Are there late-time solutions to the H_0 and σ_8 tensions?

Hector Villarrubia-Rojo

Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI)

Universidad Complutense de Madrid

May 25, 2022

Funded by the **European Union** NextGenerationEU

L. Heisenberg, HVR, J. Zosso, 2201.11623 L. Heisenberg, HVR, J. Zosso, 2202.01202

ETH zürich

H_0 and σ_8

[Millennium Simulation]

Clustering amplitude

 $\sigma_8 \equiv \sigma_R, \quad R = 8 \operatorname{Mpc} h^{-1}$

H_0 and σ_8

[Millennium Simulation]

Clustering amplitude

 $\sigma_8 \equiv \sigma_R, \quad R = 8 \operatorname{Mpc} h^{-1}$

Both can be inferred from the CMB (after choosing a cosmoloy!!)

Cosmological tensions

Toy model of late-time 'solution': phantom dark energy with w = const. < -1

Why?

Overall position of the peaks: acoustic scale

$$heta_* = rac{r_{
m s}(z_*)}{d_A(z_*)}$$

Overall position of the peaks: acoustic scale

$$\theta_* = \frac{r_{\rm s}(z_*)}{d_A(z_*)}$$

$$\begin{split} r_{\rm s}(z_*) &= \int_{z_*}^{\infty} \frac{\mathrm{d}z}{H} c_{\rm s} &\to \quad \text{Early } H(z) \\ d_A(z_*) &= \int_0^{z_*} \frac{\mathrm{d}z}{H} &\to \quad \text{Late } H(z) \end{split}$$

Overall position of the peaks: acoustic scale

$$\theta_* = \frac{r_{\rm s}(z_*)}{d_A(z_*)}$$

$$\begin{split} r_{\rm s}(z_*) &= \int_{z_*}^{\infty} \frac{\mathrm{d}z}{H} c_{\rm s} \quad \to \quad \text{Early } H(z) \\ d_A(z_*) &= \int_0^{z_*} \frac{\mathrm{d}z}{H} \quad \to \quad \text{Late } H(z) \end{split}$$

To infer a larger H_0 from the CMB, we need models such that $\theta_* \downarrow$ (fixed H_0)

- Early-time solutions: $r_{\rm s}(z_*)\downarrow$
- Late-time solutions: $d_A(z_*) \uparrow$

Both usually worsen the σ_8 tension!

 ΛCDM cosmology:

$$H^2_{\Lambda \text{CDM}}(z) = H^2_0 \Big(\Omega_m(z) + \Omega_r(z) + \Omega_\Lambda \Big)$$

 Λ CDM cosmology:

$$H^2_{\Lambda CDM}(z) = H^2_0 \Big(\Omega_m(z) + \Omega_r(z) + \Omega_\Lambda \Big)$$

Alternative cosmology (late-time deformation of Λ CDM):

$$H(z) = H_{\Lambda \text{CDM}}(z) + \frac{\delta H(z)}{\delta H(z)}, \qquad \frac{\delta H(z)}{H(z)} \ll 1 \qquad \delta H(z > 100) = 0$$

 Λ CDM cosmology:

$$H^2_{\Lambda CDM}(z) = H^2_0 \Big(\Omega_m(z) + \Omega_r(z) + \Omega_\Lambda \Big)$$

Alternative cosmology (late-time deformation of Λ CDM):

$$H(z) = H_{\Lambda CDM}(z) + \delta H(z)$$
, $\frac{\delta H(z)}{H(z)} \ll 1$ $\delta H(z > 100) = 0$

What is the effect of $\delta H(z)$ on H_0 and σ_8 ? Can we tune it to solve the tensions?

 Λ CDM cosmology:

$$H^2_{\Lambda CDM}(z) = H^2_0 \Big(\Omega_m(z) + \Omega_r(z) + \Omega_\Lambda \Big)$$

Alternative cosmology (late-time deformation of Λ CDM):

$$H(z) = H_{\Lambda \text{CDM}}(z) + \delta H(z) , \qquad \frac{\delta H(z)}{H(z)} \ll 1 \qquad \delta H(z > 100) = 0$$

What is the effect of $\delta H(z)$ on H_0 and σ_8 ? Can we tune it to solve the tensions?

