New Physics from Neutrino Oscillations

Jacobo López-Pavón

NuTs Workshop | IFT

16 June 2022

Minimal model: Seesaw Model

• Simplest extension of SM able to account for neutrino masses. Consists in the addition of heavy fermion singlets (N_R) to the SM field content:

Minkowski 77; Gell-Mann, Ramond, Slansky 79 Yanagida 79; Mohapatra, Senjanovic 80

Minimal model: Seesaw Model

• Simplest extension of SM able to account for neutrino masses. Consists in the addition of heavy fermion singlets (N_R) to the SM field content:

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{K} - \frac{1}{2}\overline{N_{i}^{c}}M_{ij}N_{j} - Y_{i\alpha}\overline{N_{i}}\widetilde{H}^{\dagger}L_{\alpha} + h.c.$$

$$\begin{array}{c} 0\nu\beta\beta\\ \text{decay!}\\ \text{New}\\ \text{Physics}\\ \text{Scale}\\ \text{Violation}\\ \text{Leptogenesis!}\\ \text{Fukujita, Yanagida 1986} \end{array}$$

The New Physics Scale

The New Physics Scale

See talk by Graciela Gelmini

P. Hernandez, M. Kekic, JLP 1311.2614; 1406.2961 Bondarenko, Boyarsky,Klaric, Mikulenko, Ruchayskiy Syvolap, Timiryasov 2101.09255

The New Physics Scale

 $0\nu\beta\beta$ decay, CLFV, Colliders, Beam-dump...

See also talks by Lucente, Marcano, Ruchaisky, Ruiz, and Tastet

Are Long Baseline Neutrino Oscillation experiments sensitive to New Physics beyond 3ν framework

Neutrino Oscillations vs NP scale

Both limits can be studied in a unified & model independent way

Blennow, Coloma, Fernandez-Martinez, Hernandez-Garcia, JLP 1609.08637 Coloma, JLP, Rosauro-Alcaraz, **Urrea** 2105.11466.

Model Independent Approach

$$U = \left(\begin{array}{cc} N & \Theta \\ R & S \end{array}\right)$$

Model Independent Approach

Model Independent Approach $N_i - \nu_{\alpha}$ mixing $U = \begin{pmatrix} N & \Theta \\ R & S \end{pmatrix}$

Deviation from unitarity of the PMNS matrix

Langacker, London 1988 Antusch, Biggio, Fernandez-Martinez, Gavela, JLP 2006

General Parameterizations

Triangular parameterization

$$N = (I - T)U$$

Deviation from unitarity

$$T = \begin{pmatrix} \alpha_{ee} & 0 & 0\\ \alpha_{\mu e} & \alpha_{\mu \mu} & 0\\ \alpha_{\tau e} & \alpha_{\tau \mu} & \alpha_{\tau \tau} \end{pmatrix}$$

Unitary matrix (standard unitary PMNS matrix up to small corrections)

Z.-z. Xing 2008, 2012 Escrihuela, Forero, Miranda, Tortola 2015

Far Detector vs Near detector

$$N_{\nu_{\alpha} \to \nu_{\beta}} \sim \frac{\Phi_{\alpha}(E)}{L^2} P_{\alpha\beta}(L/E) \sigma_{\beta}(E) \epsilon_{\beta}(E)$$

- - Cross sections
 - Neutrino flux
- Sources of systematics Near detector measurements reduce far detector systematic uncertainties
 - New Physics at near detector (strongly) affected by systematic uncertainties)

Far Detector

Far Detector

• What is measured in neutrino oscillation experiments

• What is measured in neutrino oscillation experiments

$$\mathcal{P}_{\alpha\beta} = \frac{\left| (N \exp(-iHL)N^{\dagger})_{\beta\alpha} \right|^2}{\left[(NN^{\dagger})_{\alpha\alpha} \right]^2}.$$

• When $NN^{\dagger} = I \implies \mathcal{P}_{\alpha\beta} = P_{\alpha\beta}$ (SM limit recovered)

