Neutrino clusters and Neutrino stars

A. Yu. Smirnov

Max-Planck Institut fur Kernphysik, Heidelberg, Germany

NUT's, May 18, Madrid 2022

Content

History

Equations of motion and equations for nu-stars Final configuration

Formation of clusters

Consequences and implications

A.Y.S, and Xun-Jie Xu, 2201.00939 [hep-ph] + update + ...

History

Neutrino bound states and systems

M. Markov, Phys.Lett. 10, 122 (1964): Neutrino superstars

Massive neutrinos + gravity, analogy with neutron stars, $n \rightarrow v$

$$R = \sqrt{\frac{8\pi}{G_N}} \frac{1}{m_v^2}$$

For
$$m_v = MeV \rightarrow M = 10^6 M_{sun}$$
, $R = 10^{12}$ cm $m_v = 0.05$ eV: $M = 4 \times 10^{20}$ M_{sun} , $R = 5 \times 10^{26}$ cm

R. D. Viollier et al, Phys. Lett. B306, 79 (1993) ,....

```
Gravity, m_v = (10 - 100) keV: M = (10^8 - 10^{10}) M_{sun}, R = (10^{14} - 10^{16}) cm - essentially, warm DM
```

Neutrino bound states and systems

G. J. Stephenson et al, Int. J. Mod. Phys. A13, 2765 (1998) ... Long range scalar Yukawa forces with coupling y, $m_v = 13 \text{ eV}$, motivated by ^3H exp. anomaly, negative m^2

$$G_{\rm N} \rightarrow G_{\rm v} = \frac{{\rm y}^2}{4\pi\,{\rm m_v}^2}$$

Hadrodynamics, Thomas - Fermi approximation ...

Equations for final configurations \rightarrow Density profiles, Formation of clouds in the Universe.

$$R = 4\sqrt{2} \pi \frac{1}{y m_v}$$

 $M = (10^8 - 10^{10}) M_{sun}$, $R = 10^{13} cm$, central density: $10^{15} cm^{-3}$

Dark Matter Nuggets

M.B. Wise and Y. Zhang, Phys. Rev. D 90, 055030 (2014), JHEP 02, 023 (2015)

M.I. Gresham, H.K. Lou and K.M. Zurek, Phys. Rev. D96, 096012 (2017), Phys. Rev. D 98, 096001 (2018)

Dirac fermions with $m_D \sim 100$ GeV and coupling constant with scalar $\alpha_{\phi} = 0.01 - 0.1$

Applications to asymmetric dark matter

Description is similar to that by Stephenson et al:

System of equations for scalar field and Fermi momentum of DM

Solved numerically in M.I. Gresham

Dependences of properties of nuggets on N and m_{ϕ} :

With increase of N radius N(R) first decreases, reaches minimum and then increases. The increase is due to relativistic regime In relativistic case R > $1/m_{\phi}$ is possible - "saturation" regime

Equations of motion and equations for stars

Scalar interaction. Equations of motion

$$L = \dots y \overline{\nu} \nu \phi - \frac{1}{2} m_{\phi}^2 \phi^2 - m_{\nu} \overline{\nu} \nu + \dots$$

where ϕ - scalar with mass m_ϕ m_ν - neutrino mass y - effective coupling $\;$ pheno bound y < 10^-7 $\;$

Equations of motion:

$$ig'v - m^*v = 0$$
 (*)
 $(d^2 + m_{\phi}^2) \phi + y vv = 0$ (**)

 $m^* = m_v + y\phi$ - effective mass of neutrino in medium V - potential

 $m_{\phi} << m_{v} \quad \phi$ - classical field, v - particles, quanta in eq. (**) should take expectation value $\overline{v}v \rightarrow < \overline{v}v >$

Source of field

State of system

Interacting neutrino gas with density n and distribution over momentum f(p, t, x)

Using Eq. (*)

$$\langle \overline{v}v \rangle = n^* = \frac{1}{2\pi^2} \int_{-\infty}^{\infty} p^2 dp \frac{m^*}{E_p} f(p)$$

$$E_p = \sqrt{p^2 + m^{*2}} \qquad (m^* = m_v + y\phi)$$

In non-relativistic limit p \ll m*, m_v $n^* \rightarrow n$

In the relativistic case $p \gg m^*$ - chiral suppression

n* << n

The field (potential) is suppressed, attraction force is suppressed Difference from gravity - no collapse

