(Global) Lepton Number Symmetry and Neutrino Masses

Michele Lucente

Extended Workshop NuTs 2022
14th June 2022, IFT UAM-CSIC

Accidental symmetries of the SM

The Standard Model has accidental perturbative symmetries, arising from: gauge group + field content + renormalizability

Baryon number
(Individual quark flavour numbers are violated by CKM mixing)

Flavour numbers

$$
\alpha=\mathbf{e}, \mu, \tau
$$

Lepton number
$L=\boldsymbol{\Sigma}_{a} L_{a}$

Non perturbative effects violate both B and L, but preserve

$$
8-\square
$$

$$
\partial_{\mu} J_{B}^{\mu}=\partial_{\mu} J_{L}^{\mu}=\frac{N_{f}}{32 \pi^{2}} \epsilon^{\mu \nu \sigma \tau}\left(-g_{W}^{2} \operatorname{Tr} W_{\mu \nu} W_{\sigma \tau}+g_{Y}^{2} B_{\mu \nu} B_{\sigma \tau}\right)
$$

$$
\text { G. 't Hooft, Phys. Rev. Lett. } 37 \text { (1976) 8; Phys. Rev. D } 14 \text { (1976) } 3432
$$

Accidental symmetries: experimental status

No evidence of violation
E.g. proton mean life $>3.6 \times 10^{29}$ years CL=90\% PDG, Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
Violated in neutrino
oscillations $|U|_{3 \sigma}^{\text {with SK-atm }}=\left(\begin{array}{lll}0.801 \rightarrow 0.845 & 0.513 \rightarrow 0.579 & 0.144 \rightarrow 0.156 \\ 0.244 \rightarrow 0.499 & 0.505 \rightarrow 0.693 & 0.631 \rightarrow 0.768 \\ 0.272 \rightarrow 0.518 & 0.471 \rightarrow 0.669 & 0.623 \rightarrow 0.761\end{array}\right)$
New physics BSM
I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T.
Schwetz and A. Zhou, arXiv:2007.14792 [hep-ph]

No evidence of violation

Massive neutrinos violate it if they are Majorana particles

SM as an effective theory

Relaxing the renormalizability condition there is only one dim=5 gauge invariant operator (Weinberg operator) S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566

Lepton number violation

$$
\Delta \mathrm{L}=2
$$

$$
m_{\alpha \beta}^{\nu}=c_{\alpha \beta} \frac{v}{\Lambda} v \lesssim \mathrm{eV} \ll v
$$

Why are neutrinos so light?
Neutrino masses and mixing

$$
\frac{v^{2}}{2} \frac{c_{\alpha \beta}}{\Lambda} \underbrace{\begin{array}{c}
\text { New physics } \\
\text { scale }
\end{array}}
$$

Suppression mechanisms
 $c_{\alpha \beta} \ll 1$ Symmetry (Lepton number)
 $c_{\alpha \beta} \ll 1 \quad$ Accidental cancellations

Unveiling neutrino mass generation mechanism

If only $\boldsymbol{\Lambda}$ at work $\quad \frac{c_{6}^{i}}{\Lambda^{2}} \approx\left(\frac{c_{5}}{\Lambda}\right)^{2} \simeq\left(\frac{m_{\nu}}{v^{2}}\right)^{2} \begin{aligned} & \text { New physics effects } \\ & \text { strongly suppressed } \\ & \text { by the } v \text { mass scale }\end{aligned}$

$$
c_{5} \ll 1 \quad \text { and } \quad c_{6}^{\mathrm{LNV}, \mathrm{i}} \ll 1
$$

If symmetry at work

$$
c_{6}^{\mathrm{LNC}, \mathrm{i}} \approx \mathcal{O}(1)
$$

possible for L
conserving operators

If accidental cancellation

$$
c_{5} \ll 1
$$

$c_{6}^{i} \approx \mathcal{O}(1) \quad$ possible for all operators

Λ suppression: naive Seesaw scaling

Seesaw scaling $\quad m_{\nu}=-v^{2} F \frac{1}{M} F^{T}$
In the absence of any structure in the F and M matrices
$\left|U_{\alpha i}\right| \lesssim \sqrt{\frac{m_{\nu}}{M}} \lesssim 10^{-5} \sqrt{\frac{\mathrm{GeV}}{M}}$

