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Accidental symmetries of the SM
The Standard Model has accidental perturbative symmetries, arising from:


 gauge group + field content + renormalizability

LB
Baryon number

Lα

Flavour numbers 
α = e, μ, τ

Lepton number 
L = Σα Lα(Individual quark flavour numbers 

are violated by CKM mixing)

Non perturbative effects violate both B and L, but preserve

Chapter 2. Early Universe Cosmology

this discussion applies in particular also to the B−L phase transition, during which the B−L
gauge symmetry actually becomes hidden rather than broken.

Electroweak Instanton and Sphaleron Transitions

As the temperature approaches the electroweak scale, also nonperturbative processes which

simultaneously violate baryon number B and lepton number L gain in importance. Their

emergence is a direct consequence of the fact that the electroweak dynamics are governed

by a chiral and non-Abelian gauge theory. First of all, we note that both global U(1)B and

U(1)L transformations represent accidental symmetries of the standard model Lagrangian.

Hence, both B and L are conserved in the standard model at the classical level. Due to

the chiral nature of the electroweak interactions, they are, however, violated at the quantum

level through the triangle anomaly, which results in the divergences of the baryon and lepton

number currents, Jµ
B and Jµ

L , being nonzero [12, 13],

∂µJ
µ
B = ∂µJ

µ
L =

Nf

32π2
εµνστ

(
−g2WTrWµνWστ + g2Y BµνBστ

)
. (2.29)

Here, Nf counts the number of fermion families, εµνστ represents the Levi-Civita symbol in

four dimensions,W a
µν andBµν are the field strength tensors of the weak and hypercharge gauge

fields, and gW and gY denote the corresponding gauge couplings. The second ingredient to the

nonconservation of B and L is the complicated structure of the vacuum of the SU(2)W gauge

theory. As for any non-Abelian gauge theory, the SU(2)W vacuum manifests itself in infinitely

many, homotopically distinct,25 pure gauge configurations, each of which is characterized by a

specific integer topological charge or Chern-Simons number NCS. An important observation is

that distinct realizations of the SU(2)W vacuum differing by ∆NCS = 1 are connected to each

other via a non-contractible loop in field configuration space [132]. The field configuration of

highest energy along this path is known as the sphaleron [133]. Corresponding to a saddle-

point of the energy functional of the gauge-Higgs system, the sphaleron represents a classical,

spatially localized and static, but unstable solution of the electroweak field equations. Its

energy Esph determines the height of the potential barrier by which two adjacent realizations

of the SU(2)W vacuum are separated,

Esph(T ) "
8π

gW

√
2vEW(T ) , vEW(T ) = ξ1/2EW(T ) . (2.30)

Now combining the nontrivial topology of the SU(2)W vacuum with the fact that the

currents Jµ
B and Jµ

L have nonzero divergences (cf. Eq. (2.29)), one can show that both B and

write v = 〈s〉, although we actually mean v =
〈
s†s

〉1/2
.

25Gauge configurations belonging to different homotopy classes are transformed into each other via large

gauge transformations.
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G. 't Hooft, Phys. Rev. Lett. 37 (1976) 8; Phys. Rev. D 14 (1976) 3432
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Accidental symmetries: experimental status

B No evidence 
of violation E.g. proton mean life  years CL=90%> 3.6 × 1029

PDG, Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

Lα

Violated in neutrino 
oscillations

L No evidence 
of violation

New physics BSM

Massive neutrinos violate it if 
they are Majorana particles

NuFIT 5.1 (2021)

|U |w/o SK-atm
3� =

0

B@
0.801 ! 0.845 0.513 ! 0.579 0.143 ! 0.156

0.232 ! 0.507 0.459 ! 0.694 0.629 ! 0.779

0.260 ! 0.526 0.470 ! 0.702 0.609 ! 0.763

1

CA

|U |with SK-atm
3� =

0

B@
0.801 ! 0.845 0.513 ! 0.579 0.144 ! 0.156

0.244 ! 0.499 0.505 ! 0.693 0.631 ! 0.768

0.272 ! 0.518 0.471 ! 0.669 0.623 ! 0.761

1

CA

I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. 
Schwetz and A. Zhou, arXiv:2007.14792 [hep-ph]
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New physics
scale

SM as an effective theory
Relaxing the renormalizability condition there is only one dim=5 gauge invariant operator 

(Weinberg operator)

EWSB

ΔL = 2

S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566

Why are neutrinos so 
light?

High NP scale

Symmetry (Lepton number)
Suppression

mechanisms

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)
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SSB mechanism, in a similar way as Dirac mass terms are generated in the SM. However
such mechanism would require a Higgs-like scalar field with isospin I = 1, in order to
construct a gauge invariant Yukawa interaction containing the I = 1 term ⌫c

L
⌫L. Such a

field (a Higgs triplet) is not present in the SM, and so this possibility is also excluded.
To summarise, because of the gauge symmetries and the field content of the theory,

and allowing only renormalizable couplings, neutrinos are massless in the SM.
If one relaxes the renormalizability condition and considers the SM as an effective

theory valid up to some energy scale, and parametrises the effects of the unknown UV
completion as a tower of effective non-renormalizable operators, the first new physics
effects are encoded in the collection of allowed dimension 5 operators. Remarkably, there
exists a unique Lorentz and gauge-invariant operator that is possible to construct with
the SM fields, the so called Weinberg operator [28]

1

2

c↵�

⇤

⇣
lc
L↵

e�⇤
⌘ ⇣

e�†l�
L

⌘
+ h.c., (2.85)

where ↵, � = e, µ, ⌧ , c↵� is a complex symmetric matrix and ⇤ is a constant with the
dimensions of energy that is related to the new physics scale. When the Higgs field
acquires a nonzero VEV, the operator (2.85) contributes as

v2

2

c↵�

⇤
⌫c

L↵
⌫L� + h.c., (2.86)

that is a Majorana mass term for left-handed neutrinos. It is notable that the first
expected effect of physics BSM is just the appearance of non-zero Majorana neutrino
masses; in this sense neutrinos are truly a window to BSM physics.

2.3 Leptonic Lagrangian in the Standard Model

Given the SM field content, the SM Lagrangian is the most general renormalizable La-
grangian which is invariant under the local gauge group and the global Lorentz transfor-
mations. Choosing a basis in which the kinetic terms are diagonal, the leptonic part is
given by

Lleptons = l↵
L

✓
i/@ +

g

2
/W

i
�i � g0

2
/B

◆
l↵L + e↵

R

�
i/@ � g0 /B

�
e↵

R

�Y↵�l↵
L
�e�

R
� Y †

↵�
e↵

R
�

†l�
L
. (2.87)

Y↵� is the matrix of the Yukawa interactions, which expresses the strength of the cou-
plings between the leptons and the Higgs field. It is a 3 ⇥ 3 matrix with complex entries
in general, which can be diagonalised through the bi-unitary transformation [29]

U †Y V = diag [y1, y2, y3] , (2.88)

where y1,2,3 are positive numbers and U, V are unitary matrices. Redefining the lepton
fields as

l↵L = U↵�
el�
L
, (2.89)

e↵

R = V↵�ee�

R
, (2.90)
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Effective approach

! BSM (or SM + mν ) require new fields (or extremely tiny Yν)

! Effects at low energy: effective theorie approach

Effective operators obtained when expanding the heavy field propagators in
1
M

! heavy fermion: 1
D/−M ∼ − 1

M − 1
MD/ 1

M + ...

! heavy scalar : 1
D2−M2 ∼ −

1
M2 −

D2

M4 + ...

" Leff = LSM + 1
M
cd=5Od=5 + 1

M2 c
d=6Od=6 + · · ·Leff = LSM + 1

M
cd=5Od=5 + 1

M2 c
d=6Od=6 + · · ·Leff = LSM + 1

M
cd=5Od=5 + 1

M2 c
d=6Od=6 + · · ·

∆Ld≥5∆Ld≥5∆Ld≥5 =
cd=5

M
cd=5

M
cd=5

M ×

��� ���

νiLν
i
Lν
i
L ν�Lν

�
Lν
�
L

+
cd=6
µeee

M2

cd=6
µeee

M2

cd=6
µeee

M2 ×

e�e�e�

eLeLeL

eLeLeL
µ�µ�µ�

+
cd=6
!i!jγ

M2

cd=6
!i!jγ

M2

cd=6
!i!jγ

M2 ...

<Φ> <Φ>

mν ! −v2F ∗ 1

M
F † (1)

|F | ! 10−7

√
M

GeV
(2)

|Uαi| !
√

mν

M
! 10−5

√
M

GeV
(3)

cαβ # 1 (4)

1

Accidental cancellations
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To summarise, because of the gauge symmetries and the field content of the theory,
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theory valid up to some energy scale, and parametrises the effects of the unknown UV
completion as a tower of effective non-renormalizable operators, the first new physics
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Y↵� is the matrix of the Yukawa interactions, which expresses the strength of the cou-
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in general, which can be diagonalised through the bi-unitary transformation [29]
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Lepton number violation Neutrino masses and mixing

mν
αβ = cαβ

v

Λ
v ≲ eV ≪ v (1)

L = LSM +

!
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

"
, (2)

Lint(pp) = 5.79× 104 pb−1

Lint(ArAr) = 7.72 pb−1

Lint(PbPb) = 10−2 pb−1 (3)

Nd =
Lintσ

[A,Z]
B

9

#
1−

!
Mi

mB

"2
$2

U2
µ

%
e−l0λ − e−l1λ

&
fcut (4)

mν = −v2FM−1
M F T (5)

L = LSM +

!
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

"
, (6)

Nb

'
A
ZN

(
= Nb

'
208
82Pb

(! Z

82

"−p

(7)

L =
frevnb

4πβ∗)
N2

b

L = k N2
b

θt =
t

τb

Nb(t) =
N0

1 + θt

Σ(t) = L0τb
θt

1 + θt
(8)

dNb

dt
= −

N2
b

N0τb

τb =
nb

σtotnIP

N0

L0
(9)

σEMD ∝ (A− Z)Z3

A2/3
(10)

σBFPP ∝ Z7 (11)

√
sPbPb = 5.52 TeV (12)
√
spp = 14 TeV (13)

1

4
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ν masses and mixing

common to all SM 

extensions with Majorana ν

5

Unveiling neutrino mass generation mechanism

New physics effects

If only Λ at work
New physics effects 
strongly suppressed 
by the ν mass scale

If symmetry at work

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)

ci6
⇤2

⇡

⇣c5
⇤

⌘2
'

⇣m⌫

v2

⌘2

c5 ⌧ 1

ci6 ⇡ O(1)
(10)

References

2

new physics scale ⇤ necessarily implies a strong suppression of the higher dimensional
operators, d � 6, in the effective theory expansion

Leff = LSM +
c5

⇤
Od=5

+
ci

6

⇤2
Od=6

i + . . . (4.27)

Thus in this framework new physics effects other than neutrino masses are difficult to
observe. This is what happens for instance in the Type-I Seesaw mechanism, where the
relations (4.23) imply

⇥
⇤ ' vp

2
Y ⇤ M�1, (4.28)

ml ' �v2

2
Y ⇤M�1Y †. (4.29)

If the submatrices m and M in (2.104) do not have any substructure, barring accidental
cancellations between the (a priori independent) entries of the matrices Y and M , the
smallness of the ratio O(m)/O(M) required to accommodate neutrino masses necessarily
implies a suppression of the active-sterile mixing ⇥V .