Ground state

Degenerate Fermi gas distribution of neutrinos over p

$$f(p) = \begin{cases} 1, & p < p_F \\ 0, & p > p_F \end{cases}$$

p_F - Fermi momentum

$$n = \frac{p_F^3}{6\pi^2}$$

$$P_{\text{deg}} = \frac{p_F^5}{30\pi^2 \text{ m}_v}$$

Equilibrium condition

Statistical system

Attraction by Yukawa forces

Pressure of neutrino gas

Equilibrium

Global characteristics can be obtained considering uniform sphere

$$P_{deq} = - P_{yuk}$$

In non-relativistic case: Hydrostatic equilibrium

$$F_{deg}(r) = -F_{yuk}(r)$$

$$F_{deg}(r) = -F_{yuk}(r)$$
 $F_{deg}(r) = dP_{deg}(r)/dr$

General: chemical equilibrium

$$d\mu / dr = 0$$

$$dE_F/dr = 0$$
 (degenerate gas)

Final stable configuration

Non-relativistic case

In non-relativistic case: Hydrostatic equilibrium

$$F_{deg}(r) = -F_{yuk}(r)$$

$$F_{deg}(r) = \frac{(6\pi^2)^{2/3}}{5m_v} n(r)^{5/3}$$
 $F_{yuk}(r) = -\frac{y^2}{4\pi r^2} n(r) N(r)$

Reduced to the Lane-Emden equation (after differentiation over r)

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dn^{2/3}}{dr} \right) = - \kappa y^2 n$$

$$\kappa = \frac{2 \text{ m}_{\text{v}}}{(6\pi^2)^{2/3}}$$
 $\gamma = 3/2$ - solution with finite radius

Boundary condition in the center:

$$n(0) = n_0 \text{ or } p_F(0) = p_{F0}$$

Global characteristics

$$m_{\phi} = 0$$

Radius

$$R = \frac{20}{y\sqrt{m_v p_{F0}}}$$

At the transition between the non-relativistic and relativistic cases

$$p_{F0} \sim m_v$$

$$R \sim \frac{20}{y m_v} \sim R_{min}$$

(as in the gravitational case)

$$R = \frac{90.4}{y^2 m_v} \frac{1}{N^{1/3}}$$

radius decreases with increase of N

Fermi momentum and density in the center

$$p_{FO} = 0.0485 \, m_y \, y^2 \, N^{2/3}$$

$$n_{v0} = 2 \cdot 10^{-6} \, m_v^3 \, y^6 \, N^2$$

 \rightarrow fast increase with y and m_y

Number density distributions

Non-relativistic case

Density distributions in the clusters for different values of $p_{F0}\,/m_{_{\rm V}}$ - non-relativistic parameter

in agreement with analytic results

 $p_{F0}\,/m_{_{\rm V}}$ - gives the central density

Shown are the corresponding total numbers of neutrinos N

with increase of N, radius decreases and central density increases fast

Dependence on coupling - scaling:

$$N \sim 1/y^3$$

Non-degenerate case

$$f(p) = \frac{1}{exp(p/T) + 1}$$

$$n = \frac{I_3}{2\pi^2} T^3$$

Results from degenerate case (upto numerical coefficients) by substitution

$$p_{FO} \rightarrow T$$

Radius is bigger:

$$R_T = 1.9 R_{deq}$$

Relativistic clusters. Equilibrium

With increase of N the Fermi momentum increases as $p_{F0} \sim N^{2/3}$ Transition to relativistic case at $p_{F0} \sim m_v$ Correct criteria of relativistic case: $p_{F0} > m^*$

Chemical equilibrium condition

$$\frac{d\mu}{dr} = \frac{dE_F}{dr} = \frac{d(p_F^2 + m^{*2})^{1/2}}{dr} = 0$$

$$\Rightarrow \frac{dm^*}{dr} = -p_F \frac{dp_F}{dr}$$

$$\Rightarrow F_{yuk}(r)$$

$$\Rightarrow F_{deg}(r)$$

- generalization of the Hydrostatic equilibrium.