Symmetries: L number has a special role

Theorem: SM + fermionic gauge singlets

K. Moffat, S. Pascoli and C. Weiland, arXiv:1712.07611 [hep-ph]
"The most general gauge-singlet neutrino extensions of the SM with no cancellation between different orders of the seesaw expansion, no fine-tuned cancellations between different radiative orders and which lead to three massless neutrinos are lepton number conserving"

In the SM extended with fermionic gauge singlets (e.g. Right-Handed neutrinos)

$\Delta L=0$

Unless there are accidental cancellations in m_{v}, the rate for Lepton number violating events is proportional to the small active neutrino masses

The theorem extends and generalises previous results: G. Ingelman and J. Rathsman, Z. Phys. C 60 (1993) 243; J. Gluza, hep-ph/0201002; J. Kersten and A. Y. Smirnov, arXiv:0705.3221 [hep-ph]

Accidental cancellations: quantify fine tuning

If a symmetry is present in the Lagrangian, it will be manifest at any order in perturbation theory

The neutrino mass

 scale is stable under radiative correctionsCompute neutrino masses m_{v} at 1-loop, and quantify the level of fine-tuning of a solution as

$$
\text { f.t. }\left(m_{\nu}\right)=\sqrt{\sum_{i=1}^{3}\left(\frac{m_{i}^{\text {loop }}-m_{i}^{\text {tree }}}{m_{i}^{\text {loop }}}\right)^{2}}
$$

m_{i} loop
1-loop neutrino
mass spectrum
$m_{i}{ }^{\text {tree }}$
tree-level neutrino mass spectrum

Fermionic singlet extensions of the SM

$\mathbf{S M}+\boldsymbol{n}$ gauge singlet fermions $\boldsymbol{N}_{\boldsymbol{I}}$

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+i \overline{N_{I}} \not \partial N_{I}-\left({\underset{\sim}{\alpha I}}_{F_{\alpha} \overline{\ell_{L}^{\alpha}}}^{\phi} N_{I}+\frac{M_{I J}}{2} \overline{N_{I}^{c}} N_{J}+\text { h.c. }\right) ~\left(\begin{array}{c}
n \times n \text { matrix } \\
3 \times n \text { matrix } \\
\text { Yukawa couplings }
\end{array}\right.
$$

After electroweak phase transition $<\Phi>=v \simeq 174 \mathrm{GeV}$

$$
-\mathcal{L}_{m}^{\nu}=\frac{1}{2}\left(\begin{array}{ll}
\overline{\nu_{L}} & \overline{N^{c}}
\end{array}\right) \underbrace{\left(\begin{array}{cc}
\delta m_{\nu}^{\text {loop }} & v F \\
v F^{T} & M
\end{array}\right)}_{\mathcal{M}}\binom{\nu_{L}^{c}}{N}+\text { h.c. }
$$

Phenomenology of fermionic singlets

$\mathcal{U}^{T} \mathcal{M} \mathcal{U}=\hat{\mathcal{M}}_{\text {diag }}$
 3 light (mostly active) states n heavy (mostly sterile) states

PMNS matrix: neutrino oscillations

Couples the heavy states with SM gauge bosons

Unobservable

L symmetry and Majorana fields

Majorana fermions violate all global symmetries, including L
How to preserve lepton number with Majorana states?

	Pair two states to form a Dirac state (equal masses, maximal mixing, opposite CP)	Decouple a state	Have a massless state
Exact symmetry	$M_{1}=M_{2}$ $\mathcal{U}_{\alpha 1}=i \mathcal{U}_{\alpha 2}$	$\mathcal{U}_{\alpha i}=0$	$M_{i}=0$
Approximate symmetry	$M_{2}-M_{1}$ $M_{1}+M_{2}$ $\mathcal{U}_{\alpha 1} \simeq i \mathcal{U}_{\alpha 2}$	$\left\|\mathcal{U}_{\alpha, i}\right\| \ll\left\|\mathcal{U}_{\alpha, j \neq i}\right\|$	$M_{i} \ll M_{j \neq i}$

Neutrinoless double beta decay

Double beta decay

2β decay: $2^{\text {nd }}$ order weak process $\quad \mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2)+2 e^{-}+2 \overline{\nu_{e}}$

Only relevant when the single β decay is kinematically forbidden

Figure from P. Lipari, Introduction to neutrino physics, in 2001 CERN-CLAF School of high-energy physics