As pointed out in [308], the phenomenology is different if the suppression of the five
dimensional operator in (4.27) is not related to a suppression of the higher-dimensional
operators. This is notably the case of mechanisms characterised by an approximate lepton
number conservation: the five-dimensional operator (2.85) violates lepton number by two
units, and its coefficient is necessarily zero if the Lagrangian preserves the total lepton
number. On the other hand the d > 5 operators in (4.27) can violate or preserve the
lepton number, and they do not necessarily vanish when the symmetry is restored. Hence
new physics effects are not necessarily suppressed by the small value of neutrino masses.
Examples of mechanisms of this kind are the linear [309, 310] and the inverse Seesaw
(ISS) [311–313], where pairs of fermionic singlets, (⌫R, s), with lepton number L = 1 are
added to the SM. In the ISS the submatrices m and M in the mass matrix (2.104) read,
in the basis (⌫L, ⌫c

R
, s),

m =
�

d 0
�
,

M =

✓
0 n

nT µ

◆
, (4.30)

where d, n are complex matrices and µ is a complex symmetric matrix. The matrix d
arises from the Yukawa couplings between the left- and right-handed neutrino fields ⌫l

and ⌫R after the EWSB, while the matrix n is related to the new physics energy scale ⇤.
The matrix µ is the only entry in the mass matrix that violates the total lepton number
and the hierarchy O(µ) ⌧ O(d) < O(n) is assumed. The relations (4.23) give in this
case

⇥
⇤

=

⇣
� vp

2
Y ⇤ �

nT
��1

µ n�1 vp
2
Y ⇤ �

nT
��1

⌘
,

ml = �v2

2
Y ⇤ �

nT
��1

µ n�1Y †. (4.31)
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B

9

#
1−

!
Mi

mB

"2
$2

U2
µ

%
e−l0λ − e−l1λ

&
fcut (9)

mν = −v2FM−1
M F T (10)

L = LSM +

!
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

"
, (11)

Nb

'
A
ZN

(
= Nb

'
208
82Pb

(! Z

82

"−p

(12)

L =
frevnb

4πβ∗)
N2

b

L = k N2
b

θt =
t

τb

Nb(t) =
N0

1 + θt

Σ(t) = L0τb
θt

1 + θt
(13)

1

possible for all operators
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Λ suppression: naive Seesaw scaling

0.1 0.5 1 5 10 50

10-11

10-9

10-7

10-5

Mi [GeV]

|U
ei
|2

Experimentally 
excluded

Naive seesaw scaling

Seesaw scaling

mν ! −v2F ∗ 1

M
F † (1)

|F | ! 10−7

√
M

GeV
(2)

|Uαi| !
√

mν

M
! 10−5

√
GeV
M

(3)

cαβ # 1 (4)

Λ ≈ GeV (5)

1

In the absence of any structure 
in the F and M matrices

mν = −v2F
1

M
F T (1)

L = LSM + iNI /∂NI −
(
FαI"αLφ̃NI +

MIJ

2
N c

INJ + h.c.

)
(2)

L = LSM + i νRi/∂νRi −
1

2

(
νcRiMijνRj + νRiM

†
ijν

c
Rj

)
− Fαi"αLφ̃νRi − F ∗

αiνRiφ̃
†"αL (3)

η∆B = (6.13± 0.03)× 10−10 (4)

1
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Theorem: SM + fermionic gauge singlets

7

K. Moffat, S. Pascoli and C. Weiland, arXiv:1712.07611 [hep-ph]

“The most general gauge-singlet neutrino extensions of the SM with no cancellation between 
different orders of the seesaw expansion, no fine-tuned cancellations between different 

radiative orders and which lead to three massless neutrinos are lepton number conserving”

In the SM extended with fermionic gauge singlets (e.g. Right-Handed neutrinos)

mν = 0 ΔL = 0

Unless there are accidental cancellations in mν, the rate for Lepton number 
violating events is proportional to the small active neutrino masses

The theorem extends and generalises previous results: G. Ingelman and J. Rathsman, Z. Phys. 
C 60 (1993) 243; J. Gluza, hep-ph/0201002; J. Kersten and A. Y. Smirnov, arXiv:0705.3221 [hep-ph]

Symmetries: L number has a special role
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Accidental cancellations: quantify fine tuning
If a symmetry is present 
in the Lagrangian, it will 
be manifest at any order 

in perturbation theory

The neutrino mass 
scale is stable under 
radiative corrections

Compute neutrino masses mν at 1-loop, and 
quantify the level of fine-tuning of a solution as

Lagrangian). If there is no symmetry, although at tree-level accidental cancellations can result in

small neutrino masses, then the combination of large Yukawa couplings and low-scale seesaw, without

any symmetry protecting neutrino masses, will in general result in large loop corrections, spoiling

the tree-level result. One can still satisfy the experimental constraints in this framework by invoking

accidental cancellations among different orders in the perturbative expansion, although the solution

will result quite fine tuned in this case. A well known example of approximate symmetry protecting

neutrino masses in the total lepton number L: experimentally there is no evidence for lepton number

violation, but small neutrino masses break lepton number conservation if they are Majorana particles.

One can thus link the smallness of neutrino masses with the smallness of the lepton-number violating

parameters in the theory, rendering small neutrino masses natural since in the massless limit the

Lagrangian acquires an additional symmetry. In this framework, after having integrated out the

BSM new physics states, there is a decorrelation between the L-violating 5-dimensional operator in

the effective theory, giving rise to non-zero neutrino masses, and the 6-dimensional operators, which

encode new-physics effects other than neutrino oscillations and which can be either L-violating or

L-conserving [60]. Since there is only one unique 5-dimensional operator in the SM [61], whose

coefficient is determined by neutrino masses and mixing, any possibility to disentangle among the

different models for neutrino mass generation relies in detecting the effects of at least the 6-dimensional

effective operators. Neutrino mass generations mechanisms based on an approximate lepton number

conservation include for instance supersymmetric models with R-parity violation [62–67], low-scale

Seesaw realisations [68–70], the νMSM [12], the Linear Seesaw [71–73] and Inverse Seesaw [29,74–77]

mechanisms. The key rôle of lepton number symmetry in low-scale leptogenesis realisations was

previously addressed in [10, 11].

In the exploration of the parameter space we do not impose any symmetry, but we allow the

underlying parameters in the theory to vary as reported in Table 1, in order to generate symmetry

protected as well as generic solutions. The prediction of an underlying lepton number symmetry is

indeed a mass spectrum characterised by a pair of sterile neutrinos N1,2
PD strongly degenerate in mass

and coupled to form a pseudo-Dirac state, with relative Yukawa couplings Fα1 ! −iFα2, and a third

state N3
Dec almost decoupled2, |Fα3| #

∣∣Fα(1,2)

∣∣ [60, 78, 79]. We then quantify a posteriori the level of

fine-tuning for each solution, by defining the following quantity

f.t.(mν) =

√√√√
3∑

i=1

(
mloop

i −mtree
i

mloop
i

)2

, (27) {eq:fine_tuning}

where mloop
i are the light neutrino masses computed at 1-loop level, while mtree

i are the same observ-

ables computed neglecting loop corrections. Eq. (27) quantifies how important are loop correction in

order to reproduce the observed neutrino mass spectrum: the smaller it is the more neutrino masses

are stable under radiative corrections, suggesting the presence of an underlying symmetry if Yukawa

couplings are sizeable larger than the naive Seesaw scaling |F | ! 10−7
√

M/GeV.

2Notice that the third state can equivalently be heavier or lighter with respect to the pseudo-Dirac pair.

12

mi loop 

1-loop neutrino

mass spectrum

mi tree 

tree-level neutrino

mass spectrum
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Fermionic singlet extensions of the SM

9

SM + n gauge singlet fermions NI

After electroweak phase transition < Φ > = v ≃ 174 GeV

3 x n matrix 
Yukawa couplings

n x n matrix 
Majorana mass  

couplings

(3+n) dimensional 
mass matrix

L = LSM + iNI /∂NI −
(
FαI"αLφ̃NI +

MIJ

2
N c

INJ + h.c.

)
(1)

L = LSM + i νRi/∂νRi −
1

2

(
νcRiMijνRj + νRiM

†
ijν

c
Rj

)
− Fαi"αLφ̃νRi − F ∗

αiνRiφ̃
†"αL (2)

η∆B = (6.13± 0.03)× 10−10 (3)

1

U
T
M U = M̂diag (20)

U =

"

# U
α, i=1,2,3
active-active U

α, i≥4
active-sterile

...
. . .

$

% (21)

−L
ν
m =

1

2

&
νL N c

'
"

# δmloop
ν vF

vF T M

$

%

( )* +
M

"

# νcL

N

$

%+ h.c. (22)

c5 ≪ 1 (23)
ci6 ≈ O(1) (24)

c5 ≪ 1 (25)
cLNV,i
6 ≪ 1 (26)

cLNC,i
6 ≈ O(1) (27)

mν
αβ = cαβ

v

Λ
v ≲ eV ≪ v (28)

L = LSM +

,
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

-
, (29)

Lint(pp) = 5.79× 104 pb−1

Lint(ArAr) = 7.72 pb−1

Lint(PbPb) = 10−2 pb−1 (30)

Nd =
Lintσ

[A,Z]
B

9

.
1−

,
Mi

mB

-2
/2

U2
µ

&
e−l0λ − e−l1λ

'
fcut (31)

mν = −v2FM−1
M F T (32)

L = LSM +

,
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

-
, (33)

Nb

0
A
ZN

1
= Nb

0
208
82Pb

1, Z

82

-−p

(34)

2
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Phenomenology of fermionic singlets

10

U
T
M U = M̂diag (1)

U =

!

" U
α, i=1,2,3
active-active U

α, i≥4
active-sterile

...
. . .

#

$ (2)

−L
ν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (3)

c5 ≪ 1 (4)
ci6 ≈ O(1) (5)

c5 ≪ 1 (6)
cLNV,i
6 ≪ 1 (7)

cLNC,i
6 ≈ O(1) (8)

mν
αβ = cαβ

v

Λ
v ≲ eV ≪ v (9)

L = LSM +

'
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

(
, (10)

Lint(pp) = 5.79× 104 pb−1

Lint(ArAr) = 7.72 pb−1

Lint(PbPb) = 10−2 pb−1 (11)

Nd =
Lintσ

[A,Z]
B

9

)
1−

'
Mi

mB

(2
*2

U2
µ

%
e−l0λ − e−l1λ

&
fcut (12)

mν = −v2FM−1
M F T (13)

L = LSM +

'
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

(
, (14)

Nb

+
A
ZN

,
= Nb

+
208
82Pb

,' Z

82

(−p

(15)

1

U
T
M U = M̂diag (1)

U =

!

" U
α, i=1,2,3
active-active U

α, i≥4
active-sterile

...
. . .

#

$ (2)

−L
ν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (3)

c5 ≪ 1 (4)
ci6 ≈ O(1) (5)

c5 ≪ 1 (6)
cLNV,i
6 ≪ 1 (7)

cLNC,i
6 ≈ O(1) (8)

mν
αβ = cαβ

v

Λ
v ≲ eV ≪ v (9)

L = LSM +

'
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

(
, (10)

Lint(pp) = 5.79× 104 pb−1

Lint(ArAr) = 7.72 pb−1

Lint(PbPb) = 10−2 pb−1 (11)

Nd =
Lintσ

[A,Z]
B

9

)
1−

'
Mi

mB

(2
*2

U2
µ

%
e−l0λ − e−l1λ

&
fcut (12)

mν = −v2FM−1
M F T (13)

L = LSM +

'
i

2
νRi/∂νRi − FaiℓLaεφ

∗νRi −
1

2
νcRi (MM )ij νRj + h.c.

(
, (14)

Nb

+
A
ZN

,
= Nb

+
208
82Pb

,' Z

82

(−p

(15)

1

PMNS matrix: 
neutrino oscillations

Couples the heavy states 
with SM gauge bosons

Unobservable

3 light (mostly active) states

n heavy (mostly sterile) states

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)

References
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L symmetry and Majorana fields

11

Majorana fermions violate all global symmetries, including L

How to preserve lepton number with Majorana states?

Pair two states to form 
a Dirac state


(equal masses, maximal 
mixing, opposite CP)

Decouple a state Have a massless state

Exact 
symmetry

Approximate 
symmetry

M1 = M2 (1)
Uα1 = i Uα2 (2)

(3)

Mi = 0 (4)

Uαi = 0 (5)

M2 −M1

M1 +M2
≪ 1 (6)

Uα1 ≃ i Uα2 (7)
(8)

Mi ≪ Mj ∕=i (9)

|Uα,i| ≪ |Uα,j ∕=i| (10)

U
T
M U = M̂diag (11)

U =

!

" U
α, i=1,2,3
active-active U

α, i≥4
active-sterile

...
. . .

#

$ (12)

−L
ν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (13)

c5 ≪ 1 (14)
ci6 ≈ O(1) (15)

c5 ≪ 1 (16)
cLNV,i
6 ≪ 1 (17)

cLNC,i
6 ≈ O(1) (18)

1

M1 = M2 (1)
Uα1 = i Uα2 (2)

(3)

Mi = 0 (4)

Uαi = 0 (5)

M2 −M1

M1 +M2
≪ 1 (6)

Uα1 ≃ i Uα2 (7)
(8)

Mi ≪ Mj ∕=i (9)

|Uα,i| ≪ |Uα,j ∕=i| (10)

U
T
M U = M̂diag (11)

U =

!

" U
α, i=1,2,3
active-active U

α, i≥4
active-sterile

...
. . .

#

$ (12)

−L
ν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (13)

c5 ≪ 1 (14)
ci6 ≈ O(1) (15)

c5 ≪ 1 (16)
cLNV,i
6 ≪ 1 (17)

cLNC,i
6 ≈ O(1) (18)

1

M1 = M2 (1)
Uα1 = i Uα2 (2)

(3)

Mi = 0 (4)

Uαi = 0 (5)

M2 −M1

M1 +M2
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Uα1 ≃ i Uα2 (7)
(8)

Mi ≪ Mj ∕=i (9)

|Uα,i| ≪ |Uα,j ∕=i| (10)

U
T
M U = M̂diag (11)

U =

!