• Model-independent approach: we **do not** parameterize $\delta H(z)$

 ΛCDM cosmology:

$$H^2_{\Lambda CDM}(z) = H^2_0 \Big(\Omega_m(z) + \Omega_r(z) + \Omega_\Lambda \Big)$$

Alternative cosmology (late-time deformation of Λ CDM):

$$H(z) = H_{\Lambda \text{CDM}}(z) + \frac{\delta H(z)}{H(z)}, \qquad \frac{\delta H(z)}{H(z)} \ll 1 \qquad \delta H(z > 100) = 0$$

What is the effect of $\delta H(z)$ on H_0 and σ_8 ? Can we tune it to solve the tensions?

- Model-independent approach: we **do not** parameterize $\delta H(z)$
- Fully analytical results

 ΛCDM cosmology:

$$H^2_{\Lambda \mathsf{CDM}}(z) = H^2_0 \Big(\Omega_m(z) + \Omega_r(z) + \Omega_\Lambda \Big)$$

Alternative cosmology (late-time deformation of Λ CDM):

$$H(z) = H_{\Lambda \text{CDM}}(z) + \frac{\delta H(z)}{H(z)}, \qquad \frac{\delta H(z)}{H(z)} \ll 1 \qquad \delta H(z > 100) = 0$$

What is the effect of $\delta H(z)$ on H_0 and σ_8 ? Can we tune it to solve the tensions?

- Model-independent approach: we **do not** parameterize $\delta H(z)$
- Fully analytical results
- Generalization: we will also include (some) additional effects on the perturbations ($G_{\rm eff}=G_N+\delta G(z)$)

ΛCDM

$$\left\{ \begin{array}{l} (H_0,\Omega_m) \\ \\ H=H_{\Lambda {\rm CDM}}(z) \\ \\ G_{\rm eff}=G={\rm const.} \end{array} \right.$$

$\begin{cases} (H_0, \Omega_m) \\ H = H_{\Lambda CDM}(z) \\ G_{\text{eff}} = G = \text{const.} \end{cases}$

ΛCDM

Alternative model

 $\left\{ \begin{array}{l} (H_0,\Omega_m,+{\rm new \ params.})\\ H=H_{\Lambda{\rm CDM}}(z)+\delta H(z)\\ G_{\rm eff}=G+\delta G(z) \end{array} \right.$

$$\begin{array}{ll} \Lambda {\sf CDM} & {\sf Alternative model} \\ \\ \left\{ \begin{array}{l} (H_0, \Omega_m) \\ H = H_{\Lambda {\sf CDM}}(z) \\ G_{{\sf eff}} = G = {\sf const.} \end{array} \right. & \left\{ \begin{array}{l} (H_0, \Omega_m, +{\sf new \ params.}) \\ H = H_{\Lambda {\sf CDM}}(z) + \delta H(z) \\ G_{{\sf eff}} = G + \delta G(z) \end{array} \right. \end{array}$$

After we compare with observations, the preferred values will be different from ΛCDM

 $(H_0 + \Delta H_0, \ \Omega_m + \Delta \Omega_m, \ \dots \ | \ \sigma_8 + \Delta \sigma_8, \ \theta_* + \Delta \theta_*, \ \dots)$

$$\begin{array}{ll} \Lambda \mathsf{CDM} & \qquad & \mathsf{Alternative model} \\ \\ \left\{ \begin{array}{l} (H_0, \Omega_m) \\ H = H_{\Lambda\mathsf{CDM}}(z) \\ G_{\mathsf{eff}} = G = \mathsf{const.} \end{array} \right. & \qquad \left\{ \begin{array}{l} (H_0, \Omega_m, +\mathsf{new \ params.}) \\ H = H_{\Lambda\mathsf{CDM}}(z) + \delta H(z) \\ G_{\mathsf{eff}} = G + \delta G(z) \end{array} \right. \end{array}$$

After we compare with observations, the preferred values will be different from ΛCDM

$$(H_0 + \Delta H_0, \ \Omega_m + \Delta \Omega_m, \ \dots \ | \ \sigma_8 + \Delta \sigma_8, \ \theta_* + \Delta \theta_*, \ \dots)$$

