, flavor tagging detection reaction with a "large" cross section
- Inverse beta decay has a clean experimental signature delayed coincidence

Beta decay

Fermi developed a first theory of beta decay (1934):

 $n \rightarrow p + e^- + \nu$

or in a nuclear bound state

$$(Z,A) \to (Z+1,A) + e^- + \nu$$

Inverse beta decay

$$\nu + p \rightarrow n + e^+$$

Bethe and Peierls estimate the cross section to be:

$$\sigma \simeq \frac{\hbar^3}{m^3 c^4 \tau} (E_{\nu}/mc^2)^2 \simeq E_{\nu}^2 \, 10^{-43} \, \mathrm{cm}^2$$

Neutrinos from fission

 $^{235}U + n \to X_1 + X_2 + 2n$

with average masses of X_1 of about A=94 and X_2 of about A=140. X_1 and X_2 have together 142 neutrons.

The stable nuclei with A=94 and A=140 are $\frac{94}{40}Zr$ and $\frac{140}{58}Ce$, which together have only 136 neutrons.

Thus 6 β -decays will occur, yielding 6 $\bar{\nu}_e$.

Fissioning 1kg of 235U gives 10^{24} neutrinos, or at distance of 50 m about 10^{16} cm⁻².

Ca. 1951

Reines' Nobel Lecture, 1995

Reines & Cowan's day job was to instrument nuclear weapons tests.

Bethe and Fermi thought this was a good idea and thus, not surprisingly their A-bomb proposal was approved.

Delayed coincidence

This is the basis for all reactor neutrino experiments since then.

Savannah River

P-reactor became operational in Feb 1954, 500MW, heavy water cooled, plutonium production reactor.

1956

They report a cross section (!) of $6 \times 10^{-44} \,\mathrm{cm}^{-2}$.

Long list of SBL experiments

a	Experiment	f^{a}_{235}	f^{a}_{238}	f^{a}_{239}	f^{a}_{241}	$R_{a,\mathrm{SH}}^{\mathrm{exp}}$	$\sigma_a^{ m exp}$ [%]	$\sigma_a^{ m cor}$ [%]	L_a [m]
1	Bugey-4	0.538	0.078	0.328	0.056	0.932	1.4	114	15
2	Rovno91	0.606	0.074	0.277	0.043	0.930	2.8	$\int^{1.4}$	18
3	Rovno88-1I	0.607	0.074	0.277	0.042	0.907	6.4]]	18
4	Rovno88-2I	0.603	0.076	0.276	0.045	0.938	6.4	30.0	18
5	Rovno88-1S	0.606	0.074	0.277	0.043	0.962	7.3	2.2	18
6	Rovno88-2S	0.557	0.076	0.313	0.054	0.949	7.3	3.8	25
7	Rovno88-2S	0.606	0.074	0.274	0.046	0.928	6.8		18
8	Bugey-3-15	0.538	0.078	0.328	0.056	0.936	4.2		15
9	Bugey-3-40	0.538	0.078	0.328	0.056	0.942	4.3	4.0	40
10	Bugey-3-95	0.538	0.078	0.328	0.056	0.867	15.2	J	95
11	Gosgen-38	0.619	0.067	0.272	0.042	0.955	5.4		37.9
12	Gosgen-46	0.584	0.068	0.298	0.050	0.981	5.4	2.0	45.9
13	Gosgen-65	0.543	0.070	0.329	0.058	0.915	6.7) (3.0	64.7
14	ILL	1	0	0	0	0.792	9.1		8.76
15	Krasnoyarsk87-33	1	0	0	0	0.925	5.0	41	32.8
16	Krasnoyarsk87-92	1	0	0	0	0.942	20.4	$\int^{4.1}$	92.3
17	Krasnoyarsk94-57	1	0	0	0	0.936	4.2	0	57
18	Krasnoyarsk99-34	1	0	0	0	0.946	3.0	0	34
19	SRP-18	1	0	0	0	0.941	2.8	0	18.2
20	SRP-24	1	0	0	0	1.006	2.9	0	23.8
21	Nucifer	0.926	0.061	0.008	0.005	1.014	10.7	0	7.2
22	Chooz	0.496	0.087	0.351	0.066	0.996	3.2	0	pprox 1000
23	Palo Verde	0.600	0.070	0.270	0.060	0.997	5.4	0	≈ 800
24	Daya Bay	0.561	0.076	0.307	0.056	0.946	2.0	0	≈ 550
25	RENO	0.569	0.073	0.301	0.056	0.946	2.1	0	≈ 410
26	Double Chooz	0.511	0.087	0.340	0.062	0.935	1.4	0	≈ 415

Giunti 2016

Palo Verde & CHOOZ Late 1990's inspired by KamiokaNDE

800 m from a commercial 1100 m from a commercial reactor reactor Null result in both.