Indeed
$$F_{yuk}(r) = dV/dr = y d\phi/dr = \frac{dm^*}{dr}$$

Relativistic equations

Static case

$$(\nabla^{2} - m_{\phi}^{2}) m^{*} = y n^{*}$$

$$m^{*} \frac{dm^{*}}{dr} = -p_{F} \frac{dp_{F}}{dr}$$

$$(*)$$

$$n^{*} = \frac{1}{2\pi^{2}} \int_{0}^{p_{F}} \frac{m^{*}}{p^{2} + m^{*2}} p^{2} dp$$

Equations for m^* (instead of ϕ) and p_F (neutrino density)

Boundary conditions:

$$p_F(0) = p_{F0}$$
 - External (given) parameter $m^*(0) = m^*_0$ m^*_0 is tuned in such a way that at $r \rightarrow infty$ $m^* \rightarrow m_v$

In non-relativistic case (*) is reduced to the Lane-Emden equation

Relativistic case

Density and effective density distributions in the stars for different Values of p_{F0}/m_{ν} (corresponding values of N indicated)

Below $N = 6 \cdot 10^{22}$ with increase of N

- R decreases
- n₀ increases

Above $N = 6 \cdot 10^{22}$ with increase of N

- R increases
- n₀ decreases

$$n*/n \sim < m*/E > \sim < m*/p_{FO} >$$

Characteristics of neutrino clusters

for different values of N

$$y = 10^{-7}$$
, $m_v = 0.1 \text{ eV}$, $m_{\phi} = 0$

N	2.96×10 ²¹	1.63×10 ²²	5.96×10 ²²	9.36×10 ²³	2.34×10 ²⁴
m_{ν}^*/m_{ν}	0.991	0.922	0.688	0.060	0.014
R, km	1.25	0.75	0.62	1.46	2.41
n ⁰ , cm ⁻³	2.0×10^6	4.9×10^7	3.7×10^{8}	1.5×10^{8}	6.1×10^7

non-relativistic

ultra relativistic

 $m_v^* = m_v + V$ - the effective neutrino mass in medium, n⁰ - central density

Dependence on coupling - scaling: $N \sim 1/y^3$ $R \sim 1/y$

$$N \sim 1/y^3$$

For
$$y = 10^{-14}$$
 and $n_0 = 4 \cdot 10^8$ cm⁻³: $R = 2.4 \cdot 10^{12}$ cm, $N = 2.3 \cdot 10^{45}$, $M = 3.3 \cdot 10^{12}$ g

Dependence on mass of a mediator

Radius as function of number of neutrinos for different m_{ϕ}/m_{ν}

Radius of interaction $r_{\phi} = 1/m_{\phi}$

- \bigstar Lover bound on N, for non-zero m_{ϕ} which increases with m_{ϕ}
- ★ Minimal radius: increases with m_φ and shifts to larger N

With increase of m_b

in non-relativistic range binding effect becomes weaker, R increases

in relativistic range -R decreases as a result of shift of minimum

Properties of neutrino clusters

Fermi momentum in center as function of number of neutrinos for different values of m_{ϕ}/m_{ν}

With increase of m_{ϕ}

Maximum of p_{FO} increases and shifts to larger N

Absolute maximum of p_{F0} and therefore central density determined by value of neutrino mass

$$n_v^{\text{max}} = 4 \cdot 10^8 \text{ cm}^{-3} \left(\frac{m_v}{0.1 \text{ eV}} \right)$$

Strength of interaction. Bounds

$$S_{\phi} = \frac{y^2 m_{v}^2}{m_{\phi}^2}$$

Numerically, stable solution exist for

$$S_{\phi}^{-1/2} < 0.12$$
 $S_{\phi} > 70$

$$S_{\phi} > 70$$

Stronger bound follows from condition of formation of clusters

Radius of cluster R can be smaller, comparable or bigger than radius of interactions R_{ϕ} = $1/m_{\phi}$

$$\frac{R}{R_{\phi}} = Y S_{\phi}^{-1/2}$$

Y vertical value in Fig for R

For
$$S_{\phi}^{-1/2} = 0.1$$
, $Y = (55 - 100)$, $R/R_{\phi} = (5 - 10)$ (relativistic case)

Formation of clusters and applications

Maximal density and fragmentation

Absolute maximal central density of stable configuration $n_{\nu 0}^{\text{max}}$ depends on neutrino mass only

Expansion of uniform cosmic neutrino background decrease of its density and temperature

When $n_v(T) \sim n_{v0}^{\text{max}}$ fragmentation may start

After separation the pre clusters may slightly shrink and their central density - increase. Therefore

Fragmentation density

$$n_{frag} < n_{v0}^{max} \sim 10^9 \text{ cm}^{-3}$$
 (m_v = 0.1 eV)

This density is realized in the epoch

$$z_f + 1 = \left(\frac{n_{frag}}{n_v(0)}\right)^{1/3} \sim 200$$

Corresponds to $p_v \sim 0.1 \text{ eV}$

Fragmentation may start when $p_v \sim m_v$

Evolution of the effective mass

For uniform and configuration the eq. of motion gives

$$\phi = -\frac{y \cdot \overline{v}v}{m_{\phi}^{2}} = -\frac{y n^{*}}{m_{\phi}^{2}}$$

$$m^{*} = m_{v} + y\phi = m_{v} - \frac{y^{2} n^{*}(m^{*})}{m_{\phi}^{2}}$$

For thermal distribution

$$m^* = m_v - m^* \frac{y^2 T^2}{24 m_0^2}$$

transition region

Energy of the system per neutrino

$$\varepsilon_{\alpha} = \rho_{\alpha} / n_{\nu}$$
 $\alpha = \text{tot}, \nu, \phi$

$$\alpha$$
 = tot, ν , ϕ

 ρ_{α} - energy density in α component

in the uniform static medium (all derivatives are zero)

Scalar field

$$\rho_{\phi} = \frac{1}{2} m_{\phi}^2 \phi^2 = (m^* - m_{v})^2 \frac{m_{\phi}^2}{2 y^2}$$

$$\varepsilon_{\phi} = m_{\nu} \begin{cases} 1/\chi & \text{relativistic limit} \\ \chi/4 & \text{non-relativistic limit} \end{cases}$$

$$\chi = \frac{S_v I_3}{\pi^2} \left[\frac{T}{m_v} \right]^3$$
 $I_3 = 1.80$

Neutrinos

$$\varepsilon_v = \langle E_v \rangle = \langle p^2 + m^{*2} \rangle$$

$$\varepsilon_{v} = \begin{cases} 3.15T & \text{relativistic limit} \\ m_{v} & \text{non-relativistic limit} \end{cases}$$

Total energy $\varepsilon_{tot} = \varepsilon_v + \varepsilon_\phi$

$$\varepsilon_{\text{tot}} = \varepsilon_{\text{v}} + \varepsilon_{\phi}$$

Evolution of energies. Dip

Dependence of energy per neutrino on T/m $_{\!\scriptscriptstyle V}$ for different values of m $_{\!\scriptscriptstyle \varphi}$ /ym $_{\!\scriptscriptstyle V}$ $\epsilon_{\!\scriptscriptstyle \varphi}$ - dashed, $\epsilon_{\!\scriptscriptstyle V}$ - dotted, $\epsilon_{\!\scriptscriptstyle tot}$ - solid

For large enough strength

$$S_{\phi} > S_{\phi}^{min} \sim 600$$

the dip develops in $\varepsilon^{tot}(T)$ dependence with

$$\varepsilon_{\text{tot}} < m_{\nu}$$
 (*)

at $T \sim m_v/3$, when neutrinos become non-relativistic (correspond to transition region in m*(T) dependence)

(*) implies existence of bound state with m_{ν} - ϵ_{tot} being the binding energy

With increase of strength the minimum of dip sifts to lower

Instability and Fragmentation

T_{min} - temperature of minimum of the dip

Below T_{min} further expansion and cooling would require increase of energy of the system \rightarrow fragmentation without further decrease of T and density is energetically more profitable:

 T_U - temperature in the Universe

Fragmentation stars at $z_f \sim 200$

The size of the Universe that epoch: The radius of the biggest structures: Distance between structures: Present distance (size of voids)

$$D_U$$
 (200) = 20 Mpc
 $R_f \sim D_U$ (200)/4 = 5 Mpc
 d_f (200) ~ D_U (200)/2 = 10 Mpc
 d (0) ~ $z_f d_f$ = 2000 Mpc
 N_f = 1.2 10⁸⁵, M_f = 4 10¹⁷ M_{sun}

Fragmentation and final configurations

Bounds on possible structures

Relation
$$N_f = \frac{4\pi}{3} R_f^3 n_f$$

can be rewritten multiplying by y^3 as

$$Y = m_v \left(\frac{3}{4\pi n_f} \right)^{1/3} X^3$$

where X and Y are coordinates of Fig

$$X = N y^3$$
 $Y = R y m_v$

Eq. (*) determines a line (dashed) in the Fig. Which is determined by m_{ν} and n_f only

Its crossing with line of a given S_{ϕ} at X_a gives depending on R_f

$$y = \frac{1}{R_f} \left(\frac{3X_g}{4\pi n_f} \right) \qquad m_\phi = y m_v S_\phi^{-1/2}$$

For
$$S_{\phi}^{-1/2}$$
 = 0.01 and R_f = 10 kpc y = 1.4 10^{-22} , m_{ϕ} = 1.4 10^{-26} eV

Observational consequences

Further disintegrations: other perturbations, DM halos, gravity,

Ratio of distances between clusters d and radiuses of clusters

$$d/R = 10^{-2} d_0 m_v y^2 N^{2/3}$$

 d_0 - distance between neutrinos without clustering d/R \sim 100 does not depend on y for stable configuration

Affects detection of relic neutrinos depending on sizes of stars

Summary

If neutrinos interact with light or massless scalar boson with y < 10^{-7} and m_{φ} , < 10^{-10} eV, formation of stable bound systems of neutrinos become possible

Final stable configurations: degenerate (close to degenerate)

Fermi gas with the following features

Due to chiral suppression of attraction, existence of relativistic regime in which dependence of characteristics is opposite to the non-relativistic case. Absence of collapse.

- Existence of minimal radius determined by, 1/y m,
- in relativistic regime R can be bigger than radius of interactions R_{ϕ} = $1/m_{\phi}$
- the lower bound on N, for a given strength
- upper bound on central density

Extremes in the transition region

Formation: via development of instabilities and fragmentation of the uniform relic neutrino background at z < 200

Affects programs of detection of relic neutrinos

Backup

Equation for m*

$$(\nabla^2 - m_\phi^2) (m^* - m_v) = y n^*(m^*)$$

$$(\nabla^2 - m_\phi^2) (m^* - m_v) = y n^*(m^*)$$
 $n^* = \frac{1}{2\pi^2} \int_0^{p_F} \frac{m^*}{\sqrt{p^2 + m^{*2}}} p^2 dp$

Equations for m^* (instead of ϕ)

G. J. Stephenson, et al

Boundary conditions:

$$m^*(0) = m^*_0$$

 $r \rightarrow infty \quad m^* \rightarrow m_v$

Similar to gravity in non-relativistic limit, but in relativistic case – chiral suppression of attraction with various consequences: absence of collapse, increase of size with N, etc.

Properties [R, n(r) ..] depend on y, m_{ϕ} , m_{ν}

They (dependences) differ in non-relativistic and relativistic cases

Characteristics of nu clusters

For fixed N

$$R \sim \frac{1}{y^2 m_v}$$

Radiation, cooling

 $\nu\nu$ annihilation (only for Majorana ν)

 $\nu \overline{\nu}$ annihilation (for Dirac/Majorana ν)

Formation of neutrino stars

From the cosmological neutrino background

For y < 10^{-7} cooling mechanisms: ϕ -emission (bremstrachlung), annihilation $vv \rightarrow \phi\phi$, are negligible Formation of v-stars in analogy to formation of DM halos?

In terms of effective neutrino mass $m^* = m_v + y\phi$

At early epoch (large n) $m^* \ll m_v$

G. J. Stephenson ,et al.

With decrease of density $m^* \to m_v$ due to decrease of kinetic energy \to formation of degenerate neutrino gas

Phase transition

In terns of maximal density

Neutrino clusters and detection of relic neutrinos