Neutrinoless double beta decay: $\Delta L=2$

W. H. Furry, Phys. Rev. 56 (1939) 1184

If neutrinos are Majorana particles $0 \mathbf{v} 2 \beta$ is possible

$$
\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2)+2 e^{-}
$$

Figure modified from F. T. Avignone III, S. R. Elliott and J. Engel, arXiv:0708.1033 [nucl-ex]

The black box theorem

J. Schechter and J. W. F. Valle, Phys. Rev. D 25 (1982) 2951; E. Takasugi, Phys. Lett. 149B (1984) 372; see also M. Duerr, M. Lindner and A. Merle, arXiv:1105.0901 [hep-ph]

Non-vanishing Ov2 β amplitude
$\Gamma_{0 \nu 2 \beta} \neq 0$

Neutrinos are
Majorana fermions

$$
\nu_{i}^{c}=e^{i \phi} \nu_{i}
$$

Irrespectively of the underlying mechanism, a non-vanishing 0v2 β amplitude generates a Majorana mass term for the SM neutrinos

Experimental status: minimal SM

The amplitude for light neutrino exchange is proportional to $m_{2 \beta}=\left|\sum_{i} U_{e i}^{2} m_{i}\right|$
From current knowledge on neutrino oscillation parameters it is possible to compute $\mathrm{m}_{2 \beta}$ as a function of unknown lightest neutrino mass, ordering and CP phases

Figure from P. Guzowski, L. Barnes, J. Evans, G. Karagiorgi, N.
McCabe and S. Soldner-Rembold, arXiv:1504.03600 [hep-ex]

Contribution of heavy neutrinos

Heavy Majorana neutrinos contribute as well to $0 \mathrm{v} 2 \beta$ amplitude

F. L. Bezrukov, hep-ph/0505247; M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, arXiv:1005.3240 [hep-ph]; A. Abada and M.L., arXiv:1401.1507 [hep-ph]; A. Faessler, M. González, S. Kovalenko and F. Šimkovic, arXiv:1408.6077 [hep-ph]; A. Abada, V. De Romeri, M.L., A. M. Teixeira and T. Toma, arXiv:1712.03984 [hep-ph]; A. Babič, S. Kovalenko, M. I. Krivoruchenko and F. Šimkovic, arXiv:1804.04218 [hep-ph]

$$
\begin{aligned}
& \mathcal{A}^{0 \nu 2 \beta} \propto \sum_{i} M_{i} \mathcal{U}_{e i}^{2} M^{0 \nu 2 \beta}\left(M_{i}\right) \\
& M^{0 \nu 2 \beta}\left(M_{i}\right) \simeq M^{0 \nu 2 \beta}(0) \frac{p^{2}}{p^{2}-M_{i}^{2}}
\end{aligned}
$$

$\mathrm{M}_{\mathrm{i}} \underset{\mathbf{1}}{\mathbf{X}} \quad p^{2} \approx-(125 \mathrm{MeV})^{2}$
Mass dependence

Heavy neutrinos at GeV scale

Figures from A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, arXiv:1810.12463 [hep-ph]; see also J. Lopez-Pavon, S. Pascoli and C. f. Wong, arXiv:1209.5342 [hep-ph]; J. Lopez-Pavon, E. Molinaro and S. T. Petcov, arXiv:1506.05296 [hep-ph]

Extracting contraints on heavy neutrinos

TAU AND MESON DECAY

L-violating τ and meson decay

Heavy Majorana neutrinos can mediate L-violating

 decays of pseudo-scalar mesons and τ lepton$$
M_{1}\left(p, m_{M_{1}}\right) \rightarrow \ell_{\alpha}\left(k_{1}, m_{\ell_{\alpha}}\right) \ell_{\beta}\left(k_{2}, m_{\ell_{\beta}}\right) M_{2}\left(k_{3}, m_{M_{2}}\right)
$$

Negligible amplitude unless the intermediate state can go on-shell

$$
\frac{1}{\left(m_{i j}^{2}-m_{4}^{2}\right)^{2}+m_{4}^{2} \Gamma_{4}^{2}} \rightarrow \frac{\pi}{m_{4} \Gamma_{4}} \delta\left(m_{i j}^{2}-m_{4}^{2}\right)
$$