KamLAND – 2002

1000 t of liquid organic scintillator, undoped, deep underground.

KamLAND – results

KamLAND confirmed the oscillation interpretation of the solar neutrino results and "picked" the so-called LMA solution.

Later it was the first experiment to see an oscillatory pattern.

Daya Bay – 2011

In a 1 reactor, 2 detector setup all flux related errors cancel completely in the near-to-far ratio.

A careful choice of detector locations mitigates the complexity of the Daya Bay layout.

AD3 sees the same ratio of Ling Ao I to Ling Ao II events as do the far detectors.

Daya Bay – results

 $\left(\begin{array}{c} 2.9 \\ 2.9 \\ 2.8 \\ 2.7 \\ 2.6 \\ 2.5 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.$

More than 2.5 million IBD events.

Most precise measurement of θ_{13}

Precise measurement of Δm_{32}^2

RENO and Double Chooz are very similar in concept and results between agree very well.

P. Huber – p. 15/42

JUNO – under construction JUNO – Jiangmen Underground Neutrino Observatory

20,000 ton undoped liquid scintillator
53 km from two powerful reactor complexes, 18 GW each
Start of data taking ~

2024.

JUNO – physics goals

Measurement of mass hierarchy w/o matter effects 1% level measurement of solar mixing parameters

The reactor anomaly

Daya Bay, 2014

Mueller *et al.*, 2011, 2012 – where have all the neutrinos gone?

Status quo early 2021

3 different flux models, data from 2 different experiments

Except for U235: + the models agree within error bars + the models agree with neutrino data

U235 has smallest error bars, not surprising that discrepancies show up first.

Berryman, PH, 2020

Fuel evolution

STEREO, 2020

Berryman, PH, 2020

U235 seems to "own" all of the deficit.

The 5 MeV bump

Double Chooz 2019 Contains only 0.5% of all neutrino events – not important for sterile neutrinos

Yet, statistically more significant than the RAA!

P. Huber – p. 21/42

Why is this so complicated?

P. Huber – p. 22/42

β -branches

Two ways to predict

Summation calculations

Fission yields Beta yields

Problem: databases are insufficient & difficulty of assigning an error budget **Conversion calculations**

Cumulative beta spectra Z_{eff} from databases

Problem: single set of cumulative beta spectra & forbidden corrections have to rely on databases

In both approaches, one has to deal with: Forbidden decays Weak magnetism corrections Non-equilibrium corrections Structural materials in the reactor

Summation method – EF

Take fission yields from database.

Take beta decay information from database.

For the most crucial isotopes use β -feeding functions from total absorption γ spectroscopy.

Estienne et al., 2019

Conversion method – HM

²³⁵U foil inside the High Flux Reactor at ILL

Electron spectroscopy with a magnetic spectrometer

Same method used for ²³⁹Pu and ²⁴¹Pu

Mueller *et al.*, 2011; PH, 2011

Schreckenbach, et al. 1985.

Virtual branches

1 – fit an allowed β -spectrum with free normalization η and endpoint energy E_0 the last s data points

- 2 delete the last s data points
- 3 subtract the fitted spectrum from the data
- 4 goto 1

Invert each virtual branch using energy conservation into a neutrino spectrum and add them all.

Shell model – HKSS

Forbidden decays major source of systematic.

Microscopic shell model calculation of 36 forbidden isotopes, otherwise similar to HM.

Increases the IBD rate anomaly by 40%, but the uncertainty increases by only 13% relative to HM

Hayen, et al. 2019

Kill BILL?

(Electron detector in focal plane: multi chamber proportional counter in transmission, rear mounted scintillator in coincidence)

Neutron flux calibration standards different for U235 and Pu239: 207Pb and 197Au respectively.

Combined with potential differences in neutron spectrum – room for a 5% shift of U235 normalization?

A. Letourneau, A. Onillon, AAP 2018

2021 beta measurement

Relative measurement of U235 and Pu239 targets under identical conditions.

Beta detection with stilbene.

This slide and the following are based on V. Kopeikin, M. Skorokhvatov, O. Titov (2021) and V. Kopeikin , Yu. Panin, A. Sabelnikov (2020) and we will refer to this as the Kurchatov Institute (KI) data.

2021 beta results

At relevant energies the new measurement is about 5% below the previous one

Systematics is difficult in these measurements, but no obvious issues.