" U
α, i=1,2,3
active-active U

α, i≥4
active-sterile

...
. . .

#

$ (12)

−L
ν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (13)

c5 ≪ 1 (14)
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#
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−L
ν
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2

%
νL N c

&
!
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vF T M

#

$

!
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#
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NEUTRINOLESS DOUBLE BETA DECAY
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Double beta decay

13

These results are expected to be improved by the next generation of experiments:
KATRIN [138] and MARE [141] with a planned sensitivity of 0.35 eV (3-years running)
and 0.2 eV, respectively.

3.2.2 meff

⌫µ
and meff

⌫⌧
mass limits

Analogously to the definition (3.15), it is possible to define an effective mass for the
other neutrino flavours, meff

⌫µ and meff
⌫⌧ , by the replacement Uei ! Uµi and U⌧ i, respec-

tively [56].
A limit on the effective mass meff

⌫µ can be extracted from the pion decay

⇡+ ! µ+
+ ⌫µ, (3.18)

by measuring the muon energy, since the kinematics of the process gives

m2

⌫µ
= m2

⇡ + m2

µ � 2m⇡Eµ. (3.19)

The current bound on the effective muon neutrino mass is [142]

meff

⌫µ
< 170 keV at 90 % C.L. (3.20)

A limit on meff
⌫⌧ can be obtained by measuring the missing energy in the decays

⌧� ! 2⇡�
+ ⇡+

+ ⌫⌧ ,

⌧� ! 3⇡�
+ 2⇡+

+ ⌫⌧ , (3.21)

resulting in the upper bound [143]

meff

⌫⌧
< 18.2 MeV at 95 % C.L. (3.22)

Notice that, in the three-flavour paradigm, the above referred quantities are con-
strained to be orders of magnitude smaller than the bounds (3.20, 3.22), due to the com-
bination of the values of the mixing matrix elements, Table 3.1, and the upper bound on
the neutrino mass scale (3.17).

3.2.3 Neutrinoless double beta decay

The double beta (2�) decay is a second order weak process characterised by the transition

N (A, Z) ! N (A, Z + 2) + 2e�
+ 2⌫e. (3.23)

Being a second order process in the weak coupling, this process is relevant when the single
beta decay is kinematically forbidden, as is the case for instance of the nuclei 48Ca, 76Ge,
82Se, 96Zr, 100Mo, 116Cd, 130Te, 136Xe, 150Nd [56], see Fig. 3.3 for the A = 76 case.

If neutrinos are Majorana particles they can mediate a variation of the 2�-decay
process, the neutrinoless double beta (0⌫2�) decay process [144]

N (A, Z) ! N (A, Z + 2) + 2e�. (3.24)

41

2β decay: 2nd order weak process 

Only relevant when the single β 
decay is kinematically forbidden

48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 130Te, 136Xe, 150Nd

(Ep = 100 GeV) to produce a neutrino beam that is sent to the underground site of MINOS at a
distance of 730 Km. The detailed comparison of a “near” and a “far” detector functionally identical
(two iron/scintillator sampling calorimeters) with toroidal magnetic field should allow to confirm the
oscillation interpretation for atmospheric neutrinos, and to determine more accurately the oscillation
parameters. The beginning of the data taking is scheduled for the end of 2004.

In the CERN to Gran Sasso project 450 GeV p beam is the source of a higher energy neutrino
beam 〈Eν〉 ∼ 15 – 20 GeV that will be sent to the Gran Sasso underground laboratory, again at a
distance of 730 Km. The OPERA detector is designed to serch for the appearance of ντ charged current
interactions with a massive lead/nuclear emulsion target. The ICARUS detector is also sensitive to the
ντ ’s generated by the oscillations.

Fig. 42: Energy levels for the A = 76 nuclei.

11. DOUBLE BETA DECAY

The most promising way to distinguish between Dirac and Majorana neutrinos is neutrinoless double
beta decay (for extensive reviews see [102]). Double beta decay is the process:

(Z,A) → (Z + 2, A) + 2e− + 2ν̄e (2νββ decay) , (177)

that can occur when single beta decay is kinematically forbidden. For example the nucleus 76Ge (Z=32)
cannot have a beta decay into the Z=33 state (76As) that has a mass 0.4 MeV larger, but can have a double
beta decay into the Z=34 state (76Se) that is 3.05 MeV lighter. The process (177) at the fundamental
(quark) level (see part (a) of Fig. 43) is the transition of two d quarks into two u quarks with the emission
of two electrons and two νe. The process is of second order in the weak coupling and therefore the
corresponding decay rates are very low with lifetimes of order T >∼ 1019–1021 years.

In the neutrino–less process:

(Z,A) → (Z + 2, A) + 2e− (0νββ decay) , (178)

there is no neutrino emission. The leading order diagram of this process is shown in part (b) of Fig. 43,
and can be pictured as one beta decay followed by the absorption of the emitted anti-neutrino by a
different neutron in the nucleus. The process has a very clear experimental signature because while in
the standard decay the sum of the energy of the two electrons in the final state has a broad distribution,
in the neutrinoless case one has that the sum of the energies of the two emitted electrons is equal to the

186

Figure from P. Lipari, Introduction to neutrino physics, in 2001 CERN-CLAF School of high-energy physics 
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Neutrinoless double beta decay: ΔL = 2

14

νΜ
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x

If neutrinos are Majorana particles 0ν2β is possible

These results are expected to be improved by the next generation of experiments:
KATRIN [138] and MARE [141] with a planned sensitivity of 0.35 eV (3-years running)
and 0.2 eV, respectively.

3.2.2 meff

⌫µ
and meff

⌫⌧
mass limits

Analogously to the definition (3.15), it is possible to define an effective mass for the
other neutrino flavours, meff

⌫µ and meff
⌫⌧ , by the replacement Uei ! Uµi and U⌧ i, respec-

tively [56].
A limit on the effective mass meff

⌫µ can be extracted from the pion decay

⇡+ ! µ+
+ ⌫µ, (3.18)

by measuring the muon energy, since the kinematics of the process gives

m2

⌫µ
= m2

⇡ + m2

µ � 2m⇡Eµ. (3.19)

The current bound on the effective muon neutrino mass is [142]

meff

⌫µ
< 170 keV at 90 % C.L. (3.20)

A limit on meff
⌫⌧ can be obtained by measuring the missing energy in the decays

⌧� ! 2⇡�
+ ⇡+

+ ⌫⌧ ,

⌧� ! 3⇡�
+ 2⇡+

+ ⌫⌧ , (3.21)

resulting in the upper bound [143]

meff

⌫⌧
< 18.2 MeV at 95 % C.L. (3.22)

Notice that, in the three-flavour paradigm, the above referred quantities are con-
strained to be orders of magnitude smaller than the bounds (3.20, 3.22), due to the com-
bination of the values of the mixing matrix elements, Table 3.1, and the upper bound on
the neutrino mass scale (3.17).

3.2.3 Neutrinoless double beta decay

The double beta (2�) decay is a second order weak process characterised by the transition

N (A, Z) ! N (A, Z + 2) + 2e�
+ 2⌫e. (3.23)

Being a second order process in the weak coupling, this process is relevant when the single
beta decay is kinematically forbidden, as is the case for instance of the nuclei 48Ca, 76Ge,
82Se, 96Zr, 100Mo, 116Cd, 130Te, 136Xe, 150Nd [56], see Fig. 3.3 for the A = 76 case.

If neutrinos are Majorana particles they can mediate a variation of the 2�-decay
process, the neutrinoless double beta (0⌫2�) decay process [144]

N (A, Z) ! N (A, Z + 2) + 2e�. (3.24)

41Clear experimental signature

2β

0ν2β

W. H. Furry, Phys. Rev. 56 (1939) 1184

Figure modified from F. T. Avignone III, S. R. Elliott and J. Engel, arXiv:0708.1033 [nucl-ex]
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J. Schechter and J. W. F. Valle, Phys. Rev. D 25 (1982) 2951; E. Takasugi, Phys. Lett. 149B (1984) 372; 
see also M. Duerr, M. Lindner and A. Merle, arXiv:1105.0901 [hep-ph]

Irrespectively of the underlying 
mechanism, a non-vanishing 0ν2β 
amplitude generates a Majorana 
mass term for the SM neutrinos

NEUTRINOLESS DOUBLE-P DECAY IN SU(2)XU(1). . . 2953

also results in new diagrams of the standard form
1(a) in which one or both of the W's is replaced by
a X . These diagrams, which also modify the
V—A structure of the single-P-decay interaction,
are quite small.
Thus we reach the conclusion that for the

SU(2) XU(1) theory defined by the Higgs content
(1), the effect of the new diagrams is quite small if
one considers only mass scales lower than that of
grand unification.
One type of neutrinoless diagram which may

conceivably be relatively strong without superheavy
masses is shown in Fig. 1(d). Here a new I'=—4
isosinglet Higgs field P is introduced in addi-
tion to the doublet and the triplet. The virtual

decays into two ez 's rather than two ei 's as
in the previous cases. In this case the g++ez ez
Yukawa interaction is not proportional to the neu-
trino mass (as was required previously since the
h++el eL Yukawa term is related by an isospin
transformation to the h vv term which generates
neutrino mass) and thus may be of order unity. '
The term in the Higgs Lagrangian which generates
the trilinear X X g++ coupling in Fig. 1(d) is

BLACK BOX

I
ct

I

l
I

4/

FIG. 2. Diagram showing how any neutrinoless
double-P decay process induces a v, -to-v, transition,
that is, an effective Majorana mass term.

P Htg, g+++H. c. (13)

The amplitude for Fig. 1(d) would then roughly be
of order co ms y/A, . The ratio of this to the usual
amplitude, which is suppressed by a factor of m„,
is about

co'ym, '(p')
m„A,4

(14)

This could be comparable to one if m„ is excep-
tionally small.
Other models with extra Higgs fields can also

boost the new contribution. For example, suppose
that we add to (1) another complex doublet P', as
one might have in an axion scheme. Then there
will be two physical singly charged fields and there
is in general no need to have a suppression' of
their Yukawa couplings to the quarks for small y.
The ratio of the d contribution to the standard one
[see Eq. (12)] is now roughly

10 13(p')'" d 10-6d

where we have taken y =1 eV. Thus an intermedi-
ate scale d =10 GeV could make the new dia-
grams important.
To sum up we can say that while neutrinoless

diagrams might not be dominant, a careful analysis
of (PP}c„decays should really take into account

their possible existence. This is because the general
structure (as opposed to detailed predictions) of
gauge theories seems to be the safest guide to the
parametrization of weak-interaction amplitudes. It
would be desirable to develop criteria" based on
angular distributions of the decay products for dis-
tinguishing these diagrams from the usual ones.
We will conclude this paper with a brief discus-

sion of the relation between the (PP}c„process and
nonzero neutrino mass. After noticing the ex-
istence of neutrinoless diagrams one might be
tempted to try to construct models without mas-
sive neutrinos and which would still give (PP)c„.
However, such a search would be in vain. For the
model based on the Higgs content (1) this result is
obvious since Eqs. (5) and (10) are proportional to
m„. It is also true for the model with g: Al-
though this model gives an amplitude with no m„
factor there is an overall factor of y = (hc). Now
in a natural theory H will couple to the basic lep-
ton doublet so that a nonzero value of y will gen-
erate a neutrino mass.
Still one might think that a yet more clever

choice of the Higgs-representation content could
do the job. Rather than attempt an enumeration
of all possible Higgs structures we will give a gen-
eral and yet very simple proof that the existence of
(PP)c„ implies that the electron neutrino has

Γ0ν2β ∕= 0 (1)
νcL = eiφνL (2)

M1 = M2 (3)
Uα1 = i Uα2 (4)

(5)

Mi = 0 (6)
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6 ≈ O(1) (20)

1

Γ0ν2β ∕= 0 (1)
νci = eiφνi (2)

M1 = M2 (3)
Uα1 = i Uα2 (4)

(5)

Mi = 0 (6)

Uαi = 0 (7)

M2 −M1

M1 +M2
≪ 1 (8)

Uα1 ≃ i Uα2 (9)
(10)

Mi ≪ Mj ∕=i (11)

|Uα,i| ≪ |Uα,j ∕=i| (12)

U
T
M U = M̂diag (13)

U =

!

" U
α, i=1,2,3
active-active U

α, i≥4
active-sterile

...
. . .

