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H0 and σ8

Clustering amplitude

σ8 ≡ σR, R = 8 Mpch−1

Both can be inferred from the CMB (after choosing a cosmoloy!!)
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Cosmological tensions
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Di Valentino (2021): 72.7 ± 1.1

Di Valentino (2021): 72.94 ± 0.75

Bonvin et al. (2016), H0LiCOW 2016: 71.9+2.4
3.0

Birrer et al. (2018), H0LiCOW 2018: 72.5+2.1
2.3

Wong et al. (2019), H0LiCOW 2019: 73.3+1.7
1.8

Shajib et al. (2019), STRIDES: 74.2+2.7
3.0

Liao et al. (2019): 72.2 ± 2.1
Liao et al. (2020): 72.8+1.6

1.7
Qi et al. (2020): 73.6+1.8

1.6
Millon et al. (2020), TDCOSMO: 74.2 ± 1.6

Yang, Birrer, Hu (2020): H0 = 73.65+1.95
2.26

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8
Kourkchi et al. (2020): 76.0 ± 2.6

Pesce et al. (2020): 73.9 ± 3.0

Jang, Lee (2017): 71.2 ± 2.5
Yuan et al. (2019): 72.4 ± 2.0

Freedman et al. (2019): 69.8 ± 1.9
Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.9

Freedman et al. (2020): 69.6 ± 1.9
Soltis, Casertano, Riess (2020): 72.1 ± 2.0

Freedman et al. (2012): 74.3 ± 2.1
Cardona, Kunz, Pettorino (2016): 73.8 ± 2.1

Riess et al. (2016), R16: 73.2 ± 1.7
Feeney, Mortlock, Dalmasso (2017): 73.2 ± 1.8

Follin, Knox (2017): 73.3 ± 1.7
Burns et al. (2018): 73.2 ± 2.3

Camarena, Marra (2019): 75.4 ± 1.7
Riess et al. (2019), R19: 74.0 ± 1.4

Breuval et al. (2020): 72.8 ± 2.7
Riess et al. (2020), R20: 73.2 ± 1.3

Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97
Ivanov et al. (2020), BOSS+BBN: 67.9 ± 1.1

Philcox et al. (2020), P +BAO+BBN: 68.6 ± 1.1
Colas et al. (2020), BOSS DR12+BBN: 68.7 ± 1.5

Zhang, Huang (2019), WMAP9+BAO: 68.36+0.53
0.52

Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1
Aiola et al. (2020), ACT: 67.9 ± 1.5

Dutcher et al. (2021), SPT: 68.8 ± 1.5

Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54
Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.53

Indirect
Direct

High Precision Measures of H0

H0
[km s 1 Mpc 1]

CMB with Planck

CMB without Planck

No CMB, with BBN

Cepheids SNIa

TRGB SNIa

Masers

Tully Fisher Relation (TFR)

Surface Brightness Fluctuations

Lensing related, mass model dependent

Optimistic average

Ultra conservative, no Cepheids, no lensing
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[Di Valentino et al. 2103.01183]

[Nunes, Vagnozzi, 2106.01208]



Early and late-time solutions to H0

Toy model of late-time ‘solution’: phantom dark energy with w = const. < −1
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Early and late-time solutions to H0
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Overall position of the peaks: acoustic
scale

θ∗ =
rs(z∗)

dA(z∗)

rs(z∗) =

∫ ∞
z∗

dz

H
cs → Early H(z)

dA(z∗) =

∫ z∗

0

dz

H
→ Late H(z)

To infer a larger H0 from the CMB, we
need models such that θ∗ ↓ (fixed H0)

• Early-time solutions: rs(z∗) ↓
• Late-time solutions: dA(z∗) ↑

Both usually worsen the σ8 tension!
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Motivation for our work

ΛCDM cosmology:

H2
ΛCDM(z) = H2

0

(
Ωm(z) + Ωr(z) + ΩΛ

)

Alternative cosmology (late-time deformation of ΛCDM):

H(z) = HΛCDM(z) + δH(z) ,
δH(z)

H(z)
� 1 δH(z > 100) = 0

What is the effect of δH(z) on H0 and σ8? Can we tune it to solve the tensions?