1. The light-heavy oscillations averaged out at the near detector. Identical to the heavy non-unitarity case

1. The light-heavy oscillations averaged out at the near detector. Identical to the heavy non-unitarity case

2. The light-heavy oscillations have not yet developed at the near detector. No normalization factor

DUNE: $0.1 \,\mathrm{eV}^2 \lesssim \Delta m^2 \lesssim 1 \,\mathrm{eV}^2$

1. The light-heavy oscillations averaged out at the near detector. Identical to the heavy non-unitarity case

2. The light-heavy oscillations have not yet developed at the near detector. No normalization factor

The oscillation frequency dictated by the light-heavy frequency matches the near detector distance.
 Oscillations could be observed at the near detector

The light-heavy oscillations averaged out at the near detector.
 Identical to the heavy non-unitarity case

2. The light-heavy oscillations have not yet developed at the near detector. No normalization factor

> Low Scale Non-Unitarity

Present Bounds

	High-scale Non-Unitarity	$\checkmark \nu_i$
	$(m > \mathrm{EW})$	$\begin{bmatrix} Z \\ \sim (N^{\dagger}N) \end{bmatrix}$
α_{ee}	$1.3 \cdot 10^{-3}$	$\begin{bmatrix} (1 & 1 &)ij \\ \nu_i \end{bmatrix}$
$lpha_{\mu\mu}$	$2.2\cdot 10^{-4}$	l_{α}
$\alpha_{\tau\tau}$	$2.8\cdot 10^{-3}$	$\sim N_{\alpha i}$
$ lpha_{\mu e} $	$6.8 \cdot 10^{-4} \ (2.4 \cdot 10^{-5})$	EW & CLFV ν_i
$ \alpha_{ au e} $	$2.7\cdot 10^{-3}$	data
$ \alpha_{\tau\mu} $	$1.2 \cdot 10^{-3}$	

Fernandez-Martinez, Hernandez-Garcia, JLP 1605.08774 Blennow, Coloma, Fernandez-Martinez, Hernandez-Garcia, JLP 1609.08637

Present Bounds

	High-scale Non-Unitarity	Low-scale Non-Unitarity
	$(m > \mathrm{EW})$	$\Delta m^2 \gtrsim 100 \ {\rm eV}^2 \Delta m^2 \sim 0.1 - 1 \ {\rm eV}^2$
α_{ee}	$1.3 \cdot 10^{-3}$	$2.4 \cdot 10^{-2}$ bugey $1.0 \cdot 10^{-2}$ bugey
$lpha_{\mu\mu}$	$2.2\cdot 10^{-4}$	$2.2 \cdot 10^{-2}$ SK $1.4 \cdot 10^{-2}$ MINOS
$\alpha_{\tau\tau}$	$2.8\cdot 10^{-3}$	$1.0 \cdot 10^{-1}$ SK $1.0 \cdot 10^{-1}$ SK
$ lpha_{\mu e} $	$6.8 \cdot 10^{-4} (2.4 \cdot 10^{-5})$	$2.5 \cdot 10^{-2}$ Nomad $1.7 \cdot 10^{-2}$
$ \alpha_{ au e} $	$2.7\cdot 10^{-3}$	$6.9 \cdot 10^{-2}$ $4.5 \cdot 10^{-2}$
$ lpha_{ au\mu} $	$1.2\cdot 10^{-3}$	$1.2 \cdot 10^{-2}$ NOMAD $5.3 \cdot 10^{-2}$
Fernandez-Martinez, Hernandez-Garcia, JLP 1605.08774 Blennow, Coloma, Fernandez-Martinez, Hernandez-Garcia, JLP 1609.08637		$\alpha_{\alpha\beta} \le 2\sqrt{\alpha_{\alpha\alpha}\alpha_{\beta\beta}}$

Present Bounds

Present Bounds (update)