Lifetime limitations

In the resonant regime $i \mathcal{M} \propto \frac{M_{\nu_{s}}}{\Gamma_{\nu_{s}}} \equiv M_{\nu_{s}} \tau_{\nu_{s}}$
But too long-lived heavy neutrinos decay outside the detector

Asking for observable (inside detector) decays imposes a further constraint

Current bounds

Tables (and list of references) from A. Abada, V. De Romeri, M.L., A. M. Teixeira and T. Toma, arXiv:1712.03984 [hep-ph] Meson decay

LNV decay	Current bound		
	$\ell_{\alpha}=e, \ell_{\beta}=e$	$\ell_{\alpha}=e, \ell_{\beta}=\mu$	$\ell_{\alpha}=\mu, \ell_{\beta}=\mu$
$K^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} \pi^{+}$	6.4×10^{-10} [41]	$5.0 \times 10^{-10}[41]$	1.1×10^{-9} [41]
$D^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} \pi^{+}$	1.1×10^{-6} [41]	$2.0 \times 10^{-6}[78]$	$2.2 \times 10^{-8}[79]$
$D^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} K^{+}$	$9.0 \times 10^{-7}[78]$	$1.9 \times 10^{-6}[78]$	$1.0 \times 10^{-5}[78]$
$D^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} \rho^{+}$			5.6×10^{-4} [41]
$D^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} K^{*+}$			$8.5 \times 10^{-4}[41]$
$D_{s}^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} \pi^{+}$	$4.1 \times 10^{-6}[41]$	$8.4 \times 10^{-6}[78]$	$1.2 \times 10^{-7}[79]$
$D_{s}^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} K^{+}$	$5.2 \times 10^{-6}[78]$	$6.1 \times 10^{-6}[78]$	$1.3 \times 10^{-5}[78]$
$D_{s}^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} K^{*+}$			1.4×10^{-3} [41]
$B^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} \pi^{+}$	$2.3 \times 10^{-8}[80]$	$1.5 \times 10^{-7}[81]$	4.0×10^{-9} [82]
$B^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}^{-} K^{+}$	$3.0 \times 10^{-8}[80]$	$1.6 \times 10^{-7}[81]$	4.1×10^{-8} [83]
$B^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}^{-} \rho^{+}$	$1.7 \times 10^{-7}[81]$	$4.7 \times 10^{-7}[81]$	$4.2 \times 10^{-7}[81]$
$B^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}^{-} D^{+}$	$2.6 \times 10^{-6}[84]$	$1.8 \times 10^{-6}[84]$	$6.9 \times 10^{-7}[85]$
$B^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} D^{*+}$			$2.4 \times 10^{-6}[41]$
$B^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}^{-} D_{s}^{+}$			$5.8 \times 10^{-7}[41]$
$B^{-} \rightarrow \ell_{\alpha}^{-} \ell_{\beta}{ }^{-} K^{*+}$	$4.0 \times 10^{-7}[81]$	$3.0 \times 10^{-7}[81]$	$5.9 \times 10^{-7}[81]$
LNV matrix m_{ν}	$m_{\nu}^{e e}$	$m_{\nu}^{e \mu}$	$m_{\nu}^{\mu \mu}$

Results from

Belle [84],
BABAR $[78,80,81]$ and
LHCb [79,82,83,85];
summarised in PDG [41]
t decay

LNV decay		Current bound	
	$\ell=e$	$\ell=\mu$	
$\tau^{-} \rightarrow \ell^{+} \pi^{-} \pi^{-}$	2.0×10^{-8}	3.9×10^{-8}	
$\tau^{-} \rightarrow \ell^{+} \pi^{-} K^{-}$	3.2×10^{-8}	4.8×10^{-8}	
$\tau^{-} \rightarrow \ell^{+} K^{-} K^{-}$	3.3×10^{-8}	4.7×10^{-8}	
LNV matrix m_{ν}	$m_{\nu}^{e \tau}$	$m_{\nu}^{\mu \tau}$	

upper bounds from the Belle

Constraints: single intermediate state

Figures from A. Abada, V. De Romeri, M.L., A. M. Teixeira and T. Toma, arXiv:1712.03984 [hep-ph]; see also A. Atre, T. Han, S. Pascoli and B. Zhang, arXiv:0901.3589 [hep-ph]