These changes are connected to the properties of the new model

$$\frac{\Delta H_0}{H_0}, \ \frac{\Delta \sigma_8}{\sigma_8}, \ \dots \quad \leftrightarrow \quad \frac{\delta H(z)}{H(z)}, \ \frac{\delta G(z)}{G}$$

$$\begin{array}{ll} \Lambda \mathsf{CDM} & \qquad & \mathsf{Alternative model} \\ \\ \left\{ \begin{array}{l} (H_0, \Omega_m) \\ H = H_{\Lambda\mathsf{CDM}}(z) \\ G_{\mathsf{eff}} = G = \mathsf{const.} \end{array} \right. & \qquad \left\{ \begin{array}{l} (H_0, \Omega_m, +\mathsf{new params.}) \\ H = H_{\Lambda\mathsf{CDM}}(z) + \delta H(z) \\ G_{\mathsf{eff}} = G + \delta G(z) \end{array} \right. \end{array}$$

After we compare with observations, the preferred values will be different from ΛCDM

$$(H_0 + \Delta H_0, \ \Omega_m + \Delta \Omega_m, \ \dots \ | \ \sigma_8 + \Delta \sigma_8, \ \theta_* + \Delta \theta_*, \ \dots)$$

These changes are connected to the properties of the new model

$$\frac{\Delta H_0}{H_0}, \ \frac{\Delta \sigma_8}{\sigma_8}, \ \dots \quad \leftrightarrow \quad \frac{\delta H(z)}{H(z)}, \ \frac{\delta G(z)}{G}$$

(we will fix $\omega_m = \Omega_m h^2$ here, more details in the paper)

The Hubble parameter is

$$H(z) = H_{\Lambda CDM}(z; h + \delta h) + \delta H(z)$$

The Hubble parameter is

$$H(z) = H_{\Lambda CDM}(z; h + \delta h) + \delta H(z)$$

The variation of the Hubble parameter is (with $\delta \omega_m = 0$)

$$\frac{\Delta H(z)}{H(z)} = \frac{H_0^2}{H^2} \frac{\delta h}{h} + \frac{\delta H(z)}{H(z)} \quad -$$

Variation at fixed h
 → Effect of, e.g., dark energy, alternative dark matter

The Hubble parameter is

$$H(z) = H_{\Lambda CDM}(z; h + \delta h) + \delta H(z)$$

The variation of the Hubble parameter is (with $\delta \omega_m = 0$)

$\Delta H(z)$	$H_0^2 \ \delta h$	$\delta H(z)$	
H(z)	$\overline{H^2} h$	$\overline{H(z)}$	

Variation at fixed h
 → Effect of, e.g., dark energy, alternative dark matter

The comoving distance is

$$\chi(z) \equiv \int_0^z \frac{\mathrm{d}x_z}{H(x_z)}$$

The Hubble parameter is

$$H(z) = H_{\Lambda \text{CDM}}(z; h + \delta h) + \delta H(z)$$

The variation of the Hubble parameter is (with $\delta \omega_m = 0$)

$\Delta H(z)$	$H_0^2 \ \delta h$	$\delta H(z)$
H(z)	$\overline{H^2} \overline{h}$	$\overline{H(z)}$

Variation at fixed h \rightarrow Effect of, e.g., dark energy, alternative dark matter

The comoving distance is

$$\chi(z) \equiv \int_0^z \frac{\mathrm{d}x_z}{H(x_z)} \quad \to \quad \frac{\Delta\chi(z)}{\chi(z)} = -\frac{1}{\chi(z)} \int_0^z \mathrm{d}x_z \frac{\Delta H(x_z)}{H^2(x_z)}$$

The Hubble parameter is

$$H(z) = H_{\Lambda \text{CDM}}(z; h + \delta h) + \delta H(z)$$

The variation of the Hubble parameter is (with $\delta \omega_m = 0$)

$\Delta H(z)$	$H_0^2 \ \delta h$	$\delta H(z)$
H(z)	$\overline{H^2} \overline{h}$	$\overline{H(z)}$

Variation at fixed h \rightarrow Effect of, e.g., dark energy, alternative dark matter

The comoving distance is

$$\chi(z) \equiv \int_0^z \frac{\mathrm{d}x_z}{H(x_z)} \quad \to \quad \frac{\Delta\chi(z)}{\chi(z)} = -\frac{1}{\chi(z)} \int_0^z \mathrm{d}x_z \frac{\Delta H(x_z)}{H^2(x_z)}$$

In general, any variation can be written as

$$\frac{\Delta\chi(z)}{\chi(z)} = I_{\chi}(z)\frac{\delta h}{h} + \int_{0}^{\infty} \frac{\mathrm{d}x_{z}}{1+x_{z}}R_{\chi}(x_{z},z)\frac{\delta H(x_{z})}{H(x_{z})}$$