Argüelles et al, 2203.10811

 $\alpha_{\alpha\beta} \le 2\sqrt{\alpha_{\alpha\alpha}\alpha_{\beta\beta}}$

	"flavor+electroweak	"Averaged-out oscillations"
	$m > EW \ (2\sigma \ limit)$	$\Delta m^2 \gtrsim 0.1 \; { m eV^2}$ (90% CL)
α_{ee}	$1.3 \cdot 10^{-3}$	$8.4\cdot10^{-3}$ solar
$\alpha_{\mu\mu}$	$2.2 \cdot 10^{-4}$	$5.0 \cdot 10^{-3}$ Minos
$\alpha_{\tau\tau}$	$2.8 \cdot 10^{-3}$	$6.5\cdot10^{-2}$ ATM
$ \alpha_{\mu e} $	$6.8 \cdot 10^{-4} \ (2.4 \cdot 10^{-5})$	$9.2 \cdot 10^{-3}$
$ \alpha_{\tau e} $	$2.7 \cdot 10^{-3}$	$1.4 \cdot 10^{-2}$
$ \alpha_{\tau\mu} $	$1.2 \cdot 10^{-3}$	$1.1 \cdot 10^{-2}$
	•	

Fernandez-Martinez, Hernandez-Garcia, JLP 1605.08774 Blennow, Coloma, Fernandez-Martinez, Hernandez-Garcia, JLP 1609.08637

Blennow, Coloma, Fernandez-Martinez, Hernandez-Garcia, JLP 1609.08637. DUNE CDR configuration 1606.09550

Near Detector

Coloma, JLP, Rosauro-Alcaraz, Urrea 2105.11466.

See also Escrihuela, Forero, Miranda, Tortola, Valle arXiv:1503.08879 for other Near Detector configurations (without including tau detection).

High Scale Non-Unitarity

• What is measured in Near Detector

$$\mathcal{P}_{\alpha\beta} = \left| (NN^{\dagger})_{\beta\alpha} \right|^2 = |\alpha_{\alpha\beta}|^2 \qquad \begin{array}{c} \text{zero} \\ \text{distance} \\ \text{effect:} \end{array}$$

$$\mathcal{P}_{\alpha\alpha} = \left| (NN^{\dagger})_{\alpha\alpha} \right|^2 = 1 - 4 \,\alpha_{\alpha\alpha}$$

Sterile Neutrinos: 3+1

• What is measured in Near Detector

$$\mathcal{P}_{\alpha\beta} = 4|U_{\alpha4}|^2|U_{\beta4}|^2\sin^2\frac{\Delta m_{41}^2L}{4E}$$

$$\mathcal{P}_{\alpha\alpha} = 1 - 4|\boldsymbol{U}_{\alpha4}|^2 \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

Averaged-out regime

• What is measured in Near Detector $\Delta m^2_{41}\gtrsim 100\,{\rm eV^2}$

$$\langle \mathcal{P}_{\alpha\beta} \rangle = 2 |U_{\alpha4}|^2 |U_{\beta4}|^2$$

$$\langle \mathcal{P}_{\alpha\alpha} \rangle = 1 - 2 |U_{\alpha4}|^2$$
Averaged-out regime

• What is measured in Near Detector $\Delta m^2_{41}\gtrsim 100\,{\rm eV^2}$

$$\langle \mathcal{P}_{\alpha\beta} \rangle = 2 |\alpha_{\alpha\beta}|^2$$

zero distance effect:

 $\langle \mathcal{P}_{\alpha\alpha} \rangle = 1 - 4 |\alpha_{\alpha\alpha}|$

Low Scale Non-Unitarity

Role of shape uncertainty

- · Sensitivity driven by spectral information.
- Marginal impact of global normalization error.

ν_{τ} appearance channel

• Energy threshold of τ production 3.2 GeV.

• $\mathcal{V}_{\mathcal{T}}$ detection: we follow de Gouvêa, Kelly, Stenico, Pasquini 1904.07265

Low Scale Non-Unitarity

Sterile Neutrinos: 3+1

$$\mathcal{P}_{\mu e} = 4|U_{\mu 4}|^2 |U_{e4}|^2 \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

$$\mathcal{P}_{\mu\mu} = 1 - 4|U_{\mu4}|^2 \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

$$\mathcal{P}_{ee} = 1 - 4|U_{e4}|^2 \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

3+1 Sterile Neutrinos: $P_{\mu\mu} + P_{\mu e} + P_{ee}$

For instance...

