Seesaw Scalars at the LHC Institute for Theoretical Physics, Madrid

Richard Ruiz

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

16 June 2022

→ ∃ →

< □ > < /□ >

good morning and thank you for the invitation!

2 / 48

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

the big picture $^{1} \label{eq:picture}$

In neutrino beamline experiments, u_{μ} beams are made from collimated π^{\pm}

Count ν_{μ} at near detector (ND) and **compare** to # at far detector (FD)

 ν_{μ} deficit + ν_e/ν_{τ} apperance at FD best described by $\nu_{\ell_1} \rightarrow \nu_{mass} \rightarrow \nu_{\ell_2}$ transitions/oscillations

 \leftarrow NO ν A ν_{μ} disappearance [1701.05891]

 \Rightarrow evidence for ν masses!

Seesaw scalars at the LHC - NuTs 2022 (Madrid)

So, neutrinos have masses, with $m_
u \lesssim {\cal O}(1)$ eV Is this a problem?

Yes.

R. Ruiz - IFJ PAN

Seesaw scalars at the LHC – NuTs 2022 (Madrid) 5

5 / 48

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

SM's guidance on m_{ν}

Problem: according to the SM, $m_{\nu} = 0$ (not enough ingredients!)

R. Ruiz - IFJ PAN

Seesaw scalars at the LHC – NuTs 2022 (Madrid)

6 / 48

SM's guidance on m_{ν}

Problem: according to the SM, $m_{\nu} = 0$ (not enough ingredients!)

 $m_{
u} \neq 0$ + renormalizability + gauge inv. \implies new particles! Ma('98) + others

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

SM's guidance on m_{ν}

Problem: according to the SM, $m_{\nu} = 0$ (not enough ingredients!)

 $m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles!

Ma('98) + others

New particles couple to ν_{ℓ} and ℓ^{\pm} , usually *H*, and often mediate processes that violate lepton number and/or lepton flavor symmetries

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

These core ideas can be realized in *many* ways!²

Minkowski ('77); Yanagida ('79); Glashow & Levy ('80); Gell-Mann et al., ('80); Mohapatra & Senjanović ('82); + many others

² For reviews, see Cai, et al [1706.08524]; Cai, Han, Li, RR [1711.02180]; Coy, Frigerio [2110.09126]

R. Ruiz - IFJ PAN

イロト イポト イヨト イヨト

7 / 48

∃ 990

 $m_{
u} \neq 0$ + renormalizability + SM gauge inv. \implies new particles! [Ma ('98)]

Incredibly powerful but also incredibly vague since new particles:

- ... can be light © or heavy ©
- ... can be short-lived \odot or long-lived \odot
- ... can have SM gauge interactions, e.g., $H^{\pm\pm}$ in Type II, Zee-Babu
- ... can have new gauge interactions, e.g. ν_R and Z_{B-L} in $U(1)_{\mathrm{B-L}}$
- ... must couple to Φ_{SM} and L, often inducing collider processes that do not conserve lepton number (LNV) and/or lepton flavor (LFV)

what if right-handed neutrinos do not exist?

イロト イポト イヨト イヨト

what if right-handed neutrinos do exist?

イロト イボト イヨト イヨト

Consequences of ν_R

- stepping stone to GUTs, etc.

(see previous talks or papers by nearly everyone here)

Seesaw scalars at the LHC - NuTs 2022 (Madrid)

broad implications for the universe 🙂

イロト イヨト イヨト イヨト

12 / 48

= 990

life with ν_R is probably more complicated O

イロト イヨト イヨト イヨト

Motivation for non-minimal scenarios

Little-known fact: $W_0^{\pm}W_0^{\pm} \rightarrow \ell_i^{\pm}\ell_i^{\pm}$ in Type I violates *s*-wave unitarity

Dicus & He ('04, '05); Fuks, RR, et al [2011.02547]

Working out the matrix element for $W_0^{\pm}W_0^{\pm} \rightarrow \ell_i^{\pm}\ell_i^{\pm}$, you get:

$$-i\mathcal{M} \sim g_W^2 \frac{V_{\ell N} V_{\ell N}}{m_N} \frac{M_{WW}^3}{m_W^2}$$

(in limit that $M_W, M_{WW} \ll m_N$)

Extracting the s-wave amplitude

$$a_{J=0} = \frac{1}{32\pi} \int_{-1}^{1} d\cos\theta \,\mathcal{M}$$

Motivation for non-minimal scenarios

Little-known fact: $W_0^{\pm}W_0^{\pm} \rightarrow \ell_i^{\pm}\ell_i^{\pm}$ in Type I violates *s*-wave unitarity