• Model-independent approach: we do not parameterize δH(z)

• Fully analytical results

• Generalization: we will also include (some) additional effects on the
perturbations (Geff = GN + δG(z))
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Effects of late-time ΛCDM extensions

ΛCDM
(H0,Ωm)

H = HΛCDM(z)

Geff = G = const.

Alternative model
(H0,Ωm,+new params.)

H = HΛCDM(z) + δH(z)

Geff = G+ δG(z)

After we compare with observations, the preferred values will be different from
ΛCDM

(H0 + ∆H0, Ωm + ∆Ωm, . . . | σ8 + ∆σ8, θ∗ + ∆θ∗, . . . )

These changes are connected to the properties of the new model

∆H0

H0
,

∆σ8

σ8
, . . . ↔ δH(z)

H(z)
,
δG(z)

G

(we will fix ωm = Ωmh
2 here, more details in the paper)
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Some variations

The Hubble parameter is

H(z) = HΛCDM(z;h+ δh) + δH(z)

The variation of the Hubble parameter is (with δωm = 0)

∆H(z)

H(z)
=
H2

0

H2

δh

h
+
δH(z)

H(z)
→

Variation at fixed h
Effect of, e.g., dark energy,
alternative dark matter

The comoving distance is

χ(z) ≡
∫ z

0

dxz
H(xz)

→ ∆χ(z)

χ(z)
= − 1

χ(z)

∫ z

0

dxz
∆H(xz)

H2(xz)

In general, any variation can be written as

∆χ(z)

χ(z)
= Iχ(z)

δh

h
+

∫ ∞
0

dxz
1 + xz

Rχ(xz, z)
δH(xz)

H(xz)

We can relate δh and δH(z) by fixing ∆θ∗ = 0 (CMB angular scale)
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Response functions

Fixing the angular scale of the CMB
(∆θ∗ = 0), we can relate δh and δH(z)

δh

h
=

∫ ∞
0

dz

1 + z
Rh(z)

δH(z)

H(z)

∆σ8

σ8
= Iσ8

δh

h
+

∫ ∞
0

dz

1 + z
Rσ8(z)

δH(z)

H(z)

=

∫ ∞
0

dz

1 + z
Rσ8(z)

δH(z)

H(z) 100 101 102

1 + z

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

Rh

Rσ8

(Both Rh and Rσ8 are fully analytical!)

8



Response functions

Fixing the angular scale of the CMB
(∆θ∗ = 0), we can relate δh and δH(z)

δh

h
=

∫ ∞
0

dz

1 + z
Rh(z)

δH(z)

H(z)

∆σ8

σ8
= Iσ8

δh

h
+

∫ ∞
0

dz

1 + z
Rσ8(z)

δH(z)

H(z)

=

∫ ∞
0

dz

1 + z
Rσ8(z)

δH(z)

H(z)

100 101 102

1 + z

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

Rh

Rσ8

(Both Rh and Rσ8 are fully analytical!)

8



Response functions

Fixing the angular scale of the CMB
(∆θ∗ = 0), we can relate δh and δH(z)

δh

h
=

∫ ∞
0

dz

1 + z
Rh(z)

δH(z)

H(z)

∆σ8

σ8
= Iσ8

δh

h
+

∫ ∞
0

dz

1 + z
Rσ8(z)

δH(z)

H(z)

=

∫ ∞
0

dz

1 + z
Rσ8(z)

δH(z)

H(z) 100 101 102

1 + z

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

Rh

Rσ8

(Both Rh and Rσ8 are fully analytical!)

8



Response functions

Fixing the angular scale of the CMB
(∆θ∗ = 0), we can relate δh and δH(z)

δh

h
=

∫ ∞
0

dz

1 + z
Rh(z)

δH(z)

H(z)

∆σ8

σ8
= Iσ8

δh

h
+

∫ ∞
0

dz

1 + z
Rσ8(z)

δH(z)

H(z)

=

∫ ∞
0

dz

1 + z
Rσ8(z)

δH(z)

H(z) 100 101 102

1 + z

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

Rh

Rσ8

(Both Rh and Rσ8 are fully analytical!)