Dashed lines: the on-shell heavy neutrino travels for less than 10 m

Some predictions: single intermediate state

Comprehensive analysis for τ and pseudo-scalar mesons in 1712.03984 (all possible initial and 3-body final states)

Multiple intermediate states: interference

A. Abada, C. Hati, X. Marcano and A. M. Teixeira, arXiv:1904.05367 [hep-ph]

If more than one heavy neutrino mediate the process, and

$$
\Delta M \ll M \quad \text { and } \quad \Delta M<\Gamma_{N}
$$

interference effects arise due to the CP-violating phases

$$
\begin{aligned}
& \left|\mathcal{A}_{M \rightarrow M^{\prime} \ell_{\alpha}^{+} \ell_{\beta}^{-}}^{\mathrm{LNC}}\right|^{2} \propto\left|U_{\alpha 4} U_{\beta 4}^{*} g\left(m_{4}\right)+U_{\alpha 5} U_{\beta 5}^{*} g\left(m_{5}\right)\right|^{2}, \\
& \left|\mathcal{A}_{M \rightarrow M^{\prime} \ell_{\alpha}^{+} \ell_{\beta}^{+}}^{\mathrm{LNV}}\right|^{2} \propto\left|U_{\alpha 4} U_{\beta 4} f\left(m_{4}\right)+U_{\alpha 5} U_{\beta 5} f\left(m_{5}\right)\right|^{2},
\end{aligned} R_{\ell_{\alpha} \ell_{\beta}} \equiv \frac{\Gamma_{M \rightarrow M^{\prime} \ell_{\alpha}^{ \pm} \ell_{\beta}^{ \pm}}^{\mathrm{LNV}}}{\Gamma_{M \rightarrow M^{\prime} \ell_{\alpha}^{ \pm} \ell_{\beta}^{\mp}}^{\mathrm{LNC}}} \begin{aligned}
U_{\alpha i} & =e^{-i \phi_{\alpha i}}\left|U_{\alpha i}\right| \\
\psi_{\alpha} & \equiv \phi_{\alpha_{5}}-\phi_{\alpha 4}
\end{aligned}
$$

LHC SEARCHES

LNV at LHC

Heavy neutrinos in pp collisions produced through a variety of mechanisms

Figure from C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, arXiv:1602.06957 [hep-ph]; see also Y. Cai, T. Han, T. Li and R. Ruiz, arXiv:1711.02180 [hep-ph]

LNV can manifest with clean experimental signatures:

e.g. two same-sign leptons (any flavour combination of e and μ) and at least one jet

Figure from CMS Collaboration, arXiv:1806.10905 [hep-ex]

Current bounds: single mediator

CMS Collaboration, arXiv:1806.10905 [hep-ex]; see also ATLAS Collaboration, arXiv:1506.06020 [hep-ex]

Vector boson fusion

LNV/LNC oscillations

Y. Nir, Conf. Proc. C9207131, 81 (1992); G. Anamiati, M. Hirsch and E. Nardi, arXiv:1607.05641 [hep-ph]

Flavour eigenstate $=$ coherent superposition of mass eigenstates

$$
\left\{\begin{array} { l }
{ N _ { \ell } = \frac { 1 } { \sqrt { 2 } } (N _ { + } - i N _ { - }) \quad \text { evolution } } \\
{ N _ { \overline { \ell } } = \frac { 1 } { \sqrt { 2 } } (N _ { + } + i N _ { - }) } \\
{ } \\
{ g _ { + } (t) = e ^ { - i M t } e ^ { - \frac { \Gamma } { 2 } t } \operatorname { c o s } (\frac { \Delta M } { 2 } t) }
\end{array} \quad \left\{\begin{array}{l}
N_{\ell}(t)=g_{+}(t) N_{\ell}+g_{-}(t) N_{\bar{\ell}} \\
N_{\bar{\ell}}(t)=g_{-}(t) N_{\ell}+g_{+}(t) N_{\bar{\ell}}
\end{array} \quad \begin{array}{l}
\\
g_{-}(t)=i e^{-i M t} e^{-\frac{\Gamma}{2} t} \sin \left(\frac{\Delta M}{2} t\right)
\end{array}\right.\right.
$$

Timescales $\Delta M \approx \Gamma$ oscillations
$\Delta M \ll \Gamma$ oscillations do not develop (Dirac limit)

$$
R_{\ell \ell}\left(t_{1}, t_{2}\right)=\frac{\int_{t_{1}}^{t_{2}}\left|g_{-}(t)\right|^{2} d t}{\int_{t_{1}}^{t_{2}}\left|g_{+}(t)\right|^{2} d t}=\frac{\#\left(\ell^{+} \ell^{+}\right)+\#\left(\ell^{-} \ell^{-}\right)}{\#\left(\ell^{+} \ell^{-}\right)} \quad R_{l l}(0, \infty)=\frac{\Delta M^{2}}{2 \Gamma^{2}+\Delta M^{2}}
$$

Are these oscillations observable?