Dicus & He ('04, '05); Fuks, RR, et al [2011.02547]

Working out the matrix element for $W_0^{\pm}W_0^{\pm} \rightarrow \ell_i^{\pm}\ell_i^{\pm}$, you get:

$$-i\mathcal{M} \sim g_W^2 rac{V_{\ell N} V_{\ell N}}{m_N} rac{M_{WW}^3}{m_W^2}$$
 (in limit that $M_W, M_{WW} \ll m_N$)

Extracting the s-wave amplitude

$$a_{J=0} = rac{1}{32\pi} \int_{-1}^{1} d\cos heta \,\,\mathcal{M}$$

and requiring $|a_{J=0}| < 1$ gives scale (M_{WW}) at which unitarity is violated:

$$(\text{scattering energy})^3 > rac{32\pi M_W^2}{(2-\delta_{\ell_i\ell_j})g_W^2} rac{1}{|\sum_k rac{V_{ik}V_{jk}}{m_{N_k}}|}$$

does this tell us anything? (unsure)

イロト イヨト イヨト イヨト

15 / 48

∃ < <p>𝒫 < <p>𝒫 < <p>𝒫

Unitarity violation in the Standard Model

1. In Fermi Theory, unitarity violation in $\nu \mathcal{N} \to \ell \mathcal{N}'$ suggests missing particle

W boson!

2. In Fermi Theory w/ W (no Z), unitarity violation in $e^-e^+ \rightarrow W^-W^+$ suggests missing particle

Z boson!

3. In the SM without Higgs, unitarity violation in $V_0 V_0' \rightarrow V_0 V_0$ suggests missing particle

 H^0 boson!

 μ_R in $\Delta \mathcal{L} = (1/2)\mu_R \overline{\nu_R^c} \nu_R$ probably needs to be generated dynamically by scalar carrying lepton number... but maybe ν_R do not exist (ves, this is a jump / "baby with the bath water" argument)

16 / 48

ヘロト ヘヨト ヘヨト

³Konetschny and Kummer ('77); Schechter and Valle ('80); Cheng and Li ('80); Lazarides, et al ('81); Mohapatra and Senjanovic ('81)

R. Ruiz - IFJ PAN

Seesaw scalars at the LHC – NuTs 2022 (Madrid)

The Type II Seesaw is special: generates m_{ν} without hypothesizing ν_R

• shows $m_{\nu} \neq 0 \Rightarrow$ that ν_R exist

The Type II Seesaw is special: generates m_{ν} without hypothesizing ν_R

• shows $m_{\nu} \neq 0 \Rightarrow$ that ν_R exist

Hypothesize a scalar SU(2)_L triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi^{\dagger} \hat{\Delta} \cdot \Phi^{\dagger} + \text{H.c.} \Big)$$

The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\sqrt{s}\langle \hat{\Delta}
angle = extsf{v}_{\Delta} pprox rac{\mu_{h\Delta} v_{
m EW}^2}{\sqrt{2} m_{\Delta}^2}$$

which leads to left-handed Majorana masses for neutrinos

$$\Delta \mathcal{L} = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \overline{L^c} \hat{\Delta} L = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \left(\overline{\nu^{jc}} \quad \overline{\ell^{jc}} \right) \begin{pmatrix} 0 & 0 \\ v_{\Delta} & 0 \end{pmatrix} \begin{pmatrix} \nu^i \\ \ell^i \end{pmatrix}$$
$$\ni -\frac{1}{2} \underbrace{\left(\sqrt{2} y_{\Delta}^{ij} v_{\Delta} \right)}_{=m_{\nu}^{ij}} \overline{\nu^{jc}} \nu^i$$

18 / 48

Fewer free parameters \implies richer experimental predictions

Fileviez Perez, Han, Li, et al, [0805.3536], Crivellin, et al [1807.10224], Fuks, Nemevšek, RR [1912.08975] + others

 Example: △ decay rates encode inverse (IH) vs normal (NH) ordering of light neutrino masses

 $\Gamma(\Delta^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim y_\Delta^{ij} \sim (U_{\rm PMNS}^* \tilde{m}_\nu^{\rm diag} U_{\rm PMNS}^{\dagger})_{ij}$

R. Ruiz - IFJ PAI

The leptonic scalars of the model $\Delta^{\pm\pm}$, Δ^{\pm} , Δ^{0} , ξ^{0} all couple directly to W, Z, γ via gauge couplings (\implies unambiguous xsec prediction!)

large, then things get "interesting"

The leptonic scalars of the model $\Delta^{\pm\pm}$, Δ^{\pm} , Δ^{0} , ξ^{0} all couple directly to W, Z, γ via gauge couplings (\Rightarrow unambiguous xsec prediction!)