The Hubble parameter is

$$H(z) = H_{\Lambda \text{CDM}}(z; h + \delta h) + \delta H(z)$$

The variation of the Hubble parameter is (with $\delta \omega_m = 0$)

$\Delta H(z)$	$H_0^2 \ \delta h$	$\delta H(z)$
H(z)	$\overline{H^2} \overline{h}$	$\overline{H(z)}$

Variation at fixed h \rightarrow Effect of, e.g., dark energy, alternative dark matter

The comoving distance is

$$\chi(z) \equiv \int_0^z \frac{\mathrm{d}x_z}{H(x_z)} \quad \to \quad \frac{\Delta\chi(z)}{\chi(z)} = -\frac{1}{\chi(z)} \int_0^z \mathrm{d}x_z \frac{\Delta H(x_z)}{H^2(x_z)}$$

In general, any variation can be written as

$$\frac{\Delta\chi(z)}{\chi(z)} = I_{\chi}(z)\frac{\delta h}{h} + \int_{0}^{\infty} \frac{\mathrm{d}x_{z}}{1+x_{z}}R_{\chi}(x_{z},z)\frac{\delta H(x_{z})}{H(x_{z})}$$

The Hubble parameter is

$$H(z) = H_{\Lambda \text{CDM}}(z; h + \delta h) + \delta H(z)$$

The variation of the Hubble parameter is (with $\delta \omega_m = 0$)

$\Delta H(z)$	$H_0^2 \ \delta h$	$\delta H(z)$
H(z)	$\overline{H^2} \overline{h}$	$\overline{H(z)}$

Variation at fixed h
 → Effect of, e.g., dark energy, alternative dark matter

The comoving distance is

$$\chi(z) \equiv \int_0^z \frac{\mathrm{d}x_z}{H(x_z)} \quad \to \quad \frac{\Delta\chi(z)}{\chi(z)} = -\frac{1}{\chi(z)} \int_0^z \mathrm{d}x_z \frac{\Delta H(x_z)}{H^2(x_z)}$$

In general, any variation can be written as

$$\frac{\Delta\chi(z)}{\chi(z)} = I_{\chi}(z)\frac{\delta h}{h} + \int_{0}^{\infty} \frac{\mathrm{d}x_{z}}{1+x_{z}}R_{\chi}(x_{z},z)\frac{\delta H(x_{z})}{H(x_{z})}$$

We can relate δh and $\delta H(z)$ by fixing $\Delta \theta_* = 0$ (CMB angular scale)

Fixing the angular scale of the CMB ($\Delta \theta_* = 0$), we can relate δh and $\delta H(z)$

$$\frac{\delta h}{h} = \int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_h(z) \frac{\delta H(z)}{H(z)}$$

$$\frac{\Delta\sigma_8}{\sigma_8} = I_{\sigma_8}\frac{\delta h}{h} + \int_0^\infty \frac{\mathrm{d}z}{1+z} R_{\sigma_8}(z) \frac{\delta H(z)}{H(z)}$$

Fixing the angular scale of the CMB ($\Delta \theta_* = 0$), we can relate δh and $\delta H(z)$

$$\frac{\delta h}{h} = \int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_h(z) \frac{\delta H(z)}{H(z)}$$

$$\frac{\Delta\sigma_8}{\sigma_8} = I_{\sigma_8}\frac{\delta h}{h} + \int_0^\infty \frac{\mathrm{d}z}{1+z}R_{\sigma_8}(z)\frac{\delta H(z)}{H(z)}$$
$$= \int_0^\infty \frac{\mathrm{d}z}{1+z}\mathcal{R}_{\sigma_8}(z)\frac{\delta H(z)}{H(z)}$$

Fixing the angular scale of the CMB

$$(\Delta \theta_* = 0), \text{ we can relate } \delta h \text{ and } \delta H(z)$$

$$\frac{\delta h}{h} = \int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_h(z) \frac{\delta H(z)}{H(z)}$$

$$\frac{\Delta \sigma_8}{\sigma_8} = I_{\sigma_8} \frac{\delta h}{h} + \int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_{\sigma_8}(z) \frac{\delta H(z)}{H(z)}$$

$$= \int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_{\sigma_8}(z) \frac{\delta H(z)}{H(z)}$$

$$\stackrel{-0.25}{-0.50}$$

$$\stackrel{-0.75}{-0.75}$$

$$\stackrel{-0.$$

8

 10^{2}

(Both \mathcal{R}_h and \mathcal{R}_{σ_8} are fully analytical!)