Light Neutrino mass generation

 Generation of light neutrino masses imposes constraints on mixing between HNLs and active neutrinos from light neutrino sector

Direct searches of HNLs

• Direct detection requires:

$$\theta \gg \sqrt{m/M} \iff R_{ij} \gg 1$$

• Phenomenological constraint. "Naturally" realized in inverse/linear seesaw realizations based on a symmetry protected scenario.

Mohapatra 1986; Mohapatra, Valle 1986; Bernabeu, Santamaria, Vidal, Mendez, Valle 1987; Malinsky, Romao, Valle 2005...

Approximated LNC

$$M_{\nu} = \begin{pmatrix} \overline{\nu}^{c} & \overline{N}_{1} & \overline{N}_{2} \\ 1 & -1 & 1 & L \\ 0 & Y_{1}^{T} v / \sqrt{2} & \epsilon Y_{2}^{T} v / \sqrt{2} \\ Y_{1} v / \sqrt{2} & \mu' & \Lambda \\ \epsilon Y_{2} v / \sqrt{2} & \Lambda & \mu \end{pmatrix} \begin{pmatrix} 1 & \nu \\ -1 & N_{1}^{c} \\ 1 & N_{2}^{c} \end{pmatrix}$$

• Light nu masses suppressed with LNV parameters

$$m_{\nu} = \mu \frac{v^2}{2\Lambda^2} Y_1^T Y_1 + \frac{v^2}{2\Lambda} \epsilon Y_2^T Y_1 + \frac{v^2}{2\Lambda} Y_1^T \epsilon Y_2$$

• Quasi-Dirac heavy neutrinos with large mixings:

$$M_2 \approx M_1 \approx \Lambda$$
 $\Delta M \approx \mu' + \mu$ $\theta \sim Y_1 v / \Lambda$

Abdullahi et al arXiv:2203.08039

Caputo, Hernandez, JLP, Salvado arXiv:1704.08721

DUNE forecast assuming $\delta=-\pi/2$

Abdullahi et al arXiv:2203.08039

Direct searches of HNLs

• Direct detection requires:

$$\theta_{\alpha i} \gg \sqrt{m/M} \iff R_{ij} \gg 1$$

$$\iff \theta_{\alpha i}^2 \propto e^{-2\theta i} e^{2\gamma} f\left(\delta, \phi_1, M_j\right)$$

PMNS CP-phases from HNLs searches

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719 Caputo, Hernandez, Kekic, JLP, Salvado 1611.05000

PMNS CP-phases from HNLs searches

 Measurement of mixing with tau neutrinos would allow to break degeneracies.
 Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

PMNS CP-phases from HNLs searches

Potential determination of the PMNS Majorana phase!

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

See talks by Michele Lucente and Nuria Rius

Standard Leptogenesis

Right-handed neutrino decays which violate CP and lepton number generate lepton asymmetry before $T_{EW} \approx 140 \, GeV$

Low Scale Leptogenesis (ARS)

Predicting YB in minimal model NR=2

- Baryon asymmetry depends on all the unknown parameters
- Experimental $|\theta_{\alpha j}^2| \gg m_{\nu}/M$ $\Rightarrow R_{ij} \gg 1$ $\Rightarrow e^{\gamma} \gg 1$

SHIP sensitive to $|\theta_{\alpha j}|(\delta,\phi_1,\gamma), M_j$

$$(\theta_{\alpha j})^2 \propto e^{-2\theta i} e^{2\gamma} f\left(\delta, \phi_1, M_j\right)$$

٦٢

Neutrinoless double beta decay sensitive to θ through interference between light and heavy contribution

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

Predicting YB in minimal model NR=2

• Neutrinoless double beta decay effective mass in the IH case

Mitra, Senjanovic, Vissani 2011 JLP, Pascoli, Wong 2012

Conclusions

 Near detectors in future neutrino oscillation experiments can play a relevant role in testing the robustness of the 3-neutrino picture
 Low scale Non-Unitarity, sterile neutrino oscillations, NSI (Non-Unitarity results can be easily mapped to NSI framework, see 2105.11466)

• *Keeping under control shape uncertainties is a key issue.* Joint experimental and theoretical effort required to reduce systematics.