Many production channels but most studies focus on $pp \to \Delta^{++} \Delta^{--}$

(unsure if studies on ξ^0 even exist \odot)

If $\Delta^{\pm\pm}$ is the lightest state, then decay rates set by oscillation parameters

(I find this really, really cool \odot)

If $\Delta^{\pm\pm}$ is not the lightest state, or v_{Δ} is large, then things get "interesting"

Preferred decay modes of $\Delta^{\pm\pm}$ $(\Delta M = m_{++} - m_{+})$

Melfo, Nemevšek, Nesti, Senjanovic, Zhang [1108.4416]

the "large" v_{Δ} limit

22 / 48

CDF's legacy measurement of the M_W is larger than EWPD suggests

(not sure the experimental result should be discounted so quickly)

Interesting that Type II's correction to ρ param. accommodates measurement - favors $\Delta^{\pm\pm}$, Δ^{\pm} with lighter masses

Heeck [1108.4416]

strong(er) motivation for LHC searches

24 / 48

▶ < ∃ >

LHC limits on pair production

4 1 1 4 1 1 1

LHC limits on associated production

Details on event selection $(\ell = e, \mu)$ [2101.11961]

Charged Higgs boson mass	$m_{H^{\pm\pm}} = 200 \text{GeV}$	$m_{H^{\pm\pm}} = 300 \mathrm{GeV}$	$m_{H^{\pm\pm}} = 400 \text{GeV}$	$m_{H^{\pm\pm}} = 500 \mathrm{GeV}$
Selection criteria	$2\ell^{\infty}$ channel			
mjets [GeV]	[100, 450]	[100, 500]	[300, 700]	[400, 1000]
S	< 0.3	<0.6	<0.6	< 0.9
$\Delta R_{\ell^{\pm}\ell^{\pm}}$	<1.9	<2.1	<2.2	<2.4
$\Delta \phi_{\ell \ell, E_{T}^{\text{miss}}}$	<0.7	< 0.9	<1.0	<1.0
$m_{x\ell}$ [GeV]	[40, 150]	[90, 240]	[130, 340]	[130, 400]
$E_{\rm T}^{\rm miss}$ [GeV]	>100	>130	>170	>200
Selection criteria	3ℓ channel			
$\Delta R_{\ell^{\pm}\ell^{\pm}}$	[0.2, 1.7]	[0.0, 2.1]	[0.2, 2.5]	[0.3, 2.8]
$m_{x\ell}$ [GeV]	>160	>190	>240	>310
$E_{\rm T}^{\rm miss}$ [GeV]	>30	>55	>80	>90
$\Delta R_{\ell \text{jet}}$	[0.1, 1.5]	[0.1, 2.0]	[0.1,2.3]	[0.5, 2.3]
$p_{\rm T}^{\rm leading jet}$ [GeV]	>40	>70	>100	>95
Selection criteria	4ℓ channel			
$m_{x\ell}$ [GeV]	>230	>270	>360	>440
$E_{\rm T}^{\rm miss}$ [GeV]	>60	>60	>60	>60
$p_{\mathrm{T}}^{\ell_1}$ [GeV]	>65	>80	>110	>130
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\min}$	[0.2, 1.2]	[0.2, 2.0]	[0.5, 2.4]	[0.6, 2.4]
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\max}$	[0.3, 2.0]	[0.5, 2.6]	[0.4, 3.1]	[0.6, 3.1]

LHC limits on pair production (new!)

$$pp \rightarrow \Delta^{++}\Delta^{--} \rightarrow 4\ell^{\pm} + X$$

 $(\ell = e, \mu)$ [ATLAS-CONF-2022-010]

R. Ruiz - IFJ PAN

What if $\Delta^{\pm\pm}$, Δ^{\pm} are discovered?

R. Ruiz - IFJ PAN

イロト イボト イヨト イヨト

celebrate! 🙂

R. Ruiz - IFJ PAN

Seesaw scalars at the LHC – NuTs 2022 (Madrid)

30 / 48

 $\Delta^{\pm\pm}, \ \Delta^{\pm}$ are not unique in BSM models

Seesaw scalars at the LHC - NuTs 2022 (Madrid) 31 / 48

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

context: the remainder of this talk is to show that falsifying competing models will be difficult

(some guidance exists but personal hope is to inspire interest and new work)

R. Ruiz - IFJ PAN

Seesaw scalars at the LHC – NuTs 2022 (Madrid) 3

32 / 48

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

イロト 不得下 イヨト イヨト 二日

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

again shows $m_{\nu} \neq 0 \Rightarrow$ that ν_R exist

イロン イ理 とく ヨン イ ヨン

э.