#

$ (14)

−L
ν
m =

1

2

%
νL N c

&
!

" δmloop
ν vF

vF T M

#

$

!

" νcL

N

#

$+ h.c. (15)

c5 ≪ 1 (16)
ci6 ≈ O(1) (17)

c5 ≪ 1 (18)
cLNV,i
6 ≪ 1 (19)

cLNC,i
6 ≈ O(1) (20)

1

Non-vanishing 
0ν2β amplitude

Neutrinos are 
Majorana fermions



Michele Lucente - RWTH Aachen University NuTs 2022

Experimental status: minimal SM

16

Table from M. J. Dolinski, A. W. P. Poon and 
W. Rodejohann, arXiv:1902.04097 [nucl-ex]Figure from P. Guzowski, L. Barnes, J. Evans, G. Karagiorgi, N. 

McCabe and S. Soldner-Rembold, arXiv:1504.03600 [hep-ex]

The amplitude for light neutrino exchange is proportional to

(Ep = 100 GeV) to produce a neutrino beam that is sent to the underground site of MINOS at a
distance of 730 Km. The detailed comparison of a “near” and a “far” detector functionally identical
(two iron/scintillator sampling calorimeters) with toroidal magnetic field should allow to confirm the
oscillation interpretation for atmospheric neutrinos, and to determine more accurately the oscillation
parameters. The beginning of the data taking is scheduled for the end of 2004.

In the CERN to Gran Sasso project 450 GeV p beam is the source of a higher energy neutrino
beam hE⌫i ⇠ 15 – 20 GeV that will be sent to the Gran Sasso underground laboratory, again at a
distance of 730 Km. The OPERA detector is designed to serch for the appearance of ⌫⌧ charged current
interactions with a massive lead/nuclear emulsion target. The ICARUS detector is also sensitive to the
⌫⌧ ’s generated by the oscillations.

Fig. 42: Energy levels for the A = 76 nuclei.

11. DOUBLE BETA DECAY

The most promising way to distinguish between Dirac and Majorana neutrinos is neutrinoless double
beta decay (for extensive reviews see [102]). Double beta decay is the process:

(Z,A) ! (Z + 2, A) + 2e�
+ 2⌫̄e (2⌫�� decay) , (177)

that can occur when single beta decay is kinematically forbidden. For example the nucleus 76Ge (Z=32)
cannot have a beta decay into the Z=33 state (76As) that has a mass 0.4 MeV larger, but can have a double
beta decay into the Z=34 state (76Se) that is 3.05 MeV lighter. The process (177) at the fundamental
(quark) level (see part (a) of Fig. 43) is the transition of two d quarks into two u quarks with the emission
of two electrons and two ⌫e. The process is of second order in the weak coupling and therefore the
corresponding decay rates are very low with lifetimes of order T >⇠ 10

19–1021 years.

In the neutrino–less process:

(Z,A) ! (Z + 2, A) + 2e�
(0⌫�� decay) , (178)

there is no neutrino emission. The leading order diagram of this process is shown in part (b) of Fig. 43,
and can be pictured as one beta decay followed by the absorption of the emitted anti-neutrino by a
different neutron in the nucleus. The process has a very clear experimental signature because while in
the standard decay the sum of the energy of the two electrons in the final state has a broad distribution,
in the neutrinoless case one has that the sum of the energies of the two emitted electrons is equal to the

186

Figure 3.3: Energy levels for the A = 76 nuclei. Figure taken from [39].

This process violates the conservation of the total lepton number by two units and is
characterised by a clear experimental signature, since the two final electrons carry away
the total Q value of the reaction, resulting in a peak over the continuous 2�-decay
background.

The 0⌫2� decay process requires a chirality flip and a particle-antiparticle identi-
fication, thus its amplitude is proportional to the Majorana neutrino masses. Other
mediators than Majorana neutrinos can in principle contribute to the amplitude, how-
ever it has been demonstrated that if 0⌫2�-decay is possible then the same underlying
physics generates a Majorana mass term for neutrinos [145,146]. Thus 0⌫2� experiments
are a powerful tool to probe the Majorana hypothesis for massive neutrinos.

The contribution of a single Majorana neutrino to the 0⌫2�-decay amplitude is pro-
portional to the combination [147]

Ai / miU
2

eiM
0⌫2�

(mi) , (3.25)

where M0⌫2�
(mi) is the nuclear matrix element that characterises the process. The latter

is a function of the neutrino mass mi and depends on the nucleus that undergoes the
0⌫2� transition. It can be satisfactorily approximated by the analytic expression

M0⌫2�
(mi) ' M0⌫2�

(0)
p2

p2 � m2

i

, (3.26)

where p2 ⇡ �(125 MeV)
2 is the virtual momentum of the neutrino, whose exact value

depends on the nucleus. From the experimental results described in Section 3.2.1 we know
that mi ⌧ |p|, the contribution of active neutrinos to the 0⌫2� amplitude is proportional
to the combination

m2� =

�����
X

i

U2

eimi

����� . (3.27)
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From current knowledge on neutrino oscillation parameters it is possible to compute 
m2β as a function of unknown lightest neutrino mass, ordering and CP phases Table 2 T 0⌫

1/2
and hm��i limits (90% C.L.) from the most recent measurements, sorted

by the mass number. The hm��i limits are listed as reported in refereed publications.

Other unpublished preliminary results are described in the text.

Isotope T0⌫
1/2 (⇥1025 y) hm��i (eV) Experiment Reference

48Ca > 5.8⇥ 10�3
< 3.5� 22 ELEGANT-IV (157)

76Ge > 8.0 < 0.12� 0.26 GERDA (158)

> 1.9 < 0.24� 0.52 Majorana Demonstrator (159)
82Se > 3.6⇥ 10�2

< 0.89� 2.43 NEMO-3 (160)
96Zr > 9.2⇥ 10�4

< 7.2� 19.5 NEMO-3 (161)
100Mo > 1.1⇥ 10�1

< 0.33� 0.62 NEMO-3 (162)
116Cd > 1.0⇥ 10�2

< 1.4� 2.5 NEMO-3 (163)
128Te > 1.1⇥ 10�2 — — (164)
130Te > 1.5 < 0.11� 0.52 CUORE (124)
136Xe > 10.7 < 0.061� 0.165 KamLAND-Zen (165)

> 1.8 < 0.15� 0.40 EXO-200 (166)
150Nd > 2.0⇥ 10�3

< 1.6� 5.3 NEMO-3 (167)

5. The Experimental Program

Since the first direct searches for 0⌫�� decays (154, 155, 156) in the 1960s, the experiments

have grown from deploying grams to hundreds of kilograms of decay isotopes. As these

detectors become more sophisticated—from reducing the overall backgrounds to improving

the signal detection e�ciency—the T
0⌫
1/2 limit has also improved from <⇠1020 y to >⇠1026 y.

Much experimental progress has been made since the publication of the last 0⌫��-decay

review in this Annual Review series (14). Table 2 summarizes the current lower limits in T
0⌫
1/2

and hm��i for the di↵erent ��-decay isotopes. It should be kept in mind that there are many

possible mechanisms for 0⌫�� decay (Sec. 2.3); only the hm��i limits in the light-neutrino

model are summarized in the table. Figure 5 shows two influential detector parameters

(Eq. 15), energy resolution and background index, for some of the past, current and future

experiments. We have witnessed a tremendous amount of progress in background reduction,

but formidable challenges to improve further lie ahead. In the rest of this section, we will

discuss the detector technologies and the experimental program that are being pursued for

the discovery of 0⌫��-decay.

5.1. Semiconductors

Among the di↵erent semiconductor detector technologies, 76Ge-enriched high-purity ger-

manium (HPGe) detectors are one of the most auspicious for scaling to a tonne-scale ex-

periment. The advent of using HPGe detectors in �-ray spectroscopy and the network

of commercial manufacturers have propelled this technology to a mature state. Other

semiconductor technologies, e.g. CdZnTe (168) or a recent idea of a complementary metal-

oxide-semiconductor (CMOS) pixel array (169), are still in an early feasibility study stage

and are unlikely to be realized as a next-generation tonne-scale experiment.

There are several advantages of using HPGe detectors in 0⌫��-decay searches. They

20 Dolinski et al.
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Heavy Majorana neutrinos contribute as well to 0ν2β amplitude
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Mass dependence

F. L. Bezrukov, hep-ph/0505247; M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, 
arXiv:1005.3240 [hep-ph]; A. Abada and M.L., arXiv:1401.1507 [hep-ph]; A. Faessler, M. González, S. Kovalenko 

and F. Šimkovic, arXiv:1408.6077 [hep-ph]; A. Abada, V. De Romeri, M.L., A. M. Teixeira and T. Toma, 
arXiv:1712.03984 [hep-ph]; A. Babič, S. Kovalenko, M. I. Krivoruchenko and F. Šimkovic, arXiv:1804.04218 [hep-ph]
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Figures from A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, arXiv:1810.12463 [hep-ph]; 
see also J. Lopez-Pavon, S. Pascoli and C. f. Wong, arXiv:1209.5342 [hep-ph]; J. Lopez-Pavon, E. Molinaro 

and S. T. Petcov, arXiv:1506.05296 [hep-ph]

Blue points: not fine tuned Red points: fine tuned
f.t.

10-4 10-2 1

Figure 1: Active-sterile mixing for the viable BAU solutions as a function of the heavy neutrino mass, for

a normal (left) and an inverted (right) ordering in the light neutrino mass spectrum. From top to bottom:

electron U
2
ei, muon U

2
µi, tau U

2
⌧i and summed U

2
i mixings. The grey region is excluded by direct searches of

heavy neutral leptons (cf. Section 5.2), the lines show the expected sensitivities for the ongoing experiments

T2K [182], NA62 [39], Belle II [183], LHCb [180] with an integrated luminosity of 380 fb
�1

, and for ATLAS

and CMS with an integrated luminosity of 300 fb
�1

. The latter include di↵erent proposed searches: [22]

(continuous line), [17] (dashed line), [21] (dotted line).
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0ν2β constraints depend on the 
full mass spectrum (light + heavy)

These constraints do not apply to (pseudo-)Dirac particles

0.001 0.010 0.100 1 10 100
10-10

10-8

10-6

10-4

Mi[GeV]

|U
ei

2

Rll (0,∞) =
∆M2

2Γ2 +∆M2
(1)

∆M

ΓN
= 0 (2)

ψα =
π

2
(3)

iM ∝ Mνs

Γνs

≡ Mνsτνs (4)

A0ν2β ∝
3+n!

i=1

Mi U2
ei M

0ν2β(Mi) (5)

M0ν2β(Mi) ≃ M0ν2β(0)
p2

p2 −M2
i

(6)

p2 ≈ −(125 MeV)2 (7)

Γ0ν2β ∕= 0 (8)
νci = eiφνi (9)

M1 ≃ M2 (10)
Ue1 ≃ i Ue2 (11)

(12)

Mi = 0 (13)

Uαi = 0 (14)

M2 −M1

M1 +M2
≪ 1 (15)

Uα1 ≃ i Uα2 (16)
(17)

Mi ≪ Mj ∕=i (18)

|Uα,i| ≪ |Uα,j ∕=i| (19)

1

m2β = 0

m2β = 0.08 eV
Excluded by direct searches



Michele Lucente - RWTH Aachen University NuTs 2022

TAU AND MESON DECAY

20



Michele Lucente - RWTH Aachen University NuTs 2022

L-violating τ and meson decay

21

M1

M2

W±

W±

νs

"±1

"±2

Heavy Majorana neutrinos can mediate L-violating 
decays of pseudo-scalar mesons and τ lepton 

Since we are interested in regimes close to a resonance (m2
31 ≈ m2

4 or m2
23 ≈ m2

4), the narrow
width approximation can be applied as a good approximation. In this case, the propagator in the
amplitude can be replaced by a δ-function as
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The interference term of Eq. (20) contains in fact two resonances; these can be split into two
separate parts (f1 and f2), each including only one resonance15, as

|Mτ |2 = fτ1 + fτ2, (24)

with fτ i defined by
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This allows to remove one of the integrals in Eq. (21) by the δ-function introduced in Eq. (23).
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respectively for the integrals fτ1 and fτ2, as a consequence of the narrow width approximation.