S. Antusch, E. Cazzato and O. Fischer, arXiv:1709.03797 [hep-ph]
E.g. LHCb experiment for Linear Seesaw with $\mathbf{M}=7 \mathrm{GeV} \mathrm{U}^{2}=10^{-5}$, Inverted Ordering

 However, for heavy neutrinos with $\gamma=50$

- very forward rapidity
- very small track separation of decay products

Why to look for LNV if $\mathrm{m}_{\mathrm{v}} \simeq 0$?

Equivalence between L conservation and massless neutrinos only holds in SM + singlet fermions

E.g. Left-right symmetric model

If new gauge mediators are too heavy, light N are still accessible

When $M_{W_{R}} \gg \sqrt{\hat{s}}$ but $m_{N} \lesssim \mathcal{O}(1) \mathrm{TeV}, p p \rightarrow N \ell+X$ production in the LRSM and minimal Type I Seesaw are not discernible ${ }^{11}$

- Signature: $p p \rightarrow \ell^{ \pm} \ell^{ \pm}+n j+X+$ $p_{T}^{\ell} \gtrsim \mathcal{O}\left(m_{N}\right)+$ no MET
- At 14 (100) TeV with $\mathcal{L}=1$ (10) $\mathrm{ab}^{-1}, M_{W_{R}} \lesssim 9$ (40) TeV probed
- DO NOT STOP SEARCHING FOR TYPE I LNV

[^0]
Falsify high-scale leptogenesis with LNV

J. M. Frere, T. Hambye and G. Vertongen, arXiv:0806.0841 [hep-ph];
F. F. Deppisch, J. Harz and M. Hirsch, arXiv:1312.4447 [hep-ph]

A LNV observation at LHC likely falsifies high-scale leptogenesis

Early Universe

Low Scale Leptogenesis with 2 RHN

The approximate L conservation forces the HNL to be degenerate in mass

$$
\begin{gathered}
M_{0}=\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} Y v & 0 \\
\frac{1}{\sqrt{\sqrt{2}}} \mathrm{Yv} & 0 & \Lambda \\
0 & \Lambda & 0
\end{array}\right) \\
\Delta M_{I S S}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \xi \Lambda
\end{array}\right) \quad m_{\nu}=0, \quad M_{1,2}=\sqrt{|\Lambda|^{2}+\frac{1}{2}|Y v|^{2}} \\
\Delta M_{L S S}=\left(\begin{array}{ccc}
0 & 0 & \frac{\epsilon}{\sqrt{2}} Y^{\prime} v \\
0 & 0 & 0 \\
\frac{\epsilon}{\sqrt{2}} Y^{\prime} v & 0 & 0
\end{array}\right) \quad \square m_{\nu} \simeq 2 \epsilon \frac{m_{D}^{2}}{M_{1,2}}, \quad \Delta m^{2} \simeq 2 \xi M_{1,2}^{2}
\end{gathered}
$$

This allows to account for BAU via freeze-in leptogenesis with low-scale NHL

Figure from A. Abada, G. Arcadi, V. Domcke and M. Lucente, arXiv:1507.06215 [hep-ph]
Many studies, e.g. E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, hep-ph/9803255; T. Asaka and M.
Shaposhnikov, hep-ph/0505013; M. Shaposhnikov, arXiv:0804.4542 [hep-ph]; T. Asaka and H. Ishida, arXiv:1004.5491 [hep-ph]; T. Asaka, S. Eijima and H. Ishida, arXiv:1112.5565 [hep-ph]; L. Canetti, M. Drewes and M. Shaposhnikov, arXiv:1204.4186 [hep-ph]; L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, arXiv:1208.4607
[hep-ph]; P. Hernández, M. Kekic, J. López-Pavón, J. Racker and N. Rius, arXiv:1508.03676 [hep-ph]...