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R again shows $m_{\nu} \neq 0 \Rightarrow$ that ν_R exist

Hypothesize two scalar $SU(2)_L$ singlets k, h with weak hypercharge $Y = -2, -1 \pmod{Q_k} = -2, Q_h = -1$ with lepton number L = -2

$$\mathcal{L}_{\text{ZB}} = \mathcal{L}_{\text{SM}} + (D_{\mu}k)^{\dagger}(D^{\mu}k) + (D_{\mu}h)^{\dagger}(D^{\mu}h) + (\mu \mu h k^{\dagger} + \text{H.c.}) \\ \left[f_{ij} \ \tilde{L}^{i} L^{j} h^{\dagger} + g_{ij} \ \overline{(e_{R}^{\rho})^{i}} e_{R}^{j} k^{\dagger} + \text{H.c.} \right] + \dots$$

$$h^{-} \qquad h^{-} \qquad h^{$$

$$\left(\mathcal{M}_{\nu}^{\text{flavor}}\right)_{ij} = 16\mu\mu\mu f_{ia} \ m_a \ g_{ab}^* \ \mathcal{I}_{ab}(r) \ m_b \ f_{jb} \ f_{b} \ f_{b} \ f_{b} \ f_{ab} \$$

Seesaw scalars at the LHC – Nulls 2022 (Madrid)

Fewer free parameters \implies richer experimental predictions

Nebot, et al [0711.0483]; Ohlsson, Schwetz, Zhang [0909.0455]; Herrero-Garcia, Nebot, Rius, et al [1402.4491]; + others

• E.g.,
$$k^{\pm\pm}$$
, h^{\pm} couplings encode oscillation physics

Normal ordering:

$$\frac{f_{e\tau}}{f_{\mu\tau}} = \tan\theta_{12}\frac{\cos\theta_{23}}{\cos\theta_{13}} + \tan\theta_{13}\sin\theta_{23}e^{-i\delta}$$
$$\frac{f_{e\mu}}{f_{\mu\tau}} = \tan\theta_{12}\frac{\cos\theta_{23}}{\cos\theta_{13}} - \tan\theta_{13}\sin\theta_{23}e^{-i\delta}$$

Inverse ordering:

$$\frac{f_{e\tau}}{f_{\mu\tau}} = -\frac{\sin\theta_{23}}{\tan\theta_{13}}e^{-i\delta},$$
$$\frac{f_{e\mu}}{f_{\mu\tau}} = \frac{\cos\theta_{23}}{\tan\theta_{13}}e^{-i\delta},$$
$$\frac{f_{e\tau}}{f_{e\mu}} = -\tan\theta_{23}.$$

R. Ruiz - IFJ PAN

35 / 48

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Fewer free parameters \implies richer experimental predictions

Nebot, et al [0711.0483]; Ohlsson, Schwetz, Zhang [0909.0455]; Herrero-Garcia, Nebot, Rius, et al [1402.4491]; + others

• E.g., $k^{\pm\pm}$, h^{\pm} decay rates encode IH vs NO

R. Ruiz - IFJ PAN

Seesaw scalars at the LHC – NuTs 2022 (Madrid) 36

・ロト ・ 一下・ ・ ヨト・

The leptonic scalars of the model $k^{\pm\pm}$, h^{\pm} couple directly to Z, γ via gauge couplings (\Rightarrow unambiguous xsec prediction!)

Many production channels but most studies focus on $pp \rightarrow k^{++}k^{--}$

If $k^{\pm\pm}$ is the lightest state, then decay rates set by oscillation parameters

(I find this really, really cool ©)

What about discerning from Type II Seesaw?

RR [O(1) week]

Usual argument: Different gauge quantum numbers \implies different σ

• In principle, this is a good arguement

(note: axes do not cover same domain/range)

Usual argument: Different gauge quantum numbers \implies different σ

- In principle, this is a good arguement
- ... but difference $(1 \times \text{ or } 2 \times)$ can be absorbed by BR

Usual argument: Different gauge quantum numbers \implies different $d\sigma$

In principle, good argument...

Plotted:
$$p_T^S$$
 in $pp \rightarrow S^{++}S^{--}$ for Type II and ZB
- Zee-Babu (solid, lower line)

- Type II (dotted, upper line)

$$-$$
 Zee-Babu $imes \left(rac{\sigma_{\mathrm{Type \ II}}}{\sigma_{\mathrm{ZB}}}
ight)$ (dash)

except same shape

(note: this also holds for other models)

Usual argument: Different gauge quantum numbers \implies different $d\sigma$

In principle, good argument...