O Solving H_0 tension $(\delta h > 0) \Rightarrow \exists z \mid \delta H(z) < 0 \Rightarrow \exists z \mid w(z) < -1$

 $\textbf{O} \text{ Solving } H_0 \text{ tension } (\delta h > 0) \ \Rightarrow \ \exists z \, | \, \delta H(z) < 0 \ \Rightarrow \ \exists z \, | \, w(z) < -1$

(1) Solving both tensions ($\delta h > 0$, $\Delta \sigma_8 < 0$):

a) If $G_{\text{eff}} = G \implies \delta H(z)$ changes sign $\implies w(z)$ crosses -1

b) If $G_{\text{eff}} \neq G \implies ?$

Modifying the perturbations

The matter density perturbation on small scales evolves as

$$\frac{\mathrm{d}^2 \delta_m}{\mathrm{d}a^2} + \frac{\mathrm{d}\log\left(a^3 H\right)}{\mathrm{d}a} \frac{\mathrm{d}\delta_m}{\mathrm{d}a} - \frac{3\Omega_m H_0^2}{2a^5 H^2} \frac{G_{\mathrm{eff}}}{G} \delta_m = 0$$

where $G_{\text{eff}} = G$ in ΛCDM .

Modifying the perturbations

The matter density perturbation on small scales evolves as

$$\frac{\mathrm{d}^2 \delta_m}{\mathrm{d}a^2} + \frac{\mathrm{d}\log\left(a^3H\right)}{\mathrm{d}a} \frac{\mathrm{d}\delta_m}{\mathrm{d}a} - \frac{3\Omega_m H_0^2}{2a^5 H^2} \frac{G_{\mathrm{eff}}}{G} \delta_m = 0$$

where $G_{\text{eff}} = G$ in ΛCDM .

We will assume that the effects of the new model can be described with a scale-independent, small deviation $\delta G(z)$

$$G_{\text{eff}} = G + \delta G(z)$$

Then, only the growth factor D is modified

$$\delta_m(z,k) \propto \left(D(z) + (\Delta D)|_{\delta G} \right) T(k)$$

Following the same steps, we compute the response to $\delta G(z)$ so now the full variation is

$$\frac{\Delta\sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_{\sigma_8} \frac{\delta H}{H} + \int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{G}_{\sigma_8} \frac{\delta G}{G}$$

Following the same steps, we compute the response to $\delta G(z)$ so now the full variation is

$$\frac{\Delta\sigma_8}{\sigma_8} = \underbrace{\int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_{\sigma_8} \frac{\delta H}{H}}_{\sigma_8 \uparrow} + \int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{G}_{\sigma_8} \frac{\delta G}{G}$$

() If we want to solve the H_0 and σ_8 tensions ($\delta h > 0$ and $\Delta \sigma_8 < 0$) and if $\delta H(z)$ does not change sign ($\delta H(z) < 0$)

Following the same steps, we compute the response to $\delta G(z)$ so now the full variation is

$$\frac{\Delta\sigma_8}{\sigma_8} = \underbrace{\int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_{\sigma_8} \frac{\delta H}{H}}_{\sigma_8 \uparrow} + \underbrace{\int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{G}_{\sigma_8} \frac{\delta G}{G}}_{\sigma_8 \downarrow \downarrow \downarrow}$$

() If we want to solve the H_0 and σ_8 tensions ($\delta h > 0$ and $\Delta \sigma_8 < 0$) and if $\delta H(z)$ does not change sign ($\delta H(z) < 0$)

Following the same steps, we compute the response to $\delta G(z)$ so now the full variation is

$$\frac{\Delta\sigma_8}{\sigma_8} = \underbrace{\int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{R}_{\sigma_8} \frac{\delta H}{H}}_{\sigma_8 \uparrow} + \underbrace{\int_0^\infty \frac{\mathrm{d}z}{1+z} \mathcal{G}_{\sigma_8} \frac{\delta G}{G}}_{\sigma_8 \downarrow \downarrow \downarrow}$$

(1) If we want to solve the H_0 and σ_8 tensions ($\delta h > 0$ and $\Delta \sigma_8 < 0$) and if $\delta H(z)$ does not change sign ($\delta H(z) < 0$)

$$\implies \qquad \qquad \frac{\delta G(z)}{G} < \alpha(z) \frac{\delta H(z)}{H(z)} < 0 \quad \text{for some } z$$