• Minimal neutrino mass model

measurement of HNLs mass & mixing would allow to test the mechanisms generating neutrino masses and Baryon asymmetry and to indirectly measure the PMNS phases.

Thank you!

NSI in production/detection: $P_{\mu e}$ Appearance channel ν_e 90% C.L. $\Delta \Phi_{\mu e} = \pi, 2\%$ shape error $\Delta \Phi_{\mu e} = 0, 2\%$ shape error

• Mapping: $2|\alpha_{\beta\gamma}|^2 = |\epsilon^d_{\beta\gamma}|^2 + |\epsilon^s_{\beta\gamma}|^2 + 2|\epsilon^d_{\beta\gamma}||\epsilon^s_{\beta\gamma}|\cos(\Phi^s_{\beta\gamma} - \Phi^d_{\beta\gamma}))$

NSI in production/detection

• Mapping: $2|\alpha_{\beta\gamma}|^2 = |\epsilon^d_{\beta\gamma}|^2 + |\epsilon^s_{\beta\gamma}|^2 + 2|\epsilon^d_{\beta\gamma}||\epsilon^s_{\beta\gamma}|\cos(\Phi^s_{\beta\gamma} - \Phi^d_{\beta\gamma})$

3+1 Sterile Neutrinos: $P_{\mu e} + P_{ee}$

5σ discovery PMNS CP-violation

Caputo, Hernandez, Kekic, JLP, Salvado arXiv:1611.05000
ν_{τ} appearance channel

$\mathcal{V}_{\mathcal{T}}$ detection:

- Energy threshold of au production 3.2 GeV.
- Short lifetime of τ , indirect measurement via hadronic decays (~ 65% branching ratio).
- NC background. We have considered a sample in which 30% of the hadronic events are identified keeping 0.5% of NC background.

de Gouvêa, Kelly, Stenico, Pasquini 1904.07265

See talks by Pedro Machado & Adam Aurisano

DUNE set up

Globes files

DUNE Collaboration, arXiv:2103.04797 [hep] 8 Mar 2021.

Flux configuration							
	Beam configuration	Power	E_p	PoT/yr	t_{ν} (yr)	$t_{\bar{\nu}}$ (yr)	$M_{ m det}$
	Nominal	$1.2 \ \mathrm{MW}$	$120 {\rm GeV}$	1.1×10^{21}	3.5	3.5	67.2 tons
	High-Energy	$1.2 \ \mathrm{MW}$	$120~{\rm GeV}$	$1.1 imes 10^{21}$	3.5	—	67.2 tons

Running mode	Sample	Contribution	Event rates $(\times 10^5)$	$E_{\rm obs}^{\rm max} \ ({\rm GeV})$	
	ν_e -like	Intrinsic cont.	20.18		
		Flavor mis-ID	4.61	7.125	
		\mathbf{NC}	6.77		
ν mode (nominal)	$ u_{\mu} $ -like	$\nu_{\mu}, \bar{\nu}_{\mu} \text{ CC } (P_{\mu\mu} = 1)$	$2,\!235.72$	7 195	
		\mathbf{NC}	17.35	1.120	
	$ u_{ au}$ -like	$\nu_{\tau}, \bar{\nu}_{\tau} \text{ CC } (P_{\mu\tau} = 1)$	39.33	18	
		\mathbf{NC}	3.23	10	
	$\bar{\nu}_e$ -like	Intrinsic cont.	11.18	7.125	
		Flavor mis-ID	1.07		
		\mathbf{NC}	3.89		
$\bar{\nu} \mod (\text{nominal})$	$\bar{\nu}_{\mu}$ -like	$\nu_{\mu}, \bar{\nu}_{\mu} \text{ CC } (P_{\mu\mu} = 1)$	1,013.42	7 195	
		NC	9.76	1.120	
	$\bar{\nu}_{\tau}$ -like	$\nu_{\tau}, \bar{\nu}_{\tau} \text{ CC } (P_{\mu\tau} = 1)$	27.75	18	
		NC	1.80	10	
	ν_e -like	Intrinsic cont.	38.10		
		Flavor mis-ID	12.98	18	
		\mathbf{NC}	30.51		
ν mode (HE)	$ u_{\mu} $ -like	$\nu_{\mu}, \bar{\nu}_{\mu} \text{ CC } (P_{\mu\mu} = 1)$	5,784.30	10	
		\mathbf{NC}	72.15	18	
	$ u_{ au}$ -like	$\nu_{\tau}, \bar{\nu}_{\tau} \text{ CC } (P_{\mu\tau} = 1)$	259.67	10	
		\mathbf{NC}	9.42	10	