Low Scale Leptogenesis with 3 RHN

Mass spectrum with 3 right-handed neutrinos and B-L symmetry

Mass

Thermal masses $\mathbf{T}>\mathrm{T}_{\mathrm{Ew}}$
B

C

Vacuum masses

If the vacuum mass of the decoupled state is heavier than the pseudoDirac one, there is necessarily a level crossing at some finite temperature A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, arXiv:1810.12463 [hep-ph]

Level crossing: resonant asymmetry production

Sterile neutrinos abundances

Conclusion

Lepton number is an accidental symmetry of the SM: test its conservation!

It is violated by non-renormalizable SM operators: EFT generation of \mathbf{v} masses

LNV phenomenology is generally connected with v mass generation mechanism

LNV rates depend in general on the interference of multiple virtual states

LNV observation could signal the existence of new gauge bosons and/or falsify high-scale leptogenesis

A global B-L symmetry has non-trivial consequences in the early Universe

Backup

Temperature of level crossing

The level crossing temperature in the SM + 3 RHN can be estimated at

$$
T_{\text {crossing }} \approx \frac{2 \sqrt{2} \bar{M} \sqrt{\mu^{\prime 2}-1}}{\sqrt{\sum_{a}\left|F_{a}\right|^{2}}}=2.8 \times 10^{5} \mathrm{GeV}\left(\frac{\bar{M}}{\mathrm{GeV}}\right) \frac{\sqrt{\mu^{\prime 2}-1}}{\sqrt{\sum_{a}\left|\left(F_{a} / 10^{-5}\right)\right|^{2}}}
$$

where the Majorana and Yukawa matrices are parameterised as

$$
M_{M}=\bar{M}\left(\begin{array}{ccc}
1-\mu & 0 & 0 \\
0 & 1+\mu & 0 \\
0 & 0 & \mu^{\prime}
\end{array}\right) \quad F=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
F_{e}\left(1+\epsilon_{e}\right) \mathrm{i} F_{e}\left(1-\epsilon_{e}\right) F_{e} \epsilon_{e}^{\prime} \\
F_{\mu}\left(1+\epsilon_{\mu}\right) \mathrm{i} F_{\mu}\left(1-\epsilon_{\mu}\right) F_{\mu} \epsilon_{\mu}^{\prime} \\
F_{\tau}\left(1+\epsilon_{\tau}\right) \mathrm{i} F_{\tau}\left(1-\epsilon_{\tau}\right) F_{\tau} \epsilon_{\tau}^{\prime}
\end{array}\right)
$$

Momentum averaged effective Hamiltonian for the heavy neutrinos

$$
\langle H\rangle=\left\langle H_{0}+V_{N}\right\rangle=\frac{\pi^{2}}{36 \zeta(3)}\left(\frac{\operatorname{diag}\left(0, M_{2}^{2}-M_{1}^{2}, M_{3}^{2}-M_{1}^{2}\right)}{T}+\frac{T}{8} F^{\dagger} F\right)
$$

Quantum kinetic equations for freeze-in leptogenesis

$$
\begin{aligned}
\frac{d R_{N}}{d t}= & -i\left[\langle H\rangle, R_{N}\right]-\frac{1}{2}\left\langle\gamma^{(0)}\right\rangle\left\{F^{\dagger} F, R_{N}-I\right\}-\frac{1}{2}\left\langle\gamma^{(1 b)}\right\rangle\left\{F^{\dagger} \mu F, R_{N}\right\}+\left\langle\gamma^{(1 a)}\right\rangle F^{\dagger} \mu F+ \\
& -\frac{1}{2}\left\langle\widetilde{\gamma}^{(0)}\right\rangle\left\{M_{M} F^{T} F^{*} M_{M}, R_{N}-I\right\}+\frac{1}{2}\left\langle\widetilde{\gamma}^{(1 b)}\right\rangle\left\{M_{M} F^{T} \mu F^{*} M_{M}, R_{N}\right\}+ \\
& -\left\langle\widetilde{\gamma}^{(1 a)}\right\rangle M_{M} F^{T} \mu F^{*} M_{M}, \\
\frac{d \mu_{\Delta a}}{d t}= & -\frac{9 \zeta(3)}{2 N_{D} \pi^{2}}\left\{\left\langle\gamma^{(0)}\right\rangle\left(F R_{N} F^{\dagger}-F^{*} R_{\bar{N}} F^{T}\right)-2\left\langle\gamma^{(1 a)}\right\rangle \mu F F^{\dagger}+\right. \\
& +\left\langle\gamma^{(1 b)}\right\rangle \mu\left(F R_{N} F^{\dagger}+F^{*} R_{\bar{N}} F^{T}\right) \\
& +\left\langle\widetilde{\gamma}^{(0)}\right\rangle\left(F^{*} M_{M} R_{\bar{N}} M_{M} F^{T}-F M_{M} R_{N} M_{M} F^{\dagger}\right)-2\left\langle\widetilde{\gamma}^{(1 a)}\right\rangle \mu F^{*} M_{M}^{2} F^{T} \\
& \left.+\left\langle\widetilde{\gamma}^{(1 b)}\right\rangle \mu\left(F^{*} M_{M} R_{\bar{N}} M_{M} F^{T}+F M_{M} R_{N} M_{M} F^{\dagger}\right)\right\}_{a a},
\end{aligned}
$$