B.2 Widths of semileptonic LNV meson decays

Let us now consider the decay

M1(p,mM1
) → $α(k1,m"α) $β(k2,m"β)M2(k3,mM2

) , (30)

where both M1 and M2 are pseudoscalar mesons. The corresponding amplitude is computed as
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15Single-Diagram-Enhanced multi-channel integration [153].
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Negligible amplitude unless the 
intermediate state can go on-shell

Depends on combination 
of different flavour mixings



Michele Lucente - RWTH Aachen University NuTs 2022

Lifetime limitations

22

0.1 0.5 1 5 10

0.001

1

1000

mνs [GeV]

cτ
[m

]
In the resonant  regime 

Allowed

Excluded

But too long-lived heavy neutrinos decay outside the detector

Asking for observable (inside detector) decays imposes a further constraint
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LNV decay
Current bound

!α = e, !β = e !α = e, !β = µ !α = µ, !β = µ

K− → !−α !β
−π+ 6.4× 10−10 [41] 5.0 × 10−10 [41] 1.1 × 10−9 [41]

D− → !−α !β
−π+ 1.1 × 10−6 [41] 2.0× 10−6 [78] 2.2 × 10−8 [79]

D− → !−α !β
−K+ 9.0 × 10−7 [78] 1.9× 10−6 [78] 1.0 × 10−5 [78]

D− → !−α !β
−ρ+ ———– ———– 5.6 × 10−4 [41]

D− → !−α !β
−K∗+ ———– ———– 8.5 × 10−4 [41]

D−
s → !−α !β

−π+ 4.1 × 10−6 [41] 8.4× 10−6 [78] 1.2 × 10−7 [79]
D−

s → !−α !β
−K+ 5.2 × 10−6 [78] 6.1× 10−6 [78] 1.3 × 10−5 [78]

D−
s → !−α !β

−K∗+ ———– ———– 1.4 × 10−3 [41]
B− → !−α !β

−π+ 2.3 × 10−8 [80] 1.5× 10−7 [81] 4.0 × 10−9 [82]
B− → !−α !β

−K+ 3.0 × 10−8 [80] 1.6× 10−7 [81] 4.1 × 10−8 [83]
B− → !−α !β

−ρ+ 1.7 × 10−7 [81] 4.7× 10−7 [81] 4.2 × 10−7 [81]
B− → !−α !β

−D+ 2.6 × 10−6 [84] 1.8× 10−6 [84] 6.9 × 10−7 [85]
B− → !−α !β

−D∗+ ———– ———– 2.4 × 10−6 [41]
B− → !−α !β

−D+
s ———– ———– 5.8 × 10−7 [41]

B− → !−α !β
−K∗+ 4.0 × 10−7 [81] 3.0× 10−7 [81] 5.9 × 10−7 [81]

LNV matrix mν mee
ν meµ

ν mµµ
ν

Table 2: LNV meson decay processes. The current bounds for Kaon, D and B meson decays were
obtained by Belle [84], BABAR [78, 80, 81] and LHCb [79, 82, 83, 85], and have been summarised
in [41,86].

cLFV decay
Current bound

!α = e, !β = µ !α = e, !β = τ !α = µ, !β = τ

K+ → !±α !β
∓π+ 5.2× 10−10 (1.3 × 10−11) ———– ———–

D+ → !±α !β
∓π+ 2.9(3.6) × 10−6 ———– ———–

D+ → !±α !β
∓K+ 1.2(2.8) × 10−6 ———– ———–

D+
s → !±α !β

∓π+ 1.2(2.0) × 10−5 ———– ———–
D+

s → !±α !β
∓K+ 14(9.7) × 10−6 ———– ———–

B+ → !±α !β
∓π+ 0.17× 10−6 75× 10−6 72× 10−6

B+ → !±α !β
∓K+ 91× 10−6 30× 10−6 48× 10−6

B+ → !±α !β
∓K∗+ 1.4 × 10−6 ———– ———–

B0 → !±α !β
∓π0 0.14× 10−6 ———– ———–

B0 → !±α !β
∓K0 0.27× 10−6 ———– ———–

B0 → !±α !β
∓K∗0 0.53× 10−6 ———– ———–

Table 3: cLFV meson decay processes relevant in constraining the LNV modes [41].

2.2 Meson and tau lepton decay widths

We now proceed to discuss and highlight relevant points leading to the computation (theoretical
derivation) of the LNVmeson and tau semileptonic decay widths. These are schematically depicted
in Fig. 1 for the case of a semileptonic LNV meson decay.

6

B meson decay Current bound

B+ → e+ν 0.98 × 10−6

B+ → µ+ν 1.0× 10−6

† B+ → τ+ν = (106 ± 19) × 10−6

B0 → e±µ∓ 0.0028 × 10−6

B0 → e±τ∓ 28× 10−6

B0 → µ±τ∓ 22× 10−6

Table 4: Leptonic (flavour violating and flavour conserving) B-meson decay modes. The symbol
† denotes a measurement rather than an upper bound.

LNV decay
Current bound

# = e # = µ

τ− → #+π−π− 2.0 × 10−8 3.9× 10−8

τ− → #+π−K− 3.2 × 10−8 4.8× 10−8

τ− → #+K−K− 3.3 × 10−8 4.7× 10−8

LNV matrix mν meτ
ν mµτ

ν

Table 5: LNV τ decay processes. The upper bounds are from the Belle collaboration [87].

M1

M2

W±

W±

νs

"
±
1

"
±
2

Figure 1: Dominant contribution to the lepton number violating semileptonic meson decay, M1 →
#±1 #

±
2 M2. Note that the #±1 ↔ #±2 exchanged diagram also exists.

2.2.1 Theoretical estimation

As already mentioned, leading to the computation of the LNV semileptonic decays, we have made
several assumptions, which we proceed to discuss.

• We consider semileptonic decay modes leading to three-body final states; moreover, we only
consider the decays of pseudoscalar mesons and do not address vector meson decays, as their
(non-perturbative) decay constants are plagued by larger theoretical uncertainties, and the
resonances (and excitations) are not well determined;

• The only source of lepton number violation (and lepton flavour violation) at the origin of the
distinct decays above mentioned stems from the presence of (heavy) Majorana neutrinos;

• In order to avoid excessive suppression due to the propagation of a virtual heavy state,

7

Tables (and list of references) from A. Abada, V. De Romeri, M.L., A. M. Teixeira and T. Toma, arXiv:1712.03984 [hep-ph]
Meson decay

Results from 


Belle [84], 

BABAR [78,80,81] and 

LHCb [79,82,83,85]; 


summarised in PDG [41]

τ decay upper bounds from the Belle 
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Dashed lines: the on-shell heavy neutrino travels for less than 10 m

Figures from A. Abada, V. De Romeri, M.L., A. M. Teixeira and T. Toma, arXiv:1712.03984 [hep-ph]; 
see also A. Atre, T. Han, S. Pascoli and B. Zhang, arXiv:0901.3589 [hep-ph] 
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Comprehensive analysis for τ and pseudo-scalar mesons in 1712.03984 
(all possible initial and 3-body final states)

upper bounds

New constraint
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A. Abada, C. Hati, X. Marcano and A. M. Teixeira, arXiv:1904.05367 [hep-ph]

If more than one heavy neutrino mediate the process, and

of the decay widths. In the narrow-width approximation, this “resonant enhancement” can be un-
derstood as an increase of O(mi/�Ni) in the decay rates (�Ni denoting the width of the heavy sterile
state Ni). For this reason, we will assume that the individual widths are very small compared to the
sterile neutrino masses3, �Ni ⌧ mi.

In the case of the SM extended by only one heavy Majorana neutrino, we have verified that the
predictions for the LNV and LNC decay widths are of the same order, implying that R`↵`� = 1 and

thus eR`↵`� = 0. In the presence of two (or more) sterile fermions with (clearly) non-degenerate masses,

interference e↵ects are negligible and one recovers the previous predictions for R and eR. However,
when the mass splitting of the heavy Majorana states is very small, one can have an overlap between
their contributions, possibly leading to destructive or constructive interferences. The e↵ect of the
overlap will be maximal should the mass splitting be even smaller than the Majorana neutrino decay
widths. In turn, this will lead to di↵erent predictions for the LNV and LNC decay widths, changing
the values R and eR. In summary, interference e↵ects are expected to be relevant if both the following
conditions are realised:

�M ⌧ M and �M < �N , (11)

in which, for simplicity, we have assumed the widths to be the same �N4 = �N5 = �N . With these
conditions, and in terms of the CP -violating phases, the ratio R`↵`� is given as follows

R`↵`� =
(1� ||)2 + 4|| cos2

⇣
�±( ↵+ �)

2

⌘

(1� |0|)2 + 4|0| cos2
⇣
�0±( ↵� �)

2

⌘ , (12)

where we have set (
0) = |(

0)
|ei�

(0)
, and with the ± referring to the electric charge of the lepton ↵.

Moreover, the coe�cients  and 0 of Eq. (8) can be expanded as follows

|| ' |0| =
|U↵5U⇤

�5|

|U↵4U⇤
�4|

⇣
1 +O

��M

�N

�⌘
. (13)

In order to have sizeable interference e↵ects, in addition to having a small mass splitting, the relative
size of the contributions of the two neutrinos to each amplitude should be of the same order, and not
very di↵erent from 1, || ⇠ |0| ⇡ 1 (as can be seen from Eqs. (6, 7)), implying that the two neutrinos
should mix with similar strength to the relevant active flavours.

Under the hypotheses of Eq. (11), and in the limit || ⇠ |0| ⇠ 1, one can derive the ratios R`↵`�

and eR`↵`� in terms of the CP -violating phases as

R`↵`� =
cos2

⇥
1
2( ↵ +  �)

⇤

cos2
⇥
1
2( ↵ �  �)

⇤ , (14)

eR`↵`� =
sin ↵ sin �

cos ↵ cos � + 1
, (15)

where (for simplicity) we have assumed in the last equations that � = �0 = 0. One can immediately
notice from Eq. (14) that, for ↵ 6= �, the ratio R`↵`� can deviate from 1 (larger or smaller) due to the
presence of both relative CP violating phases,  ↵ and  � .

The e↵ect of the interference between the two sterile fermion contributions can already be seen in
the simple limiting case in which the relative CP -violating phases are identical  ↵ =  � (the same
limit was also used in [14] regarding collider searches). This situation can be realised if, for example,
one sets all the Dirac CP phases to zero so that the ratio R`↵`� depends only on the Majorana
CP phases. It is important to notice that in such cases (i.e., for  ↵ =  �) no interference e↵ects
(destructive or constructive) occur for the LNC case.

3Notice that this assumption is well justified, as this is usually the case in seesaw-like models where the sterile
neutrinos are lighter than the typical meson masses [17].
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g
p
2
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µ PL ⌫iW
�
µ + H.c. , (1)

in which i denotes the physical neutrino states, from 1 to 3 + N , and ↵ the flavour of the charged
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�
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CCCCA
, (3)

and similarly for the other Rij . Since several of the Dirac phases are non-physical1, we thus set
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the parametrisation of Eq. (2), these can be written as
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where sij = sin ✓ij and where we have neglected terms of O(s2ij).
We denote the active-sterile mixing elements by

U↵i = e�i�↵i |U↵i|, ↵ = e, µ, ⌧, and i = 4, 5 , (5)
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decays ⌧ ! M M 0`↵, ↵ = e, µ. Moreover, for simplicity we focus on M+ ! M
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� .
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Heavy neutrinos in pp collisions produced through a variety of mechanisms
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Figure from C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, arXiv:1602.06957 [hep-ph]; 
see also Y. Cai, T. Han, T. Li and R. Ruiz, arXiv:1711.02180 [hep-ph]
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LNV can manifest with clean experimental signatures:  
e.g. two same-sign leptons (any flavour combination of e and μ) and at least one jet 
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6

Figure 3: Upper limits on |VµN |
2 at the 95% CL as a function of mN . The black dashed curve

is the expected upper limit, where one and two standard deviation bands are indicated in lime
green and light yellow, respectively. The solid black curve is the observed upper limit. The
red dashed curve indicates observed upper limits from Ref. [9], while the blue dashed curve
shows the observed upper limits from Ref. [12]. Starting from mN around 650 GeV, the analysis
presented in this note improves upon the upper limits from those references.

the first time such constraints have been obtained for this process.
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Flavour eigenstate = coherent superposition of mass eigenstates

Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an !+ anti-lepton is produced together with

a heavy neutrino of !-flavor N!, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial N! will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M " Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products m!2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M # Γ decays occur at a time tD ∼ τ # 1/∆M , that

is before the onset of oscillation effects, so that N!(tD) ≈ N!(0). In this case only the LN

conserving transition N!(tD) → !− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll '= 0, 1.

From eq. (9) we can write the N! heavy state produced in the decay W+
R → !̄N! and its

conjugate state N!̄ produced in the decay W−
R → !N!̄ in terms of the mass eigenstates as:7

N! =
1√
2
(N+ − iN−) , (25)

N!̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states !i!j , and we reiterate that for generic mixing structures, i '= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

N!(t) = g+(t)N! + g−(t)N!̄ , (27)

N!̄(t) = g−(t)N! + g+(t)N!̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− # ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products m!2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M # Γ decays occur at a time tD ∼ τ # 1/∆M , that

is before the onset of oscillation effects, so that N!(tD) ≈ N!(0). In this case only the LN

conserving transition N!(tD) → !− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll '= 0, 1.