Again, $\alpha(z)$ is a known, analytical function

General conditions for any late dark energy model to simultaneously solve the H_0 tension (i.e. $H_0 \uparrow$) and the σ_8 tension (i.e. $\sigma_8 \downarrow$):

General conditions for any late dark energy model to simultaneously solve the H_0 tension (i.e. $H_0 \uparrow$) and the σ_8 tension (i.e. $\sigma_8 \downarrow$):

General conditions for any late dark energy model to simultaneously solve the H_0 tension (i.e. $H_0 \uparrow$) and the σ_8 tension (i.e. $\sigma_8 \downarrow$):

Solving the
$$H_0$$
 tension $\implies \delta H(z) < 0$ for some z
 $\implies w(z) < -1$ for some z

() Without modifying the perturbations $(G_{\text{eff}} = G)$:

- **a** Both tensions cannot be solved if $\delta H(z)$ does not change sign
- **(b)** Solving the H_0 and σ_8 tensions $\implies w(z)$ crosses the phantom divide

General conditions for any late dark energy model to simultaneously solve the H_0 tension (i.e. $H_0 \uparrow$) and the σ_8 tension (i.e. $\sigma_8 \downarrow$):

Solving the
$$H_0$$
 tension $\implies \delta H(z) < 0$ for some z
 $\implies w(z) < -1$ for some z

() Without modifying the perturbations $(G_{\text{eff}} = G)$:

a Both tensions cannot be solved if $\delta H(z)$ does not change sign

b Solving the H_0 and σ_8 tensions $\implies w(z)$ crosses the phantom divide

() If $G_{\text{eff}} = G + \delta G(z)$ and $\delta H(z)$ does not change sign:

Solving H_0 and σ_8 tensions $\implies \left| \frac{\delta G(z)}{G} < \alpha(z) \frac{\delta H(z)}{H(z)} < 0 \text{ for some } z \right|$

Example 1: wCDM

	$100 \times \delta h/h$		$100 \times$	$\Delta \sigma_8 / \sigma_8$
w	class	Analytical	class	Analytical
-0.8	-8.57	-10.97	-8.98	-7.13
-0.85	-6.47	-7.76	-6.29	-5.32
-0.9	-4.35	-4.89	-3.93	-3.53
-0.95	-2.19	-2.32	-1.85	-1.76
-1.05	2.22	2.10	1.65	1.75
-1.1	4.47	4.01	3.12	3.48
-1.15	6.75	5.74	4.45	5.21
-1.2	9.07	7.33	5.66	6.93

Example 2: $w_0 w_a CDM$

$w_0 = -1.05$	$100 \times \delta h/h$		$100 \times$	$\Delta \sigma_8 / \sigma_8$
w_a	class	Analytical	class	Analytical
-0.05	2.81	2.61	2.24	2.08
-0.01	2.35	2.22	1.86	1.75
0.03	1.89	1.80	1.47	1.39
0.07	1.42	1.37	1.07	1.03
0.11	0.946	0.93	0.66	0.64
0.14	0.465	0.46	0.24	0.23
0.174	0.095	0.093	-0.089	-0.092
0.18	-0.022	-0.025	-0.19	-0.20
0.22	-0.52	-0.53	-0.64	-0.65
0.26	-1.02	-1.07	-1.09	-1.13
0.3	-1.54	-1.62	-1.56	-1.64

Example 2: $w_0 w_a CDM$

$w_0 = -1.05$	$100 \times \delta h/h$		$100 \times$	$\Delta \sigma_8 / \sigma_8$
w_a	class	Analytical	class	Analytical
-0.05	2.81	2.61	2.24	2.08
-0.01	2.35	2.22	1.86	1.75
0.03	1.89	1.80	1.47	1.39
0.07	1.42	1.37	1.07	1.03
0.11	0.946	0.93	0.66	0.64
0.14	0.465	0.46	0.24	0.23
0.174	0.095	0.093	-0.089	-0.092
0.18	-0.022	-0.025	-0.19	-0.20
0.22	-0.52	-0.53	-0.64	-0.65
0.26	-1.02	-1.07	-1.09	-1.13
0.3	-1.54	-1.62	-1.56	-1.64

Additional response functions