Event sample	Contribution	Benchmark 1		Benchmark 2		Benchmark 3	
		σ_{norm}	σ_{shape}	σ_{norm}	σ_{shape}	σ_{norm}	σ_{shape}
	Signal	5%		5%	_	5%	
	Intrinsic cont.	10%		10%	2%	10%	5%
ν_e -mke	Flavor mis-ID	5%	_	5%	2%	5%	5%
	\mathbf{NC}	10%	_	10%	2%	10%	5%
u liko	$\nu_{\mu}, \bar{\nu}_{\mu} \text{ CC (signal)}$	10%	_	10%	2%	10%	5%
$ u_{\mu}$ -like	\mathbf{NC}	10%	_	10%	2%	10%	5%
	Signal	20%	_	20%	_	20%	_
ν_{τ} -IIKe	NC	10%	_	10%	2%	10%	5%

Leptogenesis in Minimal Model n_g=2

Non very degenerate solutions

Inverted light neutrino ordering (IH)

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

$$\begin{split} \chi^2_{\min}(\{\Theta\}) &= \min_{\{\xi,\zeta\}} \left[\chi^2_{\text{stat}}(\{\Theta,\xi,\zeta\}) + \sum_s \left(\frac{\zeta_s}{\sigma_{\text{norm},s}}\right)^2 + \sum_b \left(\frac{\zeta_b}{\sigma_{\text{norm},b}}\right)^2 \\ &+ \sum_i \left(\frac{\xi_i^{\text{sig}}}{\sigma_{\text{shape,sig}}}\right)^2 + \sum_i \left(\frac{\xi_i^{\text{bg}}}{\sigma_{\text{shape,bg}}}\right)^2 \right] \,, \end{split}$$

$$\chi^2_{\text{stat}}(\{\Theta,\xi,\zeta\}) = \sum_i 2\left(N_i(\{\Theta,\xi,\zeta\}) - O_i + O_i \ln \frac{O_i}{N_i(\{\Theta,\xi,\zeta\})}\right)$$
$$N_i(\{\Theta,\xi,\zeta\}) = \sum_s (1+\xi_i^{\text{sig}}+\zeta_s) \, s_i(\{\Theta\}) + \sum_b (1+\xi_i^{\text{bg}}+\zeta_b) \, b_i(\{\Theta\})$$

Systematics: Disappearance

$$N_{\nu_{\alpha} \to \nu_{\beta}} \sim \frac{\Phi_{\alpha}(E)}{L^2} P_{\alpha\beta}(L/E) \sigma_{\beta}(E) \epsilon_{\beta}(E)$$

• Using near detectors is a very effective way of reducing systematics in disappearance experiments (K2K, MINOS, reactors...).

$$\frac{N_{\nu_{\alpha}}^{\rm FD}}{N_{\nu_{\alpha}}^{\rm ND}} \sim \frac{L_{\rm ND}^2}{L_{\rm FD}^2} \frac{\Phi_{\alpha} \sigma_{\alpha} \epsilon_{\alpha}}{\Phi_{\alpha} \sigma_{\alpha} \epsilon_{\alpha}} P_{\alpha \alpha}$$

Systematics: Disappearance

$$N_{\nu_{\alpha} \to \nu_{\beta}} \sim \frac{\Phi_{\alpha}(E)}{L^2} P_{\alpha\beta}(L/E) \sigma_{\beta}(E) \epsilon_{\beta}(E)$$