From eq. (9) we can write the N! heavy state produced in the decay W+
R → !̄N! and its

conjugate state N!̄ produced in the decay W−
R → !N!̄ in terms of the mass eigenstates as:7

N! =
1√
2
(N+ − iN−) , (25)

N!̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states !i!j , and we reiterate that for generic mixing structures, i '= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

N!(t) = g+(t)N! + g−(t)N!̄ , (27)

N!̄(t) = g−(t)N! + g+(t)N!̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− # ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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can expect. When the on-shell W+
R decays, an !+ anti-lepton is produced together with
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mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial N! will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M " Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products m!2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M # Γ decays occur at a time tD ∼ τ # 1/∆M , that

is before the onset of oscillation effects, so that N!(tD) ≈ N!(0). In this case only the LN

conserving transition N!(tD) → !− can occur and Rll = 0. Namely, when the N± mass
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2
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In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states !i!j , and we reiterate that for generic mixing structures, i '= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

N!(t) = g+(t)N! + g−(t)N!̄ , (27)

N!̄(t) = g−(t)N! + g+(t)N!̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− # ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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where the oscillating amplitudes read

g+(t) = e−iMte−
Γ

2
t cos

(

∆M

2
t

)

, (29)

g−(t) = i e−iMte−
Γ

2
t sin

(

∆M

2
t

)

, (30)

with M = 1

2
(M++M−) and, according to the discussion above, we have neglected the effects

of ∆Γ. Since the typical heavy neutrino widths are too large to allow observing displaced

vertices (see next section), individual oscillation patterns cannot be resolved. The SS to

OS ratio Rll is then given by the ratio of the time-integrated amplitudes squared (note that

they include the time dependent weight factor of the heavy neutrinos lifetime):

Rll =

∫∞
0

|g−|2 dt
∫∞
0

|g+|2 dt
=

∆M2

2Γ2 +∆M2
. (31)

This result correctly reproduces the limiting cases discussed at the beginning of this section,

that is Rll → 1 as Γ/∆M → 0 (limiting Majorana case) and Rll → 0 as (Γ/∆M)−1 → 0

(limiting Dirac case).8

IV. LHC PHENOMENOLOGY

In searching for heavy RH neutrinos within the framework of LR symmetric models, both

the ATLAS [17, 18] and the CMS collaboration [19, 20] assume that the heavy neutrino

decays proceed via an off-shell WR bosons, with a branching ratio of 100% for the decay

mode N → l±jj where l represents a charged lepton of any flavor and N represents a

generic heavy neutrino. While this is a reasonable expectation for LR models with an

ordinary seesaw mechanism, the situation is very different in models based on the inverse

seesaw. In our framework in fact all the following decay modes can occur, and all with

sizeable branching ratios:

N → W±
L + l± , N → ZL + ν , N → h + ν , (32)

N → (WR)
∗ + l± → jjl± , N → (ZR)

∗ + ν → (jj or l+l−)ν ,

where WL and ZL are the (mostly) SM gauge bosons, h is the SM Higgs with mass mh " 125

GeV, and ν represents a light neutrino of any flavor. In our analysis we also assume mN <

mWR
, where mN denotes collectively the pair of mass eigenvalues (M±

R )11 for the lightest

heavy neutrinos, so that the RH gauge bosons (WR)∗ and (ZR)∗ from N = N1± decays are

off-shell. We also assume for simplicity (M±
R )ii > mWR

for i > 1 so that a single pair of

RH neutrinos contributes to the signal (this second assumption is not necessary whenever

8 This result disagrees with eq.(7) of ref. [29] which displays an explicit dependence of Rll on the heavy

neutrino mass M .
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Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an !+ anti-lepton is produced together with

a heavy neutrino of !-flavor N!, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial N! will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M " Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products m!2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M # Γ decays occur at a time tD ∼ τ # 1/∆M , that

is before the onset of oscillation effects, so that N!(tD) ≈ N!(0). In this case only the LN

conserving transition N!(tD) → !− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll '= 0, 1.

From eq. (9) we can write the N! heavy state produced in the decay W+
R → !̄N! and its

conjugate state N!̄ produced in the decay W−
R → !N!̄ in terms of the mass eigenstates as:7

N! =
1√
2
(N+ − iN−) , (25)

N!̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states !i!j , and we reiterate that for generic mixing structures, i '= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

N!(t) = g+(t)N! + g−(t)N!̄ , (27)

N!̄(t) = g−(t)N! + g+(t)N!̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− # ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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decay after decoherence (Majorana limit)

Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an !+ anti-lepton is produced together with

a heavy neutrino of !-flavor N!, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial N! will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M " Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products m!2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M # Γ decays occur at a time tD ∼ τ # 1/∆M , that

is before the onset of oscillation effects, so that N!(tD) ≈ N!(0). In this case only the LN

conserving transition N!(tD) → !− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll '= 0, 1.

From eq. (9) we can write the N! heavy state produced in the decay W+
R → !̄N! and its

conjugate state N!̄ produced in the decay W−
R → !N!̄ in terms of the mass eigenstates as:7

N! =
1√
2
(N+ − iN−) , (25)

N!̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states !i!j , and we reiterate that for generic mixing structures, i '= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

N!(t) = g+(t)N! + g−(t)N!̄ , (27)

N!̄(t) = g−(t)N! + g+(t)N!̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− # ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.

11

oscillations do not develop (Dirac limit)

Before entering into details let us try to figure out qualitatively what type of result we

can expect. When the on-shell W+
R decays, an !+ anti-lepton is produced together with

a heavy neutrino of !-flavor N!, which corresponds to a coherent superposition of the two

mass eigenstates N±. Given that the same decay channels are open for both N±, the

time-evolution of the initial N! will be characterized by a typical oscillating behavior with

frequency ∆M = M+ −M− = µ. There is another important scale in the problem, that is

the N± lifetime τ = 1/Γ.6 If ∆M " Γ the lifetime is long enough that complete separation

of theN± wave packets can occur. Coherence between the two mass eigenstates is completely

lost before the decays, and decays will then proceed as in the usual Majorana case, yielding

equal probabilities for SS and OS dileptons events, i.e. Rll = 1. (Ideally, in this situation we

can imagine that the mass of the intermediate state can be reconstructed from the invariant

mass of the N decay products m!2jj to be M+ or M−, in which case the above result is

obvious.) In the opposite limit ∆M # Γ decays occur at a time tD ∼ τ # 1/∆M , that

is before the onset of oscillation effects, so that N!(tD) ≈ N!(0). In this case only the LN

conserving transition N!(tD) → !− can occur and Rll = 0. Namely, when the N± mass

degeneracy (in units of Γ) is sufficiently strong, the pure Dirac case is approached. It is then

clear that the interesting regime occurs when the oscillation frequency is of the order of the

lifetime, viz when µ = ∆M ≈ Γ. Only in this case we can expect Rll '= 0, 1.

From eq. (9) we can write the N! heavy state produced in the decay W+
R → !̄N! and its

conjugate state N!̄ produced in the decay W−
R → !N!̄ in terms of the mass eigenstates as:7

N! =
1√
2
(N+ − iN−) , (25)

N!̄ =
1√
2
(N+ + iN−) . (26)

In writing these linear combinations we have neglected for convenience the flavor mixing

matrices UR (see eq. (9)) since the products of their matrix elements appearing in the LN

conserving and LNV amplitudes cancels in the ratio Rll. However, it should be kept in mind

that these matrix elements control the flavor composition of both the SS and OS dilepton

final states !i!j , and we reiterate that for generic mixing structures, i '= j events have no

reason to be suppressed with respect to i = j events.

After a time t, the states in eq. (29) have evolved into [33]

N!(t) = g+(t)N! + g−(t)N!̄ , (27)

N!̄(t) = g−(t)N! + g+(t)N!̄ , (28)

6 Since N± have the same decay channels, and only a tiny mass difference, we expect for the width difference

∆Γ = Γ+−Γ− # ∆M so that ∆Γ is always negligible. This is analogous to what happens in the B0− B̄0

meson system (see e.g. ref. [33]).
7 One remark is in order: in the presence of CP violating effects, the modulus of the ratio of the two

coefficients in the linear combinations eqs. (25)–(26) can deviate from unity (CP violation in mixing [33]).

In the regime µ ∼ Γ this type of CP violation can get resonantly enhanced, and in principle observable

effects on the ratio Rll could be possible. We neglect this possibility in our treatment.
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oscillations

In summary, we have obtained estimates for the
typical mass splittings �M of the almost degenerate
sterile neutrinos in low scale seesaw scenarios as func-
tions of the light neutrino masses (respectively the
mass splittings). In case of the minimal linear seesaw
model, the values �M

lin

NO
and �M

lin

IO
are predictions,

whereas in the inverse seesaw case or the general lin-
ear seesaw case with more pairs of sterile neutrinos,
one should view the given values as guidelines only.

Heavy neutrino-antineutrino oscillations:

When heavy neutrinos are produced from W decays
together with charged leptons or antileptons, we
refer to them as heavy antineutrinos N or neutrinos
N , respectively. When they decay via the charged
current, they again produce either a lepton or an
antilepton, N ! `

�
W

+ or N ! `
+
W

�.
If the “lepton number”-like symmetry is intact,

i.e. without its breaking to give light neutrinos its
mass, processes with the heavy neutrinos at colliders
are lepton number conserving (LNC). For instance at
proton-proton (pp) colliders, there would be only LNC
processes pp ! `

+
↵ `

�
� jj but no lepton number violat-

ing (LNV) processes pp ! `
±
↵ `

±
� jj. We will focus on

these processes as an example in the following, since
they can yield an unambiguous signal of LNV at pp

colliders.
In the presence of LNV perturbations in the mass

matrix of eq. (1) however, also LNV processes pp !

`
±
↵ `

±
� jj are possible. One can view these events as

stemming from N (or N) being produced together
with a charged antilepton (or lepton) which then oscil-
lates into a N (or N), decaying into a charged antilep-
ton (or lepton), finally producing a lepton-number vi-
olating final state.

When the heavy neutrinos have su�ciently small
decay widths, they can have macroscopic lifetimes
such that their decay occurs displaced from the pri-
mary vertex, which allows for powerful searches and
opens up the possibility to observe the oscillation pat-
terns in the decay spectra. We show in figure 1 for
which parameters M and |✓|

2 macroscopic lifetimes
are possible.

Due to heavy neutrino-antineutrino oscillations, fol-
lowing [12, 21], the ratio between LNV and LNC
events between times t1 and t2 after heavy neutrino
production will be referred to as R``(t1, t2) and is
given as:

R``(t1, t2) =

R t2
t1

|g�(t)|2dt
R t2
t1

|g+(t)|2dt
=

#(`+`+) + #(`�`�)

#(`+`�)
,

(8)

Figure 1: Contours of constant decay length of the heavy neu-
trinos x = ⌧ c in the proper frame, where ⌧ is the lifetime in
the proper frame (cf. discussion in section 3 of [20]). The decay

length in the laboratory frame is given by x
p

�2 � 1 with the
Lorentz factor �.

where g�(t) ' �ie
�iMt

e
��

2
t sin

�
�M
2

t
�
, g+(t) '

e
�iMt

e
��

2
t cos

�
�M
2

t
�
and where � is the heavy neu-

trino decay width. |g�(t)|2 corresponds to the time-
dependent probability that a heavy neutrino has os-
cillated into a heavy antineutrino and vice versa, and
|g+(t)|2 denotes the probability that no oscillation has
occurred.3

From the above formula, we can see that the os-
cillation period of the heavy neutrinos is given by
tosc = 4⇡

�M . In the minimal linear seesaw scenario
(using Eqs. (3) and (4)) and with our estimates for
the inverse seesaw scenario from Eq. (7), we obtain
for the oscillation length in the laboratory system:

�
lin,NO

osc
= 5.96 · 10�5

p
�2 � 1 m , (9)

�
lin,IO
osc

= 3.29 · 10�3
p

�2 � 1 m , (10)

�
inv

osc
⇡ 2.48 · 10�6

✓
|✓|

2

10�4

◆✓
10�4 eV

m⌫i

◆p
�2 � 1 m .

(11)

Especially when the Lorentz factor is large, the os-
cillation length in the laboratory system can be large
enough to be resolved in an experiment. The case
of the minimal linear seesaw with IO looks particu-
larly promising in this context. For observability it is
also important that the decay of the heavy neutrinos
is su�ciently displaced from the primary vertex (cf.
figure 1).