Abstract

G. Sigl and G. Raffelt, Nucl. Phys. B406 (1993) 423; E. K. Akhmedov, V. A. Rubakov and A. Yu. Smirnov, 9803255; T. Asaka and M. Shaposhnikov, 0505013; L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, 1208.4607; T. Asaka, S. Eijima and H. Ishida, 1112.5565; P. Hernandez, M. Kekic, J. Lopez-Pavon, J. Racker and J. Salvado, 1606.06719; S. Antusch, E. Cazzato, M. Drewes, O. Fischer, B. Garbrecht, D. Gueter et al., 1710.03744; A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, 1810.12463

Some SM extensions with L symmetry

Linear seesaw

E. K. Akhmedov, M. Lindner, E. Schnapka and J. W. F. Valle, hep-ph/9507275 and hep-ph/ 9509255; S. M. Barr, hep-ph/0309152; M. Malinsky, J. C. Romao and J. W. F. Valle, hep-ph/ 0506296; M. B. Gavela, T. Hambye, D. Hernandez and P. Hernandez, arXiv:0906.1461 [hep-ph]

Inverse seesaw

D. Wyler and L. Wolfenstein, Nucl. Phys. B 218 (1983) 205; R. N. Mohapatra, Phys. Rev. Lett. 56 (1986) 561; R.
N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34 (1986) 1642; J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez and J. W. F. Valle, Phys. Lett. B 187 (1987) 303; M. C. Gonzalez-Garcia and J. W. F. Valle, Phys. Lett. B 216
(1989) 360; F. Deppisch and J. W. F. Valle, hep-ph/0406040; A. Abada and M. Lucente, arXiv:1401.1507 [hep-ph]

Supersymmetry with R-parity violation

J. R. Ellis, G. Gelmini, C. Jarlskog, G. G. Ross and J. W. F. Valle, Phys. Lett. 150B (1985) 142; G. G. Ross and J.
W. F. Valle, Phys. Lett. 151B (1985) 375; J. C. Romao, M. A. Diaz, M. Hirsch, W. Porod and J. W. F. Valle, hep-ph/ 9907499; A. Abada and M. Losada, hep-ph/9908352; M. Hirsch, M. A. Diaz, W. Porod, J. C. Romao and J. W. F. Valle, Phys. Rev. D62 (2000) 113008 [hep-ph/0004115]; A. Abada, S. Davidson and M. Losada, hep-ph/0111332

Scale invariance V. V. Khoze and G. Ro, arXiv:1307.3764 [hep-ph]

Technicolor-inspired

T. Appelquist and R. Shrock, hep-ph/0204141; T. Appelquist and R. Shrock, hep-ph/0301108
vMSM
M. Shaposhnikov, hep-ph/0605047

Low-scale seesaw realisations

A. Ibarra, E. Molinaro and S. T. Petcov, arXiv:1007.2378 [hep-ph]; A. Ibarra, E. Molinaro and S. T. Petcov, arXiv:1103.6217 [hep-ph]; D. N. Dinh, A. Ibarra, E. Molinaro and S. T. Petcov, arXiv:1205.4671 [hep-ph]

[^0]: ${ }^{11}$ Han, Lewis, RR, Si, [1211.6447]; RR, [1703.04669]