• Using near detectors is a very effective way of reducing systematics in disappearance experiments (K2K, MINOS, reactors...).

$$\frac{N_{\nu_{\alpha}}^{\rm FD}}{N_{\nu_{\alpha}}^{\rm ND}} \sim \frac{L_{\rm ND}^2}{L_{\rm FD}^2} \frac{\Phi_{\alpha} \sigma_{\alpha} \epsilon_{\alpha}}{\Phi_{\alpha} \sigma_{\alpha} \epsilon_{\alpha}} P_{\alpha \alpha}$$

Systematics: Appearance (CP violation)

$$N_{\nu_{\alpha} \to \nu_{\beta}} \sim \frac{\Phi_{\alpha}(E)}{L^2} P_{\alpha\beta}(L/E) \sigma_{\beta}(E) \epsilon_{\beta}(E)$$

• For appearance experiments the situation is more complicated

$$\frac{N_{\nu_e}^{\rm FD}}{N_{\nu_{\mu}}^{\rm ND}} \sim \frac{L_{\rm ND}^2}{L_{\rm FD}^2} \frac{\sigma_e \epsilon_e}{\sigma_{\mu} \epsilon_{\mu}} P_{\mu e}$$

• CP violation requires comparison between neutrino and anti-netrino signals.

$$\frac{N_{\nu_e}^{\text{Far}}}{N_{\bar{\nu}_e}^{\text{Far}}} \sim \frac{N_{\nu_{\mu}}^{\text{ND}}}{N_{\bar{\nu}_{\mu}}^{\text{ND}}} \frac{\sigma_e \epsilon_e}{\sigma_\mu \epsilon_\mu} \frac{\sigma_{\bar{\mu}} \epsilon_{\bar{\mu}}}{\sigma_{\bar{e}} \epsilon_{\bar{e}}} \frac{P_{\mu e}}{P_{\bar{\mu}\bar{e}}}$$

Huber, Mezzetto, Schwetz, 0711.2950 Coloma, Huber, Kopp, Winter, 1209.5973

Nuclear Cross sections

Neutrino-nucleus cross section missmodeling could lead to unacceptably large systematic uncertainties or biased measurements, even after the inclusion of a near detector.

Present Bounds

	High-scale Non-Unitarity	Low-scale Non-Unitarity			
	$(m > \mathrm{EW})$	$\Delta m^2 \gtrsim 100 \ {\rm eV}^2 \Delta m^2 \sim 0.1 - 1 \ {\rm eV}^2$			
α_{ee}	$1.3 \cdot 10^{-3}$	$2.4 \cdot 10^{-2}$ $1.0 \cdot 10^{-2}$			
$lpha_{\mu\mu}$	0.1-0.001%	$2.2 \cdot 10^{-2}$ 10-1% ²			
$\alpha_{ au au}$		$1.0 \cdot 10^{-1}$ ·1			
$ lpha_{\mu e} $	10001	$2.5 \cdot 10^{-2}$ 0^{-2}			
$ \alpha_{ au e} $	$2.7\cdot 10^{-3}$	$6.9 \cdot 10^{-2}$ $4.5 \cdot 10^{-2}$			
$ lpha_{ au\mu} $	$1.2 \cdot 10^{-3}$	$1.2 \cdot 10^{-2}$ $5.3 \cdot 10^{-2}$			

Fernandez-Martinez, Hernandez-Garcia, JLP 1605.08774 Blennow, Coloma, Fernandez-Martinez, Hernandez-Garcia, JLP 1609.08637

See also Park, Ross-Lonergan 1508.05095 Ellis, Kelly, Weishi Li 2004.13719 Ellis, Kelly, Weishi Li 2008.01088

Caputo, Hernandez, JLP, Salvado arXiv:1704.08721

Flavor pattern vs sensitivity

- Interpretation of ATLAS data depends on assumptions about "flavor mixing pattern" Tastet, Ruchayskiya, Timiryasov 2107.12980 See talks by Tastet and Xabier Marcano
- Same conclusion applies to other experimental searches.