3We note that here we neglect CP violating e↵ects, which
can be introduced by perturbations of the mass matrix of eq. (1)
and could leave imprints in the distribution of the `±↵ `±� jj and

`+↵ `�� jj final states.

3

Rll (0,∞) =
∆M2

2Γ2 +∆M2
(1)

∆M

ΓN
= 0 (2)

ψα =
π

2
(3)

iM ∝ Mνs

Γνs

≡ Mνsτνs (4)

A0ν2β ∝
!

i

Mi U2
ei M

0ν2β(Mi) (5)

M0ν2β(Mi) ≃ M0ν2β(0)
p2

p2 −M2
i

(6)

p2 ≈ −(125 MeV)2 (7)

Γ0ν2β ∕= 0 (8)
νci = eiφνi (9)

M1 ≃ M2 (10)
Ue1 ≃ i Ue2 (11)

(12)

Mi = 0 (13)

Uαi = 0 (14)

M2 −M1

M1 +M2
≪ 1 (15)

Uα1 ≃ i Uα2 (16)
(17)

Mi ≪ Mj ∕=i (18)

|Uα,i| ≪ |Uα,j ∕=i| (19)
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Are these oscillations observable?
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S. Antusch, E. Cazzato and O. Fischer, arXiv:1709.03797 [hep-ph]

LNC

LNV

position space

(fixed γ=50)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

x [m]


E

ve
n
ts
(x
)/


E
ve

n
ts
(0
)

proper time frame
(reconstructed from

γ distribution)

0 10-11 2× 10-11 3× 10-11

0

5

10

15

20

t [s]


E

ve
n
ts
/b

in

E.g. LHCb experiment for  
Linear Seesaw with M = 7 GeV, U2 = 10-5, Inverted Ordering

However, for heavy neutrinos with γ=50 • very forward rapidity

• very small track separation of decay products

Richard Ruiz, private communication
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Why to look for LNV if mν ≃ 0?
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If new gauge mediators are too heavy, light N are still accessible

q

q′

W±

R N

!+q′

q N

!+

When MWR !
√

ŝ but mN ! O(1) TeV, pp → N!+ X production in the
LRSM and minimal Type I Seesaw are not discernible11

Signature: pp → !±!± + nj + X +
p!

T " O(mN) + no MET

At 14 (100) TeV with L = 1 (10)
ab−1, MWR ! 9 (40) TeV probed

DO NOT STOP SEARCHING
FOR TYPE I LNV 10 20 30 40 50

 [TeV]
RWM
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1000

1500

2000
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]
N

m

 Channel±µ±µ
95% CLs Exclusion

 (Expected)-1100 TeV, 30 ab

(Expected)
-127 TeV, 15 ab

 (Expected)-114 TeV, 3 ab

←
 (Expected)-1 14 TeV, 100 fb←

-18 TeV, 20.3 fb
ATLAS Observed←

-18 TeV, 19.7 fb
CMS Observed

←
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2

cascade decays to the final state l±l±qq through on- or
off-shell decays. The parton level cross section can be
approximated by a Breit-Wigner resonance

σ(Q2) =
4π

9
(2JX + 1)

Γ(X → q1q2)Γ(X → 4f)

(Q2 −M2
X)2 +M2

XΓ2
X

, (2)

with JX being the spin of the produced boson and qi
indicating the initial partons. The partial decay width
Γ(X → 4f) describes the complete decay of X as shown
in Fig. 1. Integrating over the parton distribution func-
tions (PDFs) in narrow-width approximation of the res-
onance (2) yields the total LHC cross section [10]

σLHC =
4π2

9s
(2JX + 1)

ΓX

MX
fq1q2

(

MX√
s
,M2

X

)

× Br(X → q1q2)Br(X → 4f), (3)

with the LHC center of mass energy
√
s = 14 TeV and

fq1q2
(

r,M2
)

=

∫ 1

r2

dx

x
(q1(x,M

2)q2(r
2/x,M2)+

q2(x,M
2)q1(r

2/x,M2)). (4)

Here, qi(x,Q2) is the PDF of parton qi at momentum
fraction x and momentum transfer Q2. For masses M ≈
1 − 5 TeV, this integral can be well approximated as
exponentially decreasing with M/

√
s [10],

fq1q2

(

M√
s

)

≈ Aq1q2 × exp

(

−Cq1q2
M√
s

)

, (5)

where the coefficients Aqq and Cqq depend on the com-
bination of the relevant partons q1, q2, ranging between
Aūū ≈ 200 to Auu ≈ 4400 and Cuu ≈ 26 to Cd̄d̄ ≈ 51.

LEPTOGENESIS

The relevant Boltzmann equations for leptogenesis can
be generically written in terms of the heavy neutrino and
(B − L) number densities per co-moving volume [11] as
function of its decay rate ΓD, the CP asymmetry ε and
the scattering rate ΓW , which contains inverse N decays
as well as any other ∆L = 1, 2 processes.
The scattering rate ΓW induced by the process qq ↔

l±l±qq is calculated from the reaction density [11]

γ(qq ↔ l±l±qq) =
T

32π4

∫ ∞

0
ds s3/2σ(s)K1

(√
s

T

)

, (6)

with the nth-order modified Bessel functionKn(x). Here,
the process cross section is not averaged over the initial
particle quantum numbers. Based on the same underly-
ing process, the washout rate ΓW /H = (γ/nγ)/H and
the LHC cross section σLHC are directly related. The
equilibrium photon density nγ ≈ 2T 3/π2 and the Hub-
ble parameter H ≈ 1.66

√
g∗T 2/MP are temperature de-

pendent, with the effective number of relativistic degrees
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FIG. 2: Washout rate ΓW /H at T = MX as a function of
MX and σLHC (solid blue contours). The dotted light blue
contours denote the surviving lepton asymmetry at the EW
scale relative to its value at MX , ηEW

L /ηX
L . The red dashed

curves are typical cross sections of the process pp → l±l±qq.
The red shaded region at the top is excluded due to recent
searches for resonant same sign dileptons at the LHC [12].

of freedom g∗ (≈ 107 in the SM) and the Planck mass
MP = 1.2× 1019 GeV. This results in

ΓW

H
=

0.028
√
g∗

MPM3
X

T 4

K1 (MX/T )

fq1q2 (MX/
√
s)

× (sσLHC), (7)

a relation independent of the branching ratios of the par-
ticle X and therefore valid for all coupling strengths gi
and also independent of the potential presence of other,
lepton number conserving decay modes. Evaluated at
T = MX , i.e. the approximate onset of the washout
process, Eq. (7) yields the order of magnitude estimation

log10
ΓW

H
! 6.9 + 0.6

(

MX

TeV
− 1

)

+ log10
σLHC

fb
, (8)

using the conservative values Aqq = 5000 and Cqq = 26
for Eq. (5). From this approximation alone it is clear that
the observation of the resonant process pp → l±l±qq at
the LHC corresponds to a very strong washout of the
lepton asymmetry in the early universe. For example,
the observation of a resonance at MX ≈ 2 TeV with
a cross section σLHC ≈ 1 fb corresponds to ΓW /H ≈
3 × 107. The exact relation (7) is shown in Fig. 2,
based on the smallest washout among all parton combi-
nations. For any realistic cross section observable at the
LHC with σLHC ! 10−2 fb, the resulting lepton number
washout in the early universe is always highly effective
(ΓW /H ' 1). The dashed curves, for example, show

A LNV observation at LHC likely falsifies high-scale leptogenesis
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Low Scale Leptogenesis with 2 RHN
The approximate L conservation forces the HNL to be degenerate in mass

2.1 An instructive toy model

Let us recapitulate the simplest implementation of this idea, by adding to the SM two sterile

fermions with opposite lepton number, cf. also [11]. In order to obtain clear analytical results

we first consider a toy model with only one active neutrino. In this case the lepton conserving

part of the mass matrix is, in the basis (⌫L, N1
R
c
, N2

R
c
),

M0 =

0

BB@

0 1p
2
Y v 0

1p
2
Y v 0 ⇤

0 ⇤ 0

1

CCA , (1)

with v denoting the vacuum expectation value of the Higgs boson, v = 246 GeV after the

EW phase transition, Y denoting the Yukawa coupling of the sterile state with lepton number

(+1) to the SM lepton and Higgs doublets and ⇤ denoting a new mass parameter which will

set the scale for the masses of the additional heavy states. The mass spectrum resulting from

this mass matrix is

m⌫ = 0 , M1,2 =

r
|⇤|2 +

1

2
|Y v|2 . (2)

Let us consider now all possible patterns for breaking the global lepton number in M0. A

term in the (1, 1) entry breaks gauge invariance, and can only be generated in non minimal

models, for example by adding an isospin triplet of Higgs fields. Since we are not interested

in such a case, there are 3 possible patterns to perturb M0:

�MISS =

0

BB@

0 0 0

0 0 0

0 0 ⇠ ⇤

1

CCA , �MLSS =

0

BB@

0 0 ✏p
2
Y 0v

0 0 0
✏p
2
Y 0v 0 0

1

CCA , �Mlp =

0

BB@

0 0 0

0 ⇠0 ⇤ 0

0 0 0

1

CCA . (3)

Here ✏, ⇠ and ⇠0 are small dimensionless parameters accounting for the breaking of lepton

number and Y 0
⇠ Y is a new Yukawa coupling. Without loss of generality we can choose

|Y 0
| = |Y |, keeping ✏ as a free parameter. The first possibility generates the usual Inverse

Seesaw pattern [6, 28], the second one corresponds to the so called Linear Seesaw [15], while

the third one does not generate neutrino masses at tree level but does it at loop level [39,40].

However loop corrections are only relevant in the regime of a large lepton number violation,

⇠0 & 1, and since we focus on models with an approximate lepton number conservation we will

concentrate on the first two possibilities.1 Here M contains only a single physical complex

1This structure can be obtained dynamically by extending the particle content of the SM, e.g. it is possible

to generate a small �L = 2 mass ⇠ ⇠ ⇤ as in the general formulation of the Inverse Seesaw [6], where the

smallness of ⇠ was attributed to the supersymmetry breaking e↵ects in a (superstring inspired) E6 scenario. In

the context of a non-supersymmetric SO(10) model, which contains remnants of a larger E6 symmetry, ⇠ ⇤ is

generated at two-loop while ⇠
0 ⇤ is generated at higher loops, justifying its smallness compared to ⇠ ⇠ ⇤ [41].
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5

For example for Y <
p
2⇥10�7, m⌫ = 0.05 eV and M1,2 = 1 GeV, this yields �m/M1,2 & 0.4

- a value far too large for a successful leptogenesis2.

In conclusion, the minimal setup to accommodate acceptable light neutrino masses m⌫

and a su�ciently small mass splitting �m2 is obtained by simultaneously considering both

�MLSS and �MISS , with ✏ > ⇠: the leading order contribution to the light neutrino masses

stems from ✏, with the scale of ✏ determined by Eq. (8). Above the EW phase transition, the

leading order contribution to the mass splitting is in turn set by Eq. (5) and can be su�ciently

small for ⇠ ⌧ ✏:

m⌫ ' 2✏
m2

D

M1,2
, �m2

' 2⇠M2
1,2 . (10)

This analysis suggests that the minimal viable realisation of our ansatz is given by the

mass matrix M = M0 + �MISS + �MLSS . Notice that the ordering of the second and

third column/row of Eqs. (2) and (3) arises from the assignment of lepton number 1 and

-1, respectively. Choosing ✏ > 1 and |Y | ' |Y 0
| correspondingly smaller, implies switching

this assignment. Hence very large values of ✏ � 1 also correspond to a small violation of

lepton number, and there is an approximate symmetry under ✏ ! 1/✏ which becomes exact

when ⇠, ⇠0 ! 0. Accounting for solutions with ✏ � 1 is equivalent to considering the mass

matrix M = M0 + �MLSS + �Mlp, which represents a minimal setup as well. The main

di↵erence between the two possibilities is that the Majorana mass term �MISS breaks the

lepton number by �L = 2, i.e. by the same amount of the violation in the Yukawa sector

given by �MLSS , while �Mlp carries �L = �2. For simplicity we will focus on the case ✏ ⌧ 1

in the remainder of this section, but our numerical study in Section 3.2 will cover the entire

range for ✏. At leading order, the corresponding expressions for the perturbative expansion

in ✏0 = 1/✏ ⌧ 1 can be obtained by replacing ✏ ! 1/✏ and Y ! Ỹ ⌘ ✏Y in the expressions

below.