2021 beta impact

HM – conversion HKSS – conversion + forbidden decays EF – summation unclear theory error KI – HM + KI data HKSS+KI – HKSS +KI

With the KI correction agreement between summation and conversion improved.

RAA significance reduced to less than 2σ

Oscillations are everywhere

Hypothetical two baseline experiment
Maximum likelhood estimate is biased and not consistent.
Wilks' theorem does not apply

Coloma, PH, Schwetz, 2020

Agostini, Neumair, 2019; Silaeva, Sinev, 2020; Giunti, 2020 PROSPECT+STEREO, 2020

Global reactor data

 $\Delta \chi^2 = 7.3$ for nooscillation hypothesis, flux model-independent Solar data provides a strong constraint at large $\sin^2 2\theta$

Berryman, Coloma, PH, Schwetz, Zhou 2021

> Feldman-Cousins p-value 24.7% (1.1 σ) \Rightarrow no evidence for oscillation

No tension with Neutrino-4

Gallium anomaly

Radioactive source experiments

GALLEY	CALLEY	SAGE	SAGE	BEST	BEST
OALLEA	OALLEA	SAGE	SAOL	(inner)	(outer)
0.953 ± 0.11	0.812 ± 0.10	0.95 ± 0.12	0.791 ± 0.084	0.791 ± 0.044	0.766 ± 0.045

Nuclear matrix elements

ground state follows from beta decay excited states?

Gallium and solar

Any model for the matrix element yields than 5σ for the gallium anomaly, even the ground state contribution by itself.

BCHSZ 2021

BUT, there is a more than 3σ tension with solar data.

All together now

Full FC analysis Reactor+solar: 1.1σ Reactor+gallium: $5.3-5.7\sigma$

BCHSZ 2021

Evidence for neutrino disappearance entirely driven by gallium results, only tension gallium vs solar at $> 3\sigma$.

Coherent elastic neutrino nucleus scattering (CEvNS) is threshold-less.

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} N^2 M_N \left(1 - \frac{M_N T}{2E_\nu^2}\right)$$

T recoil energy, ${\cal N}$ neutron number

- Measured for the 1st time in 2017 by COHERENT.
- Perfect proxy for dark matter detection
- Requires nuclear recoil (!) threshold of less than 1 keV

Hic sunt leones

Shown is the data of a number of different dark matter/CEvNS experiments below 1 keV as reported at the EXCESS workshop 2021 https://indico.cern.ch/event/1013203/

Observed accross a wide range of technologies and shielding configurations – origin unknown!

Reactor CEvNS is a critical testbed for dark matter detection.

Optical detection of crystal defects as technological alternative? Goel, Cogswell, PH 2021

Future: CEvNS track detectors

 10^{2}

10

 10^{0}

1 SQ

- **CEvNS** cross section is high
- **CEvNS** results in nuclear recoil
- Recoil produces permanent damage to crystal lattice

Fission Track Lab, U. Bergen

Recently Dark Matter searches have triggered strong interest in readout technology based on color centers - connection to QIS

100 gram crystal could, with moderate neutron shielding, put a limit on plutonium production.

Cogswell, Goel, PH, 2021

CaWO₄ BGO

BaF₂

10⁵

PALEOCCENE

Krystal Alfonso,¹ Gabriela R. Araujo,² Laura Baudis,² Nathaniel Bowden,³ Bernadette K. Cogswell,¹ Anna Erickson,⁴ Michelle Galloway,² Adam A. Hecht,⁵ Rathsara R. H. Herath Mudiyanselage,⁶ Patrick Huber,¹ Jgor Jovanovic,⁷ Giti A. Khodaparast,⁶ Brenden A. Magill,⁶ Thomas O'Donnell,¹ Nicholas W. G. Smith,⁶ and Xianyi Zhang³
¹Center for Neutrino Physics, Physics Department, Virginia Tech, Blacksburg, VA ²University of Zurich, Switzerland
³Lawrence Livermore National Laboratory, Livermore, CA ⁴George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA ⁵University of New Mexico, Albuquerque, NM ⁶Physics Department, Virginia Tech, Blacksburg, VA ⁷Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI

CaF₂ samples irradiated with an AmBe neutron source corresponding to only 1% of what was done previously, observation of fluorescence in response to excitation at 488 nm. arXiv:2203.05525

Outlook

Reactors as neutrino source are cheap, bright and clean.

The reactor antineutrino anomaly is likely due to flawed input data and not due to new or nuclear physics.

No evidence for $\bar{\nu}_e$ disappearance from reactors, but from gallium, $> 5\sigma!$

Reactor CEvNS as proving ground for dark matter searches

Rich potential for applications.