8



100 101 102

1 + z

−2

0

2

4

6

Rh

100 101 102

1 + z

−3

−2

−1

0

1

2

3

4

Rσ8

I Solving H0 tension (δh > 0) ⇒ ∃z | δH(z) < 0 ⇒ ∃z |w(z) < −1

II Solving both tensions (δh > 0, ∆σ8 < 0):

a) If Geff = G =⇒ δH(z) changes sign =⇒ w(z) crosses −1

b) If Geff 6= G =⇒ ?
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Modifying the perturbations

The matter density perturbation on small scales evolves as

d2δm
da2

+
d log

(
a3H

)
da

dδm
da
− 3ΩmH

2
0

2a5H2

Geff

G
δm = 0

where Geff = G in ΛCDM.

We will assume that the effects of the new model can be described with a
scale-independent, small deviation δG(z)

Geff = G+ δG(z)

Then, only the growth factor D is modified

δm(z, k) ∝
(
D(z) + (∆D)|δG

)
T (k)
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Response to δG(z)

Following the same steps, we compute the response to δG(z) so now the full
variation is

∆σ8

σ8
=

∫ ∞
0

dz

1 + z
Rσ8

δH

H
+

∫ ∞
0

dz

1 + z
Gσ8

δG

G

III If we want to solve the H0 and σ8 tensions (δh > 0 and ∆σ8 < 0) and

if δH(z) does not change sign (δH(z) < 0)

=⇒ δG(z)

G
< α(z)

δH(z)

H(z)
< 0 for some z

Again, α(z) is a known, analytical function
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Summary of the results

General conditions for any late dark energy model to simultaneously solve the H0

tension (i.e. H0 ↑) and the σ8 tension (i.e. σ8 ↓):

I Solving the H0 tension =⇒ δH(z) < 0 for some z

=⇒ w(z) < −1 for some z

II Without modifying the perturbations (Geff = G):
a Both tensions cannot be solved if δH(z) does not change sign

b Solving the H0 and σ8 tensions =⇒ w(z) crosses the phantom divide

III If Geff = G+ δG(z) and δH(z) does not change sign:

Solving H0 and σ8 tensions =⇒ δG(z)
G

< α(z) δH(z)
H(z)

< 0 for some z
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Example 1: wCDM

100 101 102

1 + z
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10
0
×

(H
−
H

Λ
C

D
M

)/
H

Λ
C

D
M

w = const.

w = −0.8

w = −0.85

w = −0.9

w = −0.95

w = −1

w = −1.05

w = −1.1

w = −1.15

w = −1.2

ΛCDM

100× δh/h 100×∆σ8/σ8

w class Analytical class Analytical

-0.8 -8.57 -10.97 -8.98 -7.13
-0.85 -6.47 -7.76 -6.29 -5.32
-0.9 -4.35 -4.89 -3.93 -3.53

-0.95 -2.19 -2.32 -1.85 -1.76
-1.05 2.22 2.10 1.65 1.75
-1.1 4.47 4.01 3.12 3.48

-1.15 6.75 5.74 4.45 5.21
-1.2 9.07 7.33 5.66 6.93
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Example 2: w0waCDM
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w0 = −1.05, wa = 0.144

w0 = −1.05, wa = 0.174

w0 = −1.05, wa = 0.183

w0 = −1.05, wa = 0.222

w0 = −1.05, wa = 0.261

w0 = −1.05, wa = 0.3

ΛCDM

w0 = −1.05 100× δh/h 100×∆σ8/σ8

wa class Analytical class Analytical

-0.05 2.81 2.61 2.24 2.08
-0.01 2.35 2.22 1.86 1.75
0.03 1.89 1.80 1.47 1.39
0.07 1.42 1.37 1.07 1.03
0.11 0.946 0.93 0.66 0.64
0.14 0.465 0.46 0.24 0.23

0.174 0.095 0.093 -0.089 -0.092
0.18 -0.022 -0.025 -0.19 -0.20
0.22 -0.52 -0.53 -0.64 -0.65
0.26 -1.02 -1.07 -1.09 -1.13
0.3 -1.54 -1.62 -1.56 -1.64
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Additional response functions
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