A further important parameter, which is particularly relevant for leptogenesis, is the

mixing between the two heavy neutrino mass eigenstates. To estimate this, we consider the

e↵ective potential for the heavy states arising from the interactions with the SM lepton and

Higgs doublets in the surrounding hot thermal plasma [34],

VN =
1

8
T (Y e↵)†Y e↵ , (11)

where T denotes the temperature and Ye↵ are the Yukawa couplings of the heavy mass eigen-

states mj , j = 2, 3,

Y e↵
↵j = Y↵IUIj . (12)

2This upper bound on Y forces the heavy states to be out-of-equilibrium [21] and washout processes to be

negligible. The numbers quoted here a priori only apply to the toy model discussed in this section, and not to

realistic, more elaborate versions of the Inverse Seesaw mechanism. We will return to this point in Section 6.

7

This allows to account for BAU via freeze-in leptogenesis with low-scale NHL
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Figure 8: Left panel: Set of model points giving a viable baryon abundance in the weak washout regime, in

the plane (✏, ⇠). The red and blue points refer, respectively, to solutions with normal and inverted hierarchy

for the active neutrino mass spectrum. Right panel: Models featuring a viable baryon abundance in the plane

(|Uµ4,M1|) where Uµ4 is the mixing between the lightest of the two exotic neutrinos with the µ flavour while

M1 is its mass. The color code is the same as in the left panel. The points are the result of a scan over the

parameter space of weak washout regime. The asterisks refer to the benchmark solutions in the strong washout

regime, characterised by the Yukawa couplings in Eqs. (78) (red) and (79) (black).

numerical study in Ref. [24] and we find excellent agreement as far as the parameter space

considered overlaps.

In the right panel of Fig. 8, we show the mixing between the active and the sterile sector,

parametrised by the mixing matrix element |Uµ4|, as a function of M1, the mass of the lighter

of the two heavy states. Similar results hold, of course, for all other U↵I , and in fact the

total active-sterile mixing
P

↵I |U↵I |
2 is bounded from below by the seesaw relation (see

e.g. [24,27,44]). The active-sterile mixing U↵I is a particularly interesting quantity, since it is

in principle experimentally accessible through experiments such as SHiP [31,45], FCC-ee [32]

and LBNF/DUNE [46]. Unfortunately, the viable parameter points for solutions in the weak

washout regime are found to be below the expected sensitivity of these experiments, with the

exception of a very small region of particularly light sterile states, M1 . 500 MeV, which

can be reached by LBNF/DUNE. We remark however that our study has been limited, up

to now, to a subset of the parameter space, due to the limitation of the analytical expression

of Eq. (27). In the next section we will extend (at least partially) our analysis to regions

characterised by higher values of Y e↵ and, consequently, higher values of the mixing between

the heavy and the active neutrinos, which can be possibly probed in future facilities. We

anticipate in Fig. 8 two solutions associated to a viable leptogenesis in the strong washout

scenario, whose active-sterile mixing is represented by the two asterisks. It is evident that

these model realisations can be probed by both SHiP and LBNF/DUNE.
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Mass spectrum with 3 right-handed neutrinos and B - L symmetry

Mass

Vacuum massesThermal masses T ≫ TEW

B

C

A

B

C

If the vacuum mass of the decoupled state is heavier than the pseudo-
Dirac one, there is necessarily a level crossing at some finite temperature

A

Low Scale Leptogenesis with 3 RHN

A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, arXiv:1810.12463 [hep-ph]
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Level crossing: resonant asymmetry production
Sterile neutrinos abundances
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Active flavours asymmetries

Energy eigenvalues Total asymmetries

Level crossing
at x ~ 0.13
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Lepton number is an accidental symmetry of the SM: test its conservation!

It is violated by non-renormalizable SM operators: EFT generation of ν masses

LNV phenomenology is generally connected with ν mass generation mechanism

LNV observation could signal the existence of new 
gauge bosons and/or falsify high-scale leptogenesis

LNV rates depend in general on the interference of multiple virtual states

Possible to look for LNV in e.g.

neutrinoless 2β decay 

meson decay 

collider events

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)
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A global B-L symmetry has non-trivial consequences in the early Universe
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Temperature of level crossing

source term for the asymmetry in the heavy neutrino sector, which arises (for n � 3

only) from the first term in Eq. (3.1). This allows for the generation of an asymmetry

even in the absence of (flavour asymmetric) washout processes, contrary to the situation

for n = 2 [75].

3) Resonantly enhanced asymmetry. The produced asymmetry strongly depends on

the heavy neutrino mass splitting and is resonantly enhanced if the splitting between

two of the heavy neutrino masses is very small [46]. In the primordial plasma the

e↵ective quasiparticle masses are given by the eigenvalues of the e↵ective Hamiltonian

(3.5). Due to the interplay between temperature dependent and independent terms

in the e↵ective Hamiltonian, the e↵ective mass splittings are time dependent. As a

result, a maximal resonant enhancement can be generated dynamically, even if the mass

spectrum in vacuum is only moderately degenerate.5 This is similar to the Mikheyev-

Smirnov-Wolfenstein (MSW) e↵ect that a↵ects light neutrino oscillations in matter.

In contrast to the MSW e↵ect for light neutrinos it does not require the presence of

lepton chemical potentials because the Yukawa couplings can give di↵erent thermal

masses to the neutrinos (while the light neutrinos’ gauge interactions are flavour blind,

so that di↵erent e↵ective masses can only be realised through chemical potentials). In

particular, an (avoided) level crossing necessarily occurs for µ0 > 1, i.e., if the state ⌫R3

with couplings Fa3 ⇠ ✏0aFa has a vacuum mass M3 > M̄ larger than the pseudo-Dirac

spinor  N with couplings ⇠ Fa. This is because the component ⌫Rs of  N defined in

(2.20) receives a comparably large thermal mass ⇠ |Fa|
2T 2, which necessarily exceeds

the e↵ective mass of ⌫R3 at su�ciently high temperature. If this crossing occurs during

the time when the asymmetry is generated, the resonant e↵ect can maximally enhance

it, even if the vacuum masses are only moderately degenerate. In contrast, in the B� L̄

protected regime of the n = 2 case, the interaction and Majorana mass bases have to

be maximally misaligned to reproduce the small active neutrino masses, and hence any

avoided level crossing comes with a mass gap which is typically too large to resonantly

enhance the asymmetry. For n = 3 with µ0 > 1 the level-crossing temperature Tcrossing

can be estimated in the limit of approximate B � L̄ symmetry (|✏a|, |✏0a|,µ ⌧ 1 in

Eq. (2.19)), yielding

Tcrossing ⇡
2
p
2M̄

p
µ02 � 1qP

a
|Fa|

2
= 2.8⇥ 105 GeV

✓
M̄

GeV

◆ p
µ02 � 1qP

a
|(Fa/10�5)|2

. (4.4)

5
This e↵ect is well-known within the ⌫MSM [52], where it is crucial [47] to ensure that the generation of

asymmetries can occur twice during the history of the Universe, before sphaleron freeze-out (for baryoge-

nesis [46]) and afterwards (to generate the asymmetries required for resonant sterile neutrino Dark Matter

production [134]) for the same parameters.
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2.2 Approximate lepton number conservation.

In absence of any special structure in the matrices F and MM , the seesaw relation (2.13)

suggests that

U2
i ⇠

q
�m2

atm +m2
lightest/Mi < 10�10 GeV/Mi, (2.17)

which would imply unobservably tiny branching ratios in collider experiments. However,

the seesaw relation is a matrix valued equation, and the light neutrino mass squares m2
i

are the eigenvalues of the matrix m†
⌫m⌫ . If there are cancellations in m†

⌫m⌫ , then small

m2
i
can be made consistent with arbitrarily large U2

ai
. Constraints from experiments other

than neutrino oscillation ones are comparably weak in most of the mass range between

the kaon and W boson masses, cf. e.g. [84, 97] and Section 5.2, so that U2
ai

⇠ 10�5 are

phenomenologically viable. The cancellations could either occur accidentally (which would

require a tuning of at least five orders of magnitude to achieve U2
ai

near the current LHC

bounds [13]) or be owed to a symmetry. Indeed, if the Lagrangian (2.1) approximately

respects a generalised B � L̄ symmetry [88, 89, 98], then the cancellations in m†
⌫m⌫ occur

in a technically natural way because the light neutrino masses must be proportional to

small parameters that quantify the amount of B � L̄ violation. Here B denotes the usual

SM baryon number and L̄ is a generalised lepton number,

L̄ = L+ L⌫R , (2.18)

that is composed of the SM lepton number L and some charge associated with the ⌫R (see

below). Specific models that realise an approximateB�L̄ symmetry include models with R-

parity violation [99–104], “inverse seesaw” type scenarios [105–109] (cf. also [110, 111]), the

“linear seesaw” [112, 113] (cf. also [114–116]), scale invariant models [86], some technicolor-

inspired models [117, 118], the ⌫MSM [88] and other low-scale seesaw realisations [119–121].

Low-scale leptogenesis in connection to an approximate B � L̄ symmetry has previously

been studied in the framework of linear and inverse seesaw scenarios in Refs. [81, 82], while

the ⌫MSM parameter space has been studied in Refs. [47, 52, 58, 59] and numerous follow

up publications (cf. references given in Section 1).

The B� L̄ symmetry enforces that the ⌫Ri must either i) decouple, ii) have vanishing

Majorana masses or iii) arrange themselves in pairs that form (pseudo-)Dirac spinors. For

the n = 3 case this can be made explicit with the parameterisation

MM = M̄

0

BBBBBB@

1� µ 0 0

0 1 + µ 0

0 0 µ0

1

CCCCCCA
, F =

1
p
2

0

BBBBBB@

Fe(1 + ✏e) iFe(1� ✏e) Fe✏0e

Fµ(1 + ✏µ) iFµ(1� ✏µ) Fµ✏0µ

F⌧ (1 + ✏⌧ ) iF⌧ (1� ✏⌧ ) F⌧ ✏0⌧

1

CCCCCCA
. (2.19)
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The level crossing temperature in the SM + 3 RHN can be estimated at

where the Majorana and Yukawa matrices are parameterised as

3 Kinetic equations for leptogenesis

3.1 Quantum kinetic equations.

The quantum kinetic equations for freeze-in leptogenesis [45] in the density matrix formal-

ism [122] read (see e.g. Refs. [46, 47, 60]):

dRN

dt
=� i [hHi, RN ]�

1

2
h�(0)i

n
F †F,RN � I

o
�

1

2
h�(1b)i

n
F †µF,RN

o
+ h�(1a)iF †µF+

�
1

2
he�(0)i

�
MMF TF ⇤MM , RN � I

 
+

1

2
he�(1b)i

�
MMF TµF ⇤MM , RN

 
+

� he�(1a)iMMF TµF ⇤MM , (3.1)

dµ�a

dt
= �

9 ⇣(3)

2ND ⇡2

n
h�(0)i

⇣
FRNF †

� F ⇤R
N̄
F T

⌘
� 2h�(1a)iµFF †+

+ h�(1b)iµ
⇣
FRNF † + F ⇤R

N̄
F T

⌘

+he�(0)i
⇣
F ⇤MMR

N̄
MMF T

� FMMRNMMF †
⌘
� 2he�(1a)iµF ⇤M2

MF T

+he�(1b)iµ
⇣
F ⇤MMR

N̄
MMF T + FMMRNMMF †

⌘o

aa

, (3.2)

where the n⇥nmatrixRN encodes the density matrix of the three heavy neutrinos in kinetic

equilibrium normalised to the entropy density, (⇢N (k, T ))ij = (RN (T ))ijfF (k/T ) with

fF denoting the Fermi-Dirac distribution with vanishing chemical potential, fF (k/T ) =

[1 + exp (k/T )]�1. The SM sector is taken to be in thermal equilibrium, and is thus fully

characterised by the chemical potentials

µa = µLa + µ�, (3.3)

where µLa are the flavoured left-chiral lepton chemical potentials and µ� is the Higgs

chemical potential, which appear in the corresponding distribution functions. These are

connected to the chemical potential associated with B � L, µ� =
P

a
µ�a by the relation

µ = diag(µa) , µa = ND�abµ�b , � = �
1

711

0

BBBBBB@

257 20 20

20 257 20

20 20 257

1

CCCCCCA
. (3.4)

µ� is invariant with respect to the SM B + L violating processes. hHi is the momentum

averaged e↵ective Hamiltonian for the heavy neutrinos (see Appendix A),

hHi = hH0 + VN i =
⇡2

36 ⇣(3)

✓
diag(0,M2

2 �M2
1 ,M

2
3 �M2

1 )

T
+

T

8
F †F

◆
, (3.5)
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Momentum averaged effective Hamiltonian for the heavy neutrinos
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