Plotted:
$$y^S$$
 in $pp \rightarrow S^{++}S^{--}$
for Type II and ZB

- Zee-Babu (solid, lower line)
- Type II (dotted, upper line)
- Zee-Babu $\times \left(\frac{\sigma_{\text{Type II}}}{\sigma_{\text{ZB}}}\right)$ (dash)
- except same shape

(note: this also holds for other models)

Seesaw scalars at the LHC - NuTs 2022 (Madrid)

silver lining (pt 1)

Guidance from oscillation data

The ratios of $h^{\pm}
ightarrow \ell
u$ couplings are fixed by oscillation data

- ν cannot be tagged at the LHC
- LHC only sensitive to sum over $\nu \implies$ inclusive w.r.t. ν !

From flavor-exclusive decay rates: $\Gamma(h^{\pm} \to \ell \nu_{\ell}') = \frac{|f_{\ell \ell'}|^2}{4\pi} m_h \left(1 - \frac{m_{\ell}^2}{m_h^2}\right)$

define flavor-inclusive decay rates: $\Gamma(h^{\pm} \to e^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to e^{\pm}\nu_{\ell})$ $\Gamma(h^{\pm} \to \mu^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to \mu^{\pm}\nu_{\ell})$

医静脉 医原体 医原体 医尿道

Guidance from oscillation data

The ratios of $h^{\pm} \rightarrow \ell \nu$ couplings are fixed by oscillation data

- ν cannot be tagged at the LHC
- LHC only sensitive to sum over $\nu \implies$ inclusive w.r.t. $\nu!$

From flavor-exclusive decay rates:

$$\Gamma(h^{\pm} \to \ell \nu_{\ell}') = \frac{|f_{\ell\ell'}|^2}{4\pi} m_h \left(1 - \frac{m_{\ell}^2}{m_h^2}\right)$$

$$\mathcal{R}_{e\mu}^{h} = \frac{\mathrm{BR}(h^{\pm} \to e^{\pm}\nu_{X})}{\mathrm{BR}(h^{\pm} \to \mu^{\pm}\nu_{X})}$$
$$= \frac{|f_{e\mu}|^{2} + |f_{e\tau}|^{2}}{|f_{e\mu}|^{2} + |f_{\mu\tau}|^{2}} = \frac{|\frac{f_{e\mu}}{f_{\mu\tau}}|^{2} + |\frac{f_{e\tau}}{f_{\mu\tau}}|^{2}}{|\frac{f_{e\mu}}{f_{\mu\tau}}|^{2} + 1}$$

define flavor-inclusive decay rates: (equivalent to measuring cross section ratio!) $\Gamma(h^{\pm} \to e^{\pm} \nu_X) = \sum \Gamma(h^{\pm} \to e^{\pm} \nu_{\ell}).$ $\ell = e$ Using NuFit(v5.1) $\Gamma(h^{\pm} \to \mu^{\pm} \nu_X) = \sum_{\ell}^{\tau} \Gamma(h^{\pm} \to \mu^{\pm} \nu_{\ell})$ $\left. \mathcal{R}^{h}_{e\mu}
ight|_{ ext{NO}} pprox 0.313$ (+smallish unc.) $\ell = e$ $\mathcal{R}_{e\mu}^{h}\Big|_{10} \approx 0.715 \text{ (+smallish unc.)}$

silver lining (pt 2)

44 / 48

イロト イヨト イヨト イヨト

Identical kinematics \implies automatically obtain LHC limits (new!)

R. Ruiz - IFJ PAN

Summary and Conclusions

The origin and nature of $m_{\nu} \neq 0$ remain major puzzles for hep-ex/ph/th

- SM provides some (but limited)
 guidance on solution ②
- While popular, models beyond "minimal" Type I Seesaw or w/o ν_R motivated by hep-ex and th ©
- Seesaw scalar models turn oscillation data into collider predictions ©

these models are testable at the LHC and dedicated flavor experiments! for reviews, see: Cai, et al [1706.08524]; Cai, Han, Li, RR [1711.02180]; Coy, Frigerio [2110.09126]

Upon discovery, hypothesis- testing will be difficult (3); further studies are encouraged

< 日 > < 同 > < 三 > < 三 >

(oscillation data will provide strong guidance $\ensuremath{\textcircled{}}$

Thank you.

R. Ruiz - IFJ PAN

Seesaw scalars at the LHC – NuTs 2022 (Madrid)

<ロト < 四ト < 三ト < 三ト

≣ 48 / 48