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Introduction ) Somm

4
X
WIMP Dark Vi,
Standard ACDM cosmology: bottom-up B 10066V ', e
structure formation scenario — dark matter ' T W
(DM) subhalos inside DM halos (e.qg., Zavala & \_.*,
Frenk 20) e
+afew p/p, d/id

Well motivated DM candidate: WIMP - Anti-matter
annihilation into gamma rays L T

Galactic subhalos - large annihilation fluxes
- excellent targets for DM searches (e.g.,
Coronado-Blazquez+19)

Open debate: disruption or survival of small
subhalos?

(van den Bosch+18, van den Bosch & Ogiya
18)

* Numerical resolution effects
 Tidal forces within the host




This work

Main goal: shed light on subhalo survival
via humerical simulations and study its
impact for gamma ray searches

* We use a high-resolution numerizah sigpuBaiden &00giya 18
follow the evolution of the subhalo and choose

several parameters:

« Number of particles to simulate the subhalo

« Softening length

 |nitial subhalo mass

* Initial subhalo concentration ¢ = r,, /r.

» Accretion redshift

* Orbital parameters: (Jiang+15)
* Circularity n =J/J.. (n =0 - radial, n = 1 - circular)
* Orbital energy parameter x. = r_ (E)/ 1., (Z,..)

* Inclusion (or not) of baryons in the host potential

 The subhalo will lose mass mainly in every




Our code: DASH

Developed by Go Ogiya (Ogiya+19) to follow the
evolution of a subhalo in the host potential

Tree-code optimised for GPU clusters

Hierarchical tree algorithm; two working modes,
treecode and evolution

The subhalo is simulated using a very large number
of particles, orbiting around its host halo since its

accretion redshift z__. until present (z=0)
The host is described as an analytical potential

Main further improvements for this work:

* Inclusion of baryonic components: (Kelley+19)
» Stellar: Miyamoto-Nagai disks
« Gas: Miyamoto-Nagai disks
e Bulge: Hernquist potential

 Time evolution of host potentials
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Simulation
results




. Bound mass fractlon (f,)
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. Bound mass fraction (f,)
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volution of baryonic componen S — = no baryons
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l. Bound mass fraction. Big picture
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arayv points: no numerical convergence




f.-pericenter relation

no baryons fit
baryons fit
no baryons

baryons

Fperi/ 1200, host

192

We find a power-law
behaviour of f, against the

pericenter of the orbit (with
some scatter)

f, = c xm
m
log,, €
no-baryons 1.07 = 0.08
0.25 =+ 0.10
baryons 1.77 = 0.16
0.58 £ 0.17

The pericenter distance is
the driving parameter!
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I1. WIMP annihilation luminosity (L)
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The subhalo DM
density profile gets
truncated as the
mass loss takes
place

The innermost part
of the subhalo is not
obtained accurately
when the numerical
resolution is
insufficient
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I1. WIMP annihilation luminosity (L)

no baryons

—-—  baryons

L is calculated as the integration of the density profile p
squared

same behaviour as f,

we expect some subhalos to lose ~99% of their initial



I1. WIMP annihilation luminosity (L)
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The relevance of the circularity increases when one adds
baryons
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L-pericenter relation

no baryons fit
baryons fit
no baryons

baryons

Fperi /r) 00, host

10!

Subhalos in the solar
neighbourhood would have lost
60~90% of their initial
annihilation luminosities without
baryons and 90~99% with
baryons
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f.-tidal field relation

no baryons

baryons

A: largest eigenvalue of a
“tidal tensor”

Degeneracy Iin
concentrations, orbital
parameters, accretion
redshifts and (non)-inclusion
of baryons!
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Conclusions

Quantifying subhalo survival is crucial to understand the actual role of
small subhalos in DM indirect searches

We simulate subhalos with 10°~7 particles orbiting the host under
different configurations: (no) baryons, concentrations, orbital
parameters, accretion redshift...

The host is described with an analytical potential
Our results show:
* Pericenter passages drive both mass and annihilation Iuminc:l.i.hasnk

* Including baryonic material induces larger mass loss Stor
Luminosity can get significantly decreased as the subhalo I¥g Ha

We checked different masses down to 1 M,,, finding similzlri t:@ning !
The tidal field drives the mass loss

Most subhalos don’t disrupt even after losing mor wn
their mass

S?

Future work: study the evolution of concentrations, v, and r_,
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. Bound mass fraction (